ON THE CONVERGENCE RATE OF THE LAW OF LARGE NUMBERS
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1. Introduction and summary. The purpose of this paper is to establish the
following theorem and several corollaries to it.

ToEOREM 1. Let {& 1k = 0, =£1, ---} be an independent sequence of real
valued random variables with E%, = 0 and moment generating functions fi(t) =
Ee™ such that:

(1) for every B > O there exists Tg > 0 such that fi(t) exists and |1 — fi(¢)]
< Blt| for |t| £ Tp uniformly in k.

Let{apr : k=0, %1, -+ ;n = 1,2, ---} be real numbers such that:

(2) Do |tnp] <A < o forn=1,2 -

(3) f(n) = sups |@ns| > 0asn — w.

Then

. b
S, = hm.,_,_oo,b.mka On 1k

1s defined as an almost sure limit for all n, and for every e > 0 there exists a positive
pe < 1 (depending on A but not on the particular a, i’s) such that

(4) P[|S,] = ¢ < 2p7™.

This theorem is applied in Section 3 to establish exponential convergence
rates for the strong law of large numbers for subsequences of linear processes of
non-identically distributed random variables. In Section 4, the application of
the theorem to the summability theory of sequences of independent random vari-
ables is discussed. Section 2 is devoted to proving the theorem.

2. Proof of Theorem 1. We first establish the following lemma.
LemMa. Under Conditions 1, 2, and 3 of Theorem 1, there exists 0 < T = 1
independent of n such that

gn(1) = liMas_ o s | Lima fi (@nit)
exists for all n and |t| < T. Moreover
Sp = liMa,_wpse 22=a G k&
exists as an almost sure limit for all n and possesses the moment generating function
gn(2).
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Proor or Lemma. Pick 8 and let 7 from the lemma statement equal
min {1, Tg/A, Ts}. Define o = {z = t + ds : |¢| < T}. Since for || < T,
lEeZékl < Eetfk <1+ B,tl < eﬁltl’

we see that the functions

FE exp {222:(1 an k) = Hz=afk(an,kz)

are uniformly bounded in ¢ for all 7, a, and b by
exp (B e |an i|T) < €78,

It follows from the theory of the bilateral Laplace-Stieltjes transform that they
are analytic in o.

Suppose @ = —N and N < b. Moment generating functions are convex and
since fi (0) = E£ = 0 we see that 1 < f,(¢) for all £. It follows that for |¢| < T,

lHZ=afk(a”"°t) - Hl’:;_N fk(a" kt)l = [Hk_” |H>ka(an kt) — 1] =—ka((1n kt)
= [exp {8 Zk=a,(k[>N lan | T} — 1]¢°7#
< [exp {BT D > lans|} — 1]¢°78

which converges to zero as N — . It follows that { ][4 fi(ant)} is a Cauchy
sequence for [¢{| < T and has a limit g,(¢) in this range.

By Vitali’s theorem ([4], p. 168), as a — — » and b — o, HZ,,, fr(an i) —
gn(2) uniformly in every region bounded by a contour in ¢ and g,(z) is analytic
in ¢ so is continuous at 0. By Corollary 1 of [3], p. 251, this is sufficient to insure
that

b
Zk=a an,]cflc d Sn

almost surely as ¢ — — « and b — «, and that S, has characteristic function
g (1s). Comparing coefficients in the expansions of g,(7s) and g.(¢) we see that
g.(t) is the moment generating function of S, .

We are now in a position to finish proving Theorem 1. Fix ¢ > 0. By a funda-
mental inequality (see e.g. [3], p. 157), for f(n) > Oand t = O,

+anit
e (1) L5 (55).
whenever the right hand side exists.

Let B = ¢/2A. Suppose 0 = ¢ < T of the lemma. Then
P[:l:Sn > e] < e—te/f(n)eABt/f(n) < [e—te/2]1/f(n)'

Set t = T/2 so that p. = ¢ *"'*. Inequality 4 of the theorem now follows from
the fact that

PlIS,| = o < PlSn = d + P[=S, = €.
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3. Application of Theorem 1 to linear processes. Let {a; : ¢ =0, = 1, ---} be
a sequence of numbers such that Y 5w |a]’ < . Then, if {& : k = 0, £1,

- -} is a sequence of independent identically distributed random variables with
finite variances, the stochastic process

X = D imw aiies, k=12 ...,

is called a linear process. In [2] Koopmans showed, that under the additional
assumptions that the moment generating function of & exists and )i w lai|
< o, the strong law of large numbers for the linear process holds with exponential

convergence rate. Le., if B = 0 and S, = n")_j= X, for every ¢ > 0 there
exist constants A and p, 0 < p < 1, such that
P[|S,] = efor somen = m] £ Ap", m=12 ---.

We will show that an application of Theorem 1 makes it possible to generalize
this result to a class of linear processes of non-identically distributed random
variables, & , and to arbitrary subsequences of the X;’s.

THEOREM 2. Let {& : k = 0, =1, - -} be a sequence of independent random
variables with E&, = 0 and moment generating functions f,(t) which satisfy Con-
dition 1 of Theorem 1. Let {a; : © = 0, &1, - - -} be a sequence of numbers such that

Z?:—w Ia,l < o,
Then, the random variables
Xy = D i Qs

are defined as limits of the partial sums almost surely for k = 1,2, --- | and if
R = {r1,re, ---} is any subsequence of distinct integers, for every e > 0 there exists
p, 0 < p < 1, independent of R, such that

P[|8,"| = ¢ forsome n = m] = [2/(1 — p)]p", m=12, -
where
S, = X,
Proor. Note that
S = T D ik -

If @, is the coefficient of & in S, and A = D i« |ai, then |a,:] < A/n and
> lanx| < A. Thus, f(n) = sup |ans] £ A/n and it follows that Conditions 2
and 3 of Theorem 1 are satisfied for this assignment of the a,’s, where the
constant A is independent of R.

Now, as a consequence of the theorem,

R 0 -1 ©
Sy’ = §:k=—°0 an ik = N D Qry—iEr
-1y
=N ?:1 X"i N

is defined as an almost sure limit for all n and all R. Thus, taking n = 1 and an
R with r, = k, it follows that each X} is defined almost surely. Also, for every
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e > 0 there exists v depending only on the &’s and on A and e such that
P8, =z = 24"
Thus, since f(n) < A/n,
PSS z € = 20"
where p = y"*. Now
PS,"|.= ¢ forsome n = m] £ D an PlS."| = ¢ = 2(1 — p)7p",

m = 1,2, ---, and the proof is complete.

4. Application of Theorem 1 to summability theory. An infinite matrix M =
(anp), mk = 1,2, ---,is called a Toeplitz matrix if the following three condi-
tions are satisfied:

(2" Dt lany £ A < oo, n=12 -,
(3" iy Gni = O, k=1,2 -,
(5) limpse D et Gn = 1, n=12 .

An infinite column vector u = (u:, Ugy c )’ can be formally transformed into

the column vector Mu = (s1, s, ),

0
Sp = Zk=1 An Uk o

by the usual operation of left multiplying a column vector by a matrix. If the
resulting sequence {s,} converges to a limit s, the sequence is said to be summable
M to the value s, and the expressions s, are called Toeplitz means.

It is well known (see e.g. [5]) that Conditions 2', 3" and 5 are sufficient to
guarantee that if u, — s, then s, — s. In fact, if s = 0, Condition 5 can be
dropped.

The application of the matrix M to a class of sequences is called a limitation
process if there exists at least one non-convergent sequence in the class which is
M summable. The following theorem provides convergence rates for Toeplitz
means of independent random variables.

THEOREM 3. A. Let the matriz M = [an 1]n.1—1 satisfy the conditions

Dimi|tny £ A4 < o, n=12 -,
and ‘
f(n) = sup lan,k | —0 as n— «.
Let @ denote the class of sequences £ = {& : k = 1,2, -+ -} of independent random

variables with Ef, = 0 for all k and moment generating functions fi(t) satisfying
Condition 1 of Theorem 1. Then every sequence § € C is M summable in probability
to zero with convergence rate pw ™ 4n the sense giwen by Equation 4.

B. Every matriz M satisfying the conditions of the theorem yields a limitation
process on C in the sense of convergence in probability.
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C. For every matrix M and sequence £ € C there exists a subsequence {ry, s, -+ +}
of the positive integers which depends only on f(n) such that if S, is the nth term of
the sequence Mt of Toeplitz means, then S,, — 0 almost surely with rate p"'’".

That s, for every e > 0 there exists 0 < p < 1, such that
PlS,,| = ¢ forsome 1=k = [2/p(1 — p)]p™’"P.

Proor. Part A follows immediately from Theorem 1 by setting a,, = 0
for k < 0. Part B is a trivial consequence of the fact that € contains all identically
distributed sequences which possess moment generating functions and have

zero expectations.
To prove Part C,let ni , £ = 1,2, - - - be those integers for which n, < 1/f(r) <

n -+ 1 for some integer r. Let 7, be the smallest integer for which n, < 1/f(7;)
< mx + 1. Then, from Part A,

P[|S,] = ¢ forsome [ = k] < D 7 P[[S,] = €

2Z°°= 1//(r1) < 2PnkZl e pnl—nk
20D 7ol = 2(1 — p)7Mp™

< 2[p(1 — p)] 0.

I\

I\

An important class of summability methods are the Cesaro methods which
are ordered by a continuous index « for & = 0. The Toeplitz matrix for the
Cesaro method of order «, or (C, @) method, has entries

ank = Ani/A" fork = 0,1,
=0 otherwise.

We extend our indexing to £ = 0 in order to conform to the notation used in
our principle reference on (C, a) summability (i.e. to the notation used in [5]).
From [5], the functions A,* are defined for all real « by the expressions

(6) A" =1 and 4, = ("i*) = [[i~e (1 + (a/k)) forn = 1, 2,
The A,"’s have the following properties in the « range of interest, o = —1:
(7) Dok AT = A,

(8) Fora > —1, A,” >~ n® in the sense that lim,.., 4,%/n" exists and is
finite and non-zero,

(9) A,”is positive for @« > —1, is an increasing function of n for « > 0
and is decreasing for —1 < a < 0.

From (7) it follows that Property 2 is satisfied by the (C, &) coefficients for
all @ > 0 with A = 1. Moreover, for0 < o < 1

(10) f(n) = AS7/A,% = 1/A,% >~ 1/n",
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and for a = 1,
(11) f(n) = Ana_l/Ana ~1/n,

because of (6), (8), and (9). Hence (3') is satisfied for all « > 0.

Note from (6) that asa — 0, an ,—0for0 <k <n — 1anda;, , — 1. Thus,
(C, &) summability blends ‘“continuously” into ordinary convergence as o — 0.
In this sense, we will now show that every sequence & ¢ € (defined in Theorem 3)
is “almost” convergent in that it is (C, @) summable in probability to zero for
alle > 0.

TurEoREM 4. Let £ € @, a > 0 and let S,” be the nth Toeplitz partial (C, a) sum
of &. Then for every € > 0 there exist constants B > 0 and 0 < v < 1 such that

PlIS.% = d < By, n=1,2 -,

where 6(a) = a or 1 according as0 < a < lorea = 1.

Proor. The proof is an immediate consequence of Theorem 3 and the above
discussed Properties (10) and (11) of the (C, a) Toeplitz coefficients.

As a corollary to Part C of Theorem 3 we state the following result.

COROLLARY. S,* — 0 almost surely with exponential convergence rate for all « = 1.
For 0 < a < 1 there exist subsequences {r1, ry, ---} (dependent on o) such that
Sy, — 0 almost surely with rate Ve

Baum, Katz and Read [1] established almost sure (C, 1) convergence with ex-
ponential convergence rate for sequences of random variables satisfying a some-
what weaker uniformity condition on the moment generating functions than
Condition 1. They were also able to prove their condition to be necessary.

It is to be noted that the restriction Ef, = 0 is, in part, only a convenience. If
EEk = Mg, and if

. b
op = llma,b_”o Zk:«—a an,k“k

exists for all n and lim o, = ¢ exists and is finite, the convergence of the partial
sums Y i @a & can be interpreted as essential convergence with the centering
constants o, . Then, wherever S, appears, it is to be replaced by S, — ¢, and it
follows that S, — ¢ in the given mode. In Theorem 3, to insure that o, — u if
u, — u we reinstate Condition 5.
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