ESTIMATION OF JUMPS, RELIABILITY AND HAZARD RATE

By V. K. MurTHY
Douglas Aircraft Company

0. Summary. Let F(z) be a probability distribution function. Assuming the
singular part to be identically zero, it is well known (see e.g. Cramér [1] pp. 52,
53) that F(z) can be decomposed into F(z) = Fi(z) + Fu(z) where Fy(z)
is an everywhere continuous function and Fu(z) is a pure step function with
steps of magnitude, say, S, at the points z = z,, » = 1,2, ---, o and that
finally both Fi(x) and Fa(z) are non-decreasing and are uniquely determined.
In this paper the problem of estimating the jump S; corresponding to the saltus
* = z;1s considered. Also considered are the problems of estimation of reliability
and hazard rate. Based on a random sample X;, X,, --- X, of size n from the
distribution F(z), consistent and asymptotically normal classes of estimators
are obtained for estimating the jump S, corresponding to the saltus 2 = z;.
Based on the earlier work of the author [2] on estimation of probability density,
consistent and asymptotically normal estimates are obtained for the reliability
and hazard rate.

1. Introduction. Let X;, X;, --- X, be a random sample of size n from the
distribution F(z),i.e. X1, X, --- X, are independently, identically distributed
random variables with the same distribution function F(z). In the particular
case when the random variable is time to failure of an item, F(z) is the prob-
ability of the event that by time x the item has failed and R () =1 — F(x)
is the probability of the complementary event that the item survived time in-
stant z and is the so-called reliability of the item. In what follows, for any random
variable with distribution function F(z), we call R(z) = 1 — F(z) the relia-
bility function. If  is any point of continuity of the distribution F(z) and if
the density at z is denoted by f(z), the function Z(z) = f(z)/[1 — F(z)]
will be referred to as the hazard rate.

2. The asymptotic equivalence of an estimate and a class of estimators for
the reliability at a point of continuity of F(z). Let

F,(t) = (1/n)[number of observations < tamong X;, X,, --- X,)
and
(2.1) R.(t) = (1/n)[number of observations > ¢ among X;, X,, --- X,].
Clearly R.(t) is a binomially distributed random variable with
(2:2) E(Ra(¢)) = R(2).
Var (Ra(1)) = (1/n)R(t)(1 — R(2)).
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Let K(z) be a function satisfying
(23) K(z) 20, K(—2) = K(z), limp.o2zK(z) =0, [Z,K(z)dx=1.

A function K(z) satisfying (2.3) is called a Window. (Murthy [2]). Let B,
be a sequence of non-negative constants depending on the sample size n such
that B, — « asn — «.

Let

(24) fu(t) = Ze B,K(B.(x — t)) dF,(x) = (B./n) Z?-l K(Bu.(X; — t)).

It was shown by the author [2] that the class of estimators {f,(x:)} given by (2.4)
consistently and asymptotically normally estimate the density f(z,) at every
point of continuity x, of the distribution F(z) and also of f(z) if > ; Si/|z; — x|
< . We will now propose the class of estimators {R,*(¢)} for estimating the
reliability function B(¢) where

(25) R.*(8) = [Tfa(z)de = (Bu/n) 2}- [T K(Bu(X; — %)) da.
We will now prove that at a point of continuity ¢ of the distribution #(¢)

(2.6) lim. E(R"(2)) = R(2),

and

(2.7) lim,.. [ Var (R, *(¢))] = R(t)(1 — R(2)).
Let

(2.8) G(t) = [Lo K(z) dx.

In terms of G(t), R,*(¢) can be written as

(2.9) RA(t) = (1/n) 251 G(Ba(X; — 1))
Taking expectation on both sides of (2.9) we obtain

(2.10) E(R,*(t)) = [24 G(Bu(z — t)) dF (z)

=1— [Z2.B,K(B,(z — t))F(z) dx.
Now
(211) [2.B.K(B.(x — t))F(z)de = [Z, K(\F(t + N\/B,) d.

If ¢t is a point of continuity of the distribution F(z), taking limit on both sides of
(2.11) as n — » we have

(2.12) limpse [Z0 BJK(Ba(z — £))F(z) de = F(t) [Zo K(\) d\ = F(1).

Combining (2.10) and (2.12) we have at a point of continuity ¢ of the distribu-
tion F(x) that

(2.13) lim,,, E(R,*(t)) = 1 — F(¢) = R(2).
Taking the variance of the estimator R,*(¢) given by (2.9) we obtain
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(2.14) Var (R.*()) = (1/n) Var [@(Ba(z — 1))]
= (1/n)[E(G*(Ba(z — 1))) — E'(G(Ba(z — 1)))].
Now
(2.15) E(G*(B.(z — 1)) = [20 G*(B.(z — t)) dF ()
=1-—2 [2,G(B.(x — t))B,K(B.(x — t))F(z) dz,
after integration by parts. Substituting B,(x — t) = A, (2.15) can be written as
(2.16) E(G*(Ba(z — 1)) = 1 — 2 [Z2, GO\K)F(t + \/B,) dx.

Taking limit as n — c on both sides of (2.16) we have at a point of continuity ¢
of the distribution F(z) that

(217)  limpaw B(G}(Ba(z — 1)) = 1 — 2F(2) [0 GOVK(N) dA
=1-— F@),
since [Z., G(\)K(A) d\ = 1. Combining (2.10), (2.13), (2.14) and (2.17) we
discover that
(2.18) lim,.,[n Var (R,*(¢)] = R(t) — R*(¢t) = R(t)(1 — R(2)),

at every point of continuity of the distribution F(z). Also from (2.9) R,*(¢)
can be written as R,*(t) = (1/n) Z}'-ﬂ V;, where V; = G(B,(z; — t)) and the
Vs are independently and identically distributed as a random variable

(219) Yn = G(B,,(X, - t))

A sufficient condition for the sequence {R,*(t)} to be asymptotically normally
distributed (see Parzen [3] p. 1069) is that for some § > 0

(220)  Ely, — E(ya)["P/(n™[Var ()]} > 0; asn — .

For y, given by (2.19) Condition (2.20) is easily verified by noting that both
limy.e Elya/"" < «, and lim,.. Var (y.) < « at every point of continuity ¢ of
the distribution F(z). Summing up we have proved the following

TuaeoreM 1. The estimate R,(t) giwen by (2.1) and the class of estimators
{R.*(t)} given by (2.5) are both consistent estimates of R(t) at every point of con-
tinuity ¢ of the distribution F(z). Further R,(t) and {R,*(t)} are both asymptotically
equivalent in the sense that they have the same order of consistency and the same
asymptotic variance. The sequence {R,*(t)} is asymptotically normal.

3. Estimation of the jump S; at the saltus z; of the distribution F(z). Assuming
the singular part to be identically zero, the distribution F(z) can be decomposed
into (see e.g. Cramér [1] pp. 52, 53)

(3.1) F(z) = Fi(z) + Fy(),

where F;(z) is an everywhere continuous function and F(z) is a pure step func-
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tion with steps of magnitude, say, S, at the pointsz = z,,» = 1,2, - - - and Fy(x)
and Fy(z) are non-decreasing and are uniquely determined. Substituting (3.1)
in (2.10) we obtain

(3.2) E(R,*(t)) = [Z0G(Bu(z — 1)) dFi(z) + [ZaG(Ba(z — t)) dFa(z)
= I+ I,, say.

Following the argument of the previous section, we readily obtain lim,., [; =
Fi( ) — Fy(t). Since F1(z) is continuous at x = x; we have

(3.3) limp.e Iy = Fi() — Fi(x4),
at the saltus z = z: of the distribution F(z).

Now
(34) I = [2.G(Bn(z — t)) dFs(x)

= Z:"l S,,G(Bn(xv - t))

Denoting by 2 .,>; summation over all » such that z, > z; and by D . <,
summation over all » such that z, < z;, at the saltus { = x, of the distribution
F(z), I, can be written as

I, = In + Iy + I,

where Iy = Z,,<,,,. S,G(Bu(x, — x)), I = S:G(0) = 18;, and Iy =
Z%N; S,G(B.(x, — xz)) Now

Iy =214 2
where
21 = 2 rceiiizm SG(Ba(m — 22)),
and
B2 = Darcorivizm SG(Bu(a, — 1))

It can be argued as in the proof of the lemma (see Murthy [2]) that 2, can be
made arbitrarily small, by choosing m sufficiently large, (no matter what n is)
and Z, , for fixed m, can be made arbitrarily small by choosing » sufficiently large,
i.e. limg.o Iy = 0. From the fact that

Iy = D a8 — Donpon Sill — G(Bu(w, — 22))],

we discover Mo Iz = 2z >:; Sy . Of course, it should be noted (see Murthy
[2]) that in proving the above statement it is assumed that Do S| — 4
< . We have therefore proved that at the saltus { = x, of the distribution F(z)

(3.5) liMpon Lo = 38 + 2eyou S0 -
Combining (3.2), (3.3) and (3.5) we obtain
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(3.6) lim,._mE(R,,*(xi)) = F1(°°) - Fl(xi) + %Si + Zz.>z.~ Sv,

at the saltus z; of the distribution F(z).
Now

F(z;) = [Zod(Fi(z) + Fa(z)) = Fi(:) + 2ayze: S,
and therefore
(37) R(z) = 1= F(z:) = Fi() + Fa(®) — Fa(2:) — 2a,50: Sy
= Fi(®) — Fi(2:) + Zopoe; So
Substituting from (3.7) in (3.6) we discover that

(38) limg B(Ra*(2:)) = R(2:) + 5:.
From (2.2) we have that
(3.9) E(R.(z:)) = R(x:).

Let us write
(3.10) H,(z:) = 2[R.*(2:) — Ra(x)].
In view of (3.8) and (3.9) we obtain
(3.11) limpaw E(H(z:)) = Si,

at the saltus z; of the distribution F(z).
4. Variance of the estimator H,(x;). We have
(41) Var (Ha(z:)) = 4[Var (R.*(z:)) + Var (Ra(2:))
— 2 cov (R.*(2:), Ru(x:))].

Since we already know Var (R,(z;)) as given by (2.2), we only have to obtain
Var (R,*(2:)) and cov (R,*(2:), Ra(x:)) at the saltus = z; of the distribution
F(z). We have from (2.14) that

(42) n Var (R.*()) = B(G(Bu(z — 1)) — E*(G(Ba(x — 1))).
Now
E(G (Bu(z — 1)) = [Za P (Bualz — 1)) dFy(z) + [Z0 G*(Ba(z — 1)) dFs(x)
=J: +Js, say.
It is easily seen that
(4.3) lim,.edi = Fi(®) — Fi(z:),
liMpawdz = 38i + Doysn; S
at the saltus ¢ = z; of F(¢). Therefore
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(44) limpo BIG*(Ba(z — 2:))] = Fi(®) — Fi(z:) + 38 + Yase: S,
= R(xz;) + 18;.

Combining (3.8), (4.2) and (4.4) we obtain

(45) limp.w[n Var (B.*(2:))] = R(z:) + 38 — (R(z:) + 3807,

at the saltus ¢ = x; of the distribution F(¢).
To find the co-variance between R, (t) and R,*(¢) let us recall

(4.6) R.*(1) = (1/n) 22j-1 G(Bu(X; — 1)),
and
(4.7) R.(t) = (1/n)[number of observations > ¢ among X;, X;, -+ X,
= (1/n) 225 U(X; — 1),
where
U(z) =1 forz > 0

=0 forx £ 0.

I

Now
(4.8) cov [B.*(1), Ra(t)] = (1/0°) Xj=1 cov [G(Bu(z; — 1)), U(X; — 1)]
= (1/n) cov [G(Bu(z — 1)), U(z — 1)]
we have
(4.9) cov [G(Bn(x — t)), U(x — t)] = My — M,,
where
(4.10) My = [Z, U(z — t)Q(B(z — 1)) d(Fi(z) + Fo(z)) = My + My, , say,
and
(4.11) M, = E(U(x — t))E(G(B.(x — t))).
It can be easily verified that
(4.12). liMpow My = liMyaw [Z0 U(x — t)Q(Bu(z — t)) dFy(z)
= Fi() — Fi(x:)

at the saltus ¢t = ;. Also

My = [Z.U(z — 1)G(Ba(z — 1)) dFa(z) = 2up50; SG(Ba(m — ).
Hence

(4.13) limn»w M12 = Za‘y>z,’ Sv I}
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at the saltus { = z; . Summing up
(4.14) limpow My = Fi(0) — Fi(2:) + 255 8o = B(@2),
at the saltus ¢ = z,. We have
E(U — 2:)) = [Za Uz — 2:) d(Fi(z) + Fo(2))
(4.15) =[G dF(x) + Xans S,
=F(») — Fi(z:) + 2opuS = R(z).

Combining (3.8), (4.11) and (4.15) we have
(4.16) limg.e Mz = R(2:)(B(z:) + 384,
at the saltus ¢ = ;. Combining (4.8), (4.14) and (4.16) we discover that
(4.17) limg,ecov [G(Ba(z — t), U(z — ¢))] = R(x;')(l — R(z;) — 18)),
at the saltus ¢ = x;. Taking (4.1), (2.2), (4.5) and (4.17) we finally obtain

liMpow [7 Var (Ha(2:))] = 4R(2:) + 38 — R*(z:) — 8¢ — S:R(x)
(4.18) + R(x:) — R*(z:) — 2R(w:) + 2R*(:)
+ SiR(z:)]
Si(1 — 8),

It

at the saltus ¢ = z; .
Writing the estimator H,(z;) as

Hu(z:) = (1/n) 2w 4,
where ¢ = 2[G(B.(X; — z:)) — U(X; — )], one can easily verify that the
sufficient, condition for asymptotic normality given by (2.20) is satisfied by the

sequence {£;} of independently and identically distributed random variables.
We have therefore proved

TueoreM 2. The class of estimators {H,(x:)} are consistent and asymptotically
normal for estimating the jump S; corresponding to the saltus x = x; of the distribu-
tion F(x).

Consider now the estimator f,*(z;) where

fn*(xZ) = (I/Bn)fn(xz)
and f,(z;) is given by (2.4) at the saltus ¢ = z;. Since

(4.19) fu¥ (@) = (1/n) 25 K(Bu(X; — ).
a straight forward calculation yields that

lim,.... [0 Var (fu*(2:))] = K*(0)8:(1 — S:)

at the saltus z = x; of the distribution F(z) where the derivative of the absolutely
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continuous part f(z) is assumed continuous and finally the estimate f,*(z;)
is asymptotically normal. Thus the estimators H,(x;) and [1/K(0)]f,*(x:)
are asymptotically equivalent for estimating the jump S; at the saltus z =
of the distribution F(z).

6. Estimation of hazard rate. The function Z(t) will be called the hazard rate
where

(5.1) Z(t) = f(0)/1 — F()] = f(t)/R(2).
Let us now propose Z,(t) as an estimate of the hazard rate Z(¢) where
(5.2) Zn(t) = fa(t)/Ru(t),

fo(t) and R,(t) being respectively given by (2.4) and ¢2.1). It was earlier shown
by the author (Murthy [2]) that f,(¢) is a consistent estimate of f(¢) at every
point of continuity ¢ of F(¢) and f(t), i.e.

(5.3) Plimg, e f2(2) = f().
It follows from (2.2) that
(5.4) Plim,.. R.(t) = R(t).

Combining (5.3) and (5.4) and using a well known convergence theorem (see
Cramér [1], p. 254) we at once have

(5.5) Plima,. Z.(t) = f(t)/R(t) = Z(t),

in other words Z,(t) is a consistent estimate of the hazard rate Z(t).
It was also shown by the author [2] that at every continuity point x = ¢
of F(z) and f(z)

(5.6) lima.e P{(n/Ba)!(fa(t) — £(£))/(f(t) [20 K (z) d2)¥] < o}
= (2m)7 [Za e dy.

Combining (5.4) and (5.6) and using a well known convergence theorem (see
Cramér [1], p. 254) we discover

QR (O}
(57) lim P (1>( B Ra®) < o = (2m)" [ Wt g

. R(28>[ K= )d>

Consider now

(5.8) Yo = (0/B)'(Ba(t) — R(D)).
We have in view of (2.2) that
(5.9) E(y.) =0

Var (y.) = (1/B.)R(1)(1 — R(1)),
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and hence
(5.10) plim, .. ¥, = O.

Combining (5.7) and (5.10) and using the convengence theorem (see Cramér
[1], p. 254) again we finally obtain

(5.11)  limpow P[(n/Ba){(Za(t) — Z(8))/I(Z()/R(})) [Za K*(x) da]}} < a]
= (2m)7# [7. e dy.

‘We have therefore proved the following

TuroreM 3. The class of estimators Z,(t) given by (5.2) for estimating the hazard
rate Z(t) is asymptotically normally distributed at every point of continuity x = ¢
of the distribution F(x) and the density f(x).

It may be observed that the estimator Z,*(t) for estimating Z(t) where

Zn*(t) = fn(t)/Rn*(t)f

is consistent and asymptotically normal, the proof being exactly similar to the
one given for Z,(t).
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