ON THE ASYMPTOTIC POWER OF THE ONE-SAMPLE
KOLMOGOROV-SMIRNOV TESTS'

By DanNA QUADE

University of North Carolina

1. Introduction. Let X, X5, --+, X, be a random sample of n observations
from some unknown distribution function F, and let

Fo.(z) =0, z < Xq,
=1/n, Xup =z < X,
= 1, z2 X,
where Xy < X@ = -+ £ X are the ordered observations. If H is some com-

pletely specified continuous distribution function, we may reject the hypothesis
that F = H for large values of K, = SUpP—_w<s<o nt|Fo(z) — H (z)] or
K," = SUP_wcoce n[F,(x) — H(z)]; specifically, if K, = d,(a) where
P{K,2d,|F =H} = aorifK," = d} (a) where P{K,* = d," |F = H} = o
These probabilities do not depend on the true underlying distribution function,
so long as it is continuous. The test based on K, was first proposed in 1933 by
Kolmogorov [9], and the related K,* test was later suggested by Smirnov [12];
they are called respectively the two-sided and one-sided one-sample Kolmogorov-
Smirnov tests of goodness of fit. For a fuller expository treatment we refer to the
paper by Darling [5] which also includes an extensive bibliography.

The power of the K, test when F is equal to some alternative continuous dis-
tribution function G is

P{K, 2 du()| F = G} = P{SUp_wceca ' |[Fu(2) — H(z)| = da(a)| F = G},
and if {G,} is some sequence of alternative distributions, we may define the
asymptotic power against {G,} to be

liMaoe P{SUP_wcrcoo 7 [Fn(z) — H(z)| = da()| F = G}
if this limit exists. Following Doob [7], we introduce the stochastic process
Zu(t) = n'(FJF'(t)] — t), 0 <t < 1; then the asymptotic power may be re-
written in the form
liMpaw Pl{supocict [Za(t) — n(H[G, ()] — t)| = du(a)| F = Ga).

We may omit the condition F' = @G, in this expression, since all probability state-
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ONE-SAMPLE KOLMOGOROV-SMIRNOV TESTS 1001

ments about Z,(t) are entirely independent of F, so long as F is continuous; in
what follows we shall for convenience take F to be the uniform distribution on the
interval [0, 1]. Define also

(L.1) Ca(t) = n'(HIGT(D)] — 1), n=12-:

Then the asymptotic power may be written as P(a, {Ca}) = lim,.. P{supocic:-
[Zn(t) — Ca(t)] Z dn(a)}. The notation here indicates that the power does not
depend on H and {G,} separately, but only on the sequence {C.}. In a similar
manner we may define the asymptotic power of the K, test and write it as
P (a, {Ca}) = limpse P{supocic [Za(t) — Ca(t)] = dn*(a)}, if this limit exists.
Now it is well known that asn — « the stochastic process Z,(¢) is asymptotically
a certain normal stochastlc process Z (¢), and that for each & > 0 the critical
values d,(a) and d,"(a), respectively, approach limits d(«) and d*(a) deter-
mined by

(1.2) a=22 i (—1)""exp (—2k* d*) = exp [—2(d").

Suppose that the sequence of functions {C,} also tends to some limit, say C. It
was Doob’s conjecture, later justified by Donsker [6] under fairly general con-
ditions, that in calculating asymptotic Z,(t) process distributions when n — «
we may simply replace the Z,(¢) processes by the Z(¢) process. Extending this
“heuristic procedure” to the case at hand, we would conclude that

P(a, {Cu}) = P{supocics |Z(t) — C(t)] Z d(a)}
and
P¥(a, {Ca}) = P{supocict [Z(t) — C(1)] Z d™(a)}.
In the remainder of this paper we investigate the validity of this extended

heuristic procedure, and we use the results to establish various bounds on the
asymptotic power functions of the two tests.

2. The function Q(y; A, B). We shall say that a function C, defined on the
open interval (0, 1), is piecewise-continuous if it has at most countably many
points of discontinuity. We permit C to take on infinite values, where, if C'(f,) =
=+ =, then we say that {4 is a point of continuity of C if and only if C(¢) = C()
for all ¢ in some neighborhood of ¢ . Then if the two functions 4 and B are both
piecewise-continuous, we may define

(21)  Q(y;4,B) = P{A(t) —y S Z(1) £ B(t) + 4,0 <t < 1}.

This probability is legitimate, since if T = {t;, t,, - - -} is any countable dense
subset of (0, 1) which includes all the points of discontinuity of 4 and B, and
i T% = {t:, &2, -+ - , &}, then it i$ a simple consequence of separability (which we
shall assume) that @(y; A, B) = liny., P{A(t) —y < Z(t) < B(t) +y,te T4}
It will be convenient to define also

(2.2) ™[4, B] = max {4(0), A(1), —B(0), —B(1)}
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where A(0) = limsupeo+ A(t), A(l) = limsups.-A(t), B(0) =
lim inf,.o+ B(¢), and B(1) = liminf,,;- B(t). If A and B are sufficiently clear
from :ghe context we may drop them from the notation and write only Q(y)
andy .

The following properties of the Z(¢) process may be found in Doob [7] or de-
rived immediately from results therein. First, Z(¢) has mean value function
E[Z(t)] = 0and covariance kernel cov [Z(s), Z(t)] =s(1 —t)for0 S s <t =1,
and Z(0) = Z(1) = 0 with probability 1. Hence if Z; = Z(¢;),1 < ¢ < k, where

=1t <t <+ <t <ty = 1, then the joint probability density function of
the random variables Z,, Z;, -+, Z; is

exp {—3% D2 ¥} (2i — 2i1)?/(t: — tiy))
@Cm*2[ty (ba~t1)- - - (1 —ts)]?

where 2o = 211 = 0. The Z(¢) process can be convertedinto the classical Wiener
process, or Brownian motion, by the transformation

(2.4) W) = (r + 1)Z( + 1)7, 0=7< »;
then we have E[W (r)] = 0 and cov [W(s), W(r)] = ofor0 < ¢ < 7 < . Since,
as is well known, the sample functions of the Wiener process are continuous with
probability 1, this property must hold also for Z(¢). For future reference it will
be convenient to convert two of Doob’s results about W(7) into results about
Z(t). First, since
Pl—ar —B=W(r) Sar+b0< 7 < o}

=P{—Bt—a(l —t) S Z(t) bt +a(l —1),0<t<1}
we have by his formula (4.3) that if a, &, b, 8 = 0 then
(25) P{—Bt—a(l —1t) S Z(t) <bt+a(l—1),0<t<1}

— 1 _ Zlo:;l e-—K{e2(2k—-l)ab + eZ(ZIc—l)aﬁ _ e—4kaﬁ _ e—4kab}

(23) ‘I/(zlﬁz2, te 1zk) =

where

K = 2K'(a + a)(b + B) — 2k(aB + ab);
and similarly, using his formula (4.2), we have that for a, b = 0
(2.6) P{Z(#) sbt+a(l —1),0<t<1} =1—¢""

We note that (1.2) may be obtained as a special case of (2.5) and (2.6).
It is convenient at this point to define the function

R(t) = [t(1 — O
LEMMA 2.1. If 0 < 6 < 1 and N\ > O then
P{supocics Z(t) > A} = ®(—AR(5)) + exp (—2\)&(—\(1 — 28)R(5)) < o\ 77,

where ® 1s the standard normal distribution function.
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Proor. Let P be the desired probability; then
P=1-— {Z(t) NO<t<d)
=1- 2, P{Z(}) =\0<t< 8| Z(8) = =}y(2) de,
thre, by (2.3), ¢(2) = (2r)*R(3) exp [—2°R*(8)/2]. Nowif 0 < s < ¢t £ 1,
an
U(r) = (t — 8)H{Z(rs + [1 — 7}t)
—7Z(s) - (1=7)Z®)}, 0=7=1,

it may easily be verified that E[U(r)] = 0 and cov [U(s), U(7)] = o(1 — 7)
for 0 = ¢ = 7 = 1; thus (2.7) converts the Z(¢) process into itself. Using this

transformation, with s = 0 and ¢ = §, we find that
P{Z(t) = M0 <t <38|Z(3)

(2.7)

2}

=PEZt) =M+ (A —2)1—1),0<t <1}
= 1 _ 6—2)\()\—::)/8

by (2.6). The stated formula for P then follows by straightforward integration.
Now the following inequalities are well known: (a) 2&(—=z) < exp (—z°/2) for
x> 0;(b) e = 1/zefor x > 0; (¢) ®(z) = 1 for all z. That the first term of the
formula is not greater than §/2\* may be shown using (a) and then (b); that the
second term is also not greater than §/2\* may be shown using (a) and then
(b) if 6 < 3, or (¢) and then (b) if § = 2.

Lemma 2.2. Let B be any function of t, and let S be any countable subset of
(6,1 — &), where 0 < & < 5. Then P{Z(t) = B(t) + y, t ¢ S} s a monotonically
increasing and differentiable function of y, its derivative being nowhere greater than
2R(5).

Proor. Let T = {t;, 1 = ¢ = k} be any finite subset of (5, 1 — &), where
0=t <0< ti << - <4t <1 =25 < hyy = 1. Write B(t:) = B,
1<:{=2k
Then we have

P(Z(t) S B(t) +y teT) = [267 - [28Y(a, 20, -+, ) daw -+ doa,

where ¥(21, 22, -+, %) is defined by (2.3). Differentiating with respect to y,
we obtain

(d/dy)P{Z(t) = B(t) +y, teT}
—-ffghl e Bk+” [zl/tl + Zk/(]. b tk ]IP(Zl, 22y, Zk) de e d21

which is less than the expected value of |21/t + 2:/(1 — )|, and it is easily
verified that (z1/ti + 2/(1 — %)) is normally distributed with mean 0 and
variance (1/t + 1/(1 — %)). Hence the derivative is less than [(2/x)(1/t
+ 1/(1 — %))}, which is less than 2R(8) since 8§ < t; < & < 1 — 8. Now let
S be the finite set consisting of the first ¥ members of S; then for every k we have
P{Z(t) = B(t) +y+eteS}) — P{Z(t) S B(t) +y — ¢ teSi} = 4eR(5).
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We then obtain the lemma, if we first let £ — « and then divide both sides by
2¢ and let e — 0.

TaEOREM 2.3. Let A and B be piecewise-continuous: then

(a) Q(y; A, B) s a continuous function of y except posszbly aty = y*[A, B)
as defined by (‘7 2),

. y'14, B) — max (A(8), A(L = 1), = B(t), = B — 1)}
(¢) if lim sup,o+ [2¢(1 — ¢) log Tog (1 — O /O)]F

then Q(y*; A, B) = 0 and hence Q(y; A, B) is continuous for all y.

Proor. Consider first the case where y < y*:say y = y* — ¢ for some e > 0.
Without loss of generality we may suppose that y* = lim sup,.o+ A(t), so that
lim supe.o+ A(t) — y = e. Then

Qly) = P{A(t) —y = Z(t) = B(t) + 4,0 <t < 1
=< P{lim sups;o+ A(f) — y < lim sup.o+ Z(8)}

P{lim sup,.o+ Z(t) = ¢

=0

since, with probability 1, Z(¢) is continuousin ¢ and Z(0) = 0. Thus we have (b).
Now consider the case where y > y*:say y = y* + 2¢for ¢ > 0. Then thereis a
8o(e) sufficiently small that for 0 < & < 8y(¢) we have

infocisB(t) 2 liminfio+ B(t) — e 2 —y*[4,B] — e = —y + .

<1,

and -
infisctcB(t) 2 liminfio+ B(1 — ) — e = —y*[4,B] — e = —y + e

Let T be a countable dense subset of (0, 1) which includes all the points of dis-
continuity of B, and let 75 = T n (3, 1 — §). Then

P{Z(t) = B(t) +y— e, TeTs} — PZ(t) < B(t) +y — &, teT}
= P{Z(t) = B(t) +y — e, TeTs, but Z(t) > B(t) + y — e,
for some te T}
S P{Z(t) > B(t) + y — ¢ forsome ¢, 0 < t < §}
+ P{Z(t) > B(t) +y — ¢ forsome {,1— 8 <t <1}
=< P{Supo«ics Z(t) > infocics B(t) + y — &b}
+ P{sups_scici Z(1) > infi_scra1 B(t) + y — €8}
P{supocics Z(1) > e(1 — 8)} + P{supiscici Z(t) > e(1 — 8)}.

Hence, noting that the processes Z(¢) and Z(1 — t) are identical, by Lemma 2.1
we have P{Z(t) < B(t) + y — &, TeTs} — P{Z(t) £ B(t) + y — e,

A
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teT} £ 28(1 — )% " By Lemma 2.2 we have P{Z(t{) < B(t) + y + e,
teTs} — P{Z(t) £ B() + y — €, te Ts} < 4e6R(8) and certainly P{Z(t) =<
B(t) +y+ e,te T} — P{Z(t) < B(t) +y + ¢, teT;} <0.Adding these
last three inequalities, we have

P{Z(t) £ B(t) +y+ e,teT) — P{Z(t) <B({) +y — &, teT)
=25(1 — 8)7%? + 4eR(5).

On letting & — 0, we see that P{Z(t) < B(f) + y, t ¢ T} is continuous for y >
y*, and by separability this is the same as P{Z(t) < B(t) +y,0 <t < 1}, or
Q(y; — =, B). A similar argument will show that @(y; A, 4+ «) is continuous for
y > y* NowQ(y; A, + ) and Q(y; — «, B) may beregarded as the distribution
functions of Y1 = SUPo<i<1 [A(t) — Z(t)] and Y, = SUPo< <1 [Z(t) - B(t)] re-
spectively. Since both these distribution functions are continuous, the distribu-
tion function Q(y; A, B) of ¥ = max (Y;, Y,) must also be continuous for
y > y*[4, B], and thus (a) is proven.

In proving (¢) we write f(¢) = [2{(1 — t) log log ((1 — /O] By hypothesis
lim sup o+ [(y*[4, B] — max {4(t), A(1 — 1), —B(t), —B(1 — )})/f(1)] < L.
Assuming, without loss of generality, that y*[4, B] = —lim inf,,o+ B(¢), we have
that lim sup .o+ {[y* + B(t)]/f(¢)} = 1 — 2¢ for some ¢ > 0. Then there is a 5(¢)
sufficiently small that for 0 < ¢ < 8(e) we have y* + B(t) < (1 — €)f(¢), and
hence

Q(y) = P{A(t) — y* £ Z(t) < B(t) + 45,0 <t < 1}
P{Z(t) < B(t) + y*,0 <t < 8}
P{Z(t) = (1 — ef(1),0 <t <8}
= P{lim sup.o+ [Z(2)/f()] = 1 — ¢
=0
since Khinchin’s law of the iterated logarithm, as given (for example) in formula

(73), page 242, of Lévy [10], states that P{lim sup... [£(r)/[2 log log r]!]
= 1} = 1, where 7'£(r) is the Wiener process, and by (2.4) this is equivalent to

P{lim sup.o+ [Z(8)/f(t)] = 1} = 1.

3. Justification of the extended heuristic procedure. If A and B are any two
functions defined on (0, 1) we may define, in analogy with (2.1),

Qu(y; A, B) = P{A(t) —y = Zx(t) £ B(t) + 9,0 <t <1}

This probability is legitimate, since it can be shown without difficulty that the
event concerned is equivalent to the event that each observation of the ordered
random sample lies in a certain well-defined interval.

The starting point for our investigation into the validity of the extended
heuristic procedure is the work of Donsker in [6]. Specializing the general func-
tional F of his theorem to Flg] = supo<ici max {A(2) — ¢(t), g(t) — B(t)}, we

IA

IIA
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have immediately
TuEOREM 3.1. Let A and B be piecewise-continuous; then

limn.. Qu(y; 4, B) = Q(y; 4, B)

at all points of continuity of Q(y).

Even without using this theorem, it is possible to prove

TueoreM 3.2. Let {A,} and {B,} be two sequences of functions such that
lim inf A, and im sup B, are piecewise-continuous; then

lim SUPnw @n(y; An, Bn) < Q(y; liminf A, , lim sup B,).

Proor. Let T be a countable dense subset of (0, 1) which includes all the
points of discontinuity of liminf 4, and limsup B, ; and, for any positive
integer k, let T, be the finite set consisting of the first k {nembers of T'. Choosing
also any € > 0, there must be an ny(e, k) sufficiently large that for n > ne(e, k)
we have A,(t) = liminf 4,(¢) — eand B,({) < limsup B,(t) + eforteT,.
Then

Qu(y; An, Bn) < P{AL(t) —y = Zu(t) £ Ba(t) + y, t e T}
< P{liminf A,(t) — ¢ — y = Z,(t) = limsup B.(¢)
+ € + Y, te TL}
Letting n tend to infinity, we have lim sup,,« Q. (y; 4., Br) £ P{liminf A4,(t)
—e—y = Z(t) < limsup B.(t) + ¢ + y, t ¢ T}. Since € and k were arbitrary,
we may now let e — 0 and then let £ — oo, which yields the theorem.
Combining the preceding two theorems, we can obtain

TueoreM 3.3. Let {A,} and {B,} be two sequences of functions which converge to
plecewise-continuous functions A and B respectively; and suppose also that

limy, e SUpo<ic1 max {An(E) — A(t), B(t) — B.(t)} = 0.

Then My @ (y; An, B,) = Q(y; A, B) at all points of continuity of Q(y).

Proor. Since lim sup,.. @.(y; 4., B.) < Q(y; A, B) by Theorem 3.2, we need
show only that lim inf, .. @.(y; 4., B.) = Q(y; 4, B). Choose any ¢ > 0; then
by hypothesis there is an ng(e) sufficiently large that for n > no(e) we have
Supo<ict max {A,(¢) — A(t), B(f) — Ba(t)} < e Thus 4.(t) < A(t) 4+ eand
B,(t) > B(t) — efor 0 <t < 1, so that Q,(y; An, B,) 2 Q.(y — ¢; A, B), for
n > my(e). Letting n tend to infinity, we find that lim inf, .. @.(y; An, Ba)
2 liminf,,, Q.(y — ¢; A, B) = Q(y — ¢; A, B) by Theorem 3.1. Then we can
obtain the present theorem on letting e — 0.

In order to extend these results further we require the following

Lemma 34. If0 <7 — 8 <74+ 8 <1, e=0,and X vs arbitrary, then

Plinfur Za(t) < X < supur Za(t) + ¢ < £6° + e+ n'|R(7)
and
P{infu; Z(t) < X < supur Z(t) + ¢} < &8 + R(r),

where I = [r — 8, 7 + 8] and & is a finite positive constant.
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Proor. We need prove only the first part of the lemma, since the second will
follow immediately by Donsker’s theorem. So let E be the event whose proba-
bility is to be bounded, and let A be the event that sup..r Z,(t) — infs.; Z.(¢)
> &' Then P{E} = P{En A} 4+ P{En A} £ P{A} + P{X — ¢ — &' £ Z,(7)
< X + &'). Now this latter probability is, using the definition of the Z,(¢)
process,

P{(X — ¢ = 8)/[r(1 = )" £ (Fa(r) — 1) /Inr(1 — 1)
<(X 4 8)/lr(1=n)1,

where nF,(7) is a binomial random variable with parameters (n, r). Hence by
the Berry-Esseen uniform central limit theorem [1], this probability is not greater
than {®([X + #R(7)) — ®([X — ¢ — SR(+)} + 07~ + (1 — 7)YR(r),
where 0 is an absolute constant and & is the standard normal distribution fune-
tion. The derivative of & is everywhere less than (2r)™* < 1, so the first term
above is less than (26* + )R(7);and [** + (1 — 7)% < 1, so the second term is
less than 6n*R(r); thus we have P{E} < P{A} + (28’ + ¢ + v H)R(+). Now
let B be the event that |Z,(r — 8) — Z.(r + 8)| = 8%/3, and let C be the event
that super |Za(t) — Za(r — 8) — [(t — 7 4+ 8)/28)[Z.(7 + 8) — Zn.(v — 8)]|
> 6'/3. Then A cannot occur unless either B or €' occurs, so that P{4} < P{B}
+ P{C}. Since the variance of [Z,(7r — 8) — Z,(r + 8)]is 26(1 — 25) < 25 we
have by the Chebyshev inequality that P{B} < 185'. Let ay; be the conditional
probability that C occurs, given that F.(r — 8) = i/n and F.(r + 8) = j/n;
and let B;; be the unconditional probability of this latter event, so that

By = V/il(G — D)l (n — HN(r — )21 —7—-8)"7 0=i=<j=n

Now, given that F,(r — 8) = 4/n and F,(r + §) = j/n, that portion of the
empirical distribution function F,(t) wherer — 8 < ¢ £ 7 + § isitself, except for
a linear transformation, an empirical distribution function: namely, if we let
Fi_i(u) = (nF,(t) — 1)/(j — ©), where uw = (t — 7 + 6)/26, then F;_; is the
empirical distribution function of a random sample of size (j — ¢). Using this
transformation, we find after some simplification that

ai; = P{supocu<s |Fi-i(u) — u| > 6*71,*/3(]' = 0}
< cexp [—-262/37»2/9(,7' - ’i)z]:

where ¢ is the finite positive constant of Lemma 2 of Dvoretzky, Kiefer, and
Wolfowitz [8]. Hence ai;; < 9¢(j — 1©)%/2e8"°n* < 9c(j — 14)/6"°n and
P{C} = 2 X By < 9™ 3. > (j — 9)Bi;; = 18¢cs’. Then P{4}
< 18(c + 1)8' = 9(¢c + 1)8'R(+) since R(r) = 2for 0 < = < 1; and hence
P{E} = [(9c + 11)8' 4+ ¢ + 27 ]R(s). The lemma then follows if we take
£ = max (9¢ + 11, 6).

Given any ¢, 6 = 0, define I(¢,6) = (t — 6,¢ + &) n (0, 1); then we have

THEOREM 3.5. Let the two sequences of functions {A,} and {B,} be such that the
two functions

A(t) = lim infs,o lim inf, e SUPrer(s,5y An(7)
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and
B(t) = lim sups.o lim SUps-w infre 7e,5) Ba(7)
are piecewise-continuous; then
lim SUpsse @u(y; 4n, Br) = Q(y; A, B).

Proor. Let T = {t, &z, ---} be a countable dense subset of (0, 1) which
includes all the points of discontinuity of 4 and B, and for 7 = 1, 2, --- and
8> 0let I, = I(t;, 8). If E, is the event that A.(¢) — y = Z.(1) = B.(t) + vy
for 0 < t < 1, then certainly, for any events U, and V,,

Q.(y; An, B,) = P{E,} £ P{E,n U,} + P{E.n Va} + P{U.n V.}
and hence
lim SUPnow Qu(¥; An , Ba) < lim SUpnse P{E, n Us} + lim sUpase P{E,n V,}
+ lim Supnsw P{U, n V.}.

So, for each positive mteger k, choose a & > 0 sufficiently small that I; < (0, 1)
forl1 =<2k let U, = U, (k 3) be the event that infer; Za(t) < A(t:) — y
for some i, 1 < ¢ < k, and let V, = Va(k, 8) be the event that super; Z» (t) >
B(t;) + y for some 7, 1 < ¢ = k. Then

P{E.nUn) < S8 PlAn(t) — y < Za(t) < Ba(t) + 35,0 <t < 15
but infe.r, Z.(t) = A(t:) — v}
D io1 P{super; Aa(t) — y = suPer; Za(2),
infier; Za(t) < A(t:) — y}
>k i Plinfor, Za(t) S A(t:) — y = supeer; Za(t)
+ A(t:) — super; 4a(1)}
<eH 0 4+ max {A(t:) — supur 4a(1), O + nTIR(t),
where £ is the finite positive constant of Lemma 3.4. Hence
lim supn.« P{Ex n Us}
< e 6" + max {A(t;) — lim inf,.. SUPsr; 4a(2), OJIR(%).
But it is obvious that A(¢;) =< liminf,.. super; Ax(t), and thus
Hm Suppa P{E, n Uy} < £ D 51 R(L:).

By a similar argument we can obtain the same upper bound for
lim sup,-« P{E, n V,}. Finally,

P{U.n Va} = P{A(t:) — y S Za(t) < B(t:) + y,teli, 1 <4 <K
< P{A(t) —y < Zu(t;) < B(t:) + 9y, 1 =7 =k}

IA

lIA
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50 lim SUpnaw P{Un n Va} < P{A(t:) —y S Z(t:) < B(t:) + 9,1 = i < k).
Hence lim 8Upnow Qu(Y; An , Ba) = P{A(t;) —y S Z(t:) EB(t:) +y,1 = 1=k}
+ 2t6'D_%_; R(t;). Since this is true for every sufficiently small 8, we may let
& — 0; and then since k was arbitrary we may let k — o ; which proves the

theorem.
THEOREM 3.6. Given two sequences of functions {A.} and {B,}, suppose that
(a) for 0 < t < 1 the two limit functions

A(t) = lims,olimgse SUPrezce, A, (7)
and
B(t) = limso limpe infrerce, B.(7)

exist and are piecewise-continuous; and (b) there 1s some finite subset T =
{tr, ta, -+, t} of (0, 1) such that for every & > 0, liMy . SUPgs MAX {A. (1) —
A(t), B(t) — Ba(t)} = 0, whereJ = Uicicr I(2s, 8). Then limye Q.(y; An , Ba)
= Q(y; A, B) at all points of continuity of Qly).

Proor: Using (a) we have immediately by Theorem 3.5 that

1im SUPsow @u(¥; An , Ba) = Q(y; 4, B);

thus we need prove only that
(8.1) lim inf, @ (y; An , Bx) Z Q(y; 4, B).

If y < y*4, Bl orif y = y* and y* is a point of continuity of Q(y),
then Q(y; A, B) = 0 by Theorem 2.3 and hence (3.1) is trivial. So assume that
y>ytisayy = y™* + 3\, for some X > 0.
Choose any ¢, 0 < e < \; then there must be a do(e) sufficiently small that for
0 < & < d(e) we have that limu.ew SUPsers;,0 A,.(t) < A(t:) + eand
lim,mo infm(t,.,a) Bn(t) > B(t,) — €

and that the intervals I(t;, 8) are included in (0, 1) and do not overlap, for
1 < 4 < k. And there must also be an no(3, ¢) sufficiently large that for n > no(3, €)
we have

SUPercss,0 An(t) < liMnsew SUPLer(t; 8 A.(t) + € < A(t) + 2
and
infezce; . Ba(t) > liMaow infer,o Ba(t) — € > B(t;) — 2¢
for 1 < 4 < k, and also sup,s max {A,(t) — A(?), B(t) — Ba(t)} < 2, that is,

An(t) < A(t) + 2eand B,(t) > B(f) — 2¢ for ¢t 2J. Define
A(S)(t) = A(ti)y teI(ti) 6)! 1
= A(t), otherwise

)

IA
IIA

k,

and
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BP(t) = B(t:), tel(ts, ), 1<i=<k
= B(t), otherwise;

note that A® and B® are piecewise-continuous and that y*[4®, B?] = y*[4, B].
Thus, for any € > 0, any 6 < 8(e), and any n > ng(3, €), we have A,(t) < A®(2)
+ 2¢ and B,(t) > BP() — 2 for 0 < ¢ < 1; hence Qu(y; A, B,) =
Qu(y — 2¢; A, B®); and, letting n tend to infinity, we have

lim inf,.e Qu(y; A, , By) = lim infr,e Qu(y — 2¢; AP, BY)
= Qy — 2€;A(a>’ B(”)
by Theorem 3.1. Now define the events
E:A(t) —y+2 < Z(t) < B(t) +y ~ 2 0<t<1,
B :A®@) —y+2=20) cBPW) +y—2, 0<t<]1,
a; : AP) — y + 2> Z(1) for some ¢ ¢ I(t;, 8),
B::Z(t) > BY) + y — 2 for some ¢t € I(¢;, 8).
Then
Q(y — 2¢; A,B) = P{E} = P{En E;} + P{E n E;} < Q(y — 2¢; A®, B®)
+ [2 ¥ P{Ena} + 2 i P{E n B}l
Now
PlEn B} = PIZ(¢) = B(t) +y — 2¢ tel(ts, 5);
but Z(t) > BP(t) + y — 2¢ for some ¢ € I(;, 8))}
P{infire; 5 Z(t) < infure . B(t) + y — 2,
SUPerct; o Z(t) > infrere;p BO(t) + y — 2}
=< Plinfire.0 Z(t) = infiure, 0 B(t) + ¥y — 2 < SUPser;.0Z(t)
+ infir 5 B(t) — infoere;.s B®(2)}.

But inf,.;;.6 B® (1) = B(t;) Z infier; .5 B(t), so by Lemma 3.4 P{E n 8} <
£'R(t;) for 1 <1 <k, and hence ) 1 P{En B} < &' > ¢ R(t;). A similar
argument produces the same upper bound for Y s _; P{Ena;}. S0 Q(y — 2¢; A, B)
< Qy — 2, A%, B®) 4 288* > % ) R(4,) and hence lim inf,.. Q.(y; An, Ba)
> Q(y — 2 A, B) — 28 Y % R(t;). The theorem then follows if we first let
d — 0 and then let ¢ — 0.

RemARK. It is trivial to show that the expression @,(y; 4., B,) may be re-
placed by @.(y. ; A., B,) where lim,., ¥, = ¥, in each of the theorems of this
section.

A

4. Bounds on the asymptotic power. Let @ be any class of sequences {C,} of
functions C, as defined by (1.1). Then we define the asymptotic greatest lower
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bound on the power of the K, test in € to be
Lla, €] = infic,.e im inf,.e P{supocict [Za(t) — Co(t)] = du(a)},

or, equivalently, Lla, €] = 1 — supic,jce im SUPpaw Qu(dy ; Cn, C,), where
dn = dn(@). We also define the asymptotic greatest lower bound on the power
of the K, test in € to be L*[a, €] = 1 — supa,ce im suppw Qu(da™; — o, C,),
where d," = d,*(a). Asymptotic least upper bounds Ula, €] and U*[a, €] may
be defined analogously.

We shall now use the extended heuristic procedure to obtain asymptotic
bounds on the power of the two Kolmogorov-Smirnov tests in the following classes
of sequences {C,}:

Ca, for A > 0: All {C,} such that lim, . Suppcici |C(8)| = A;
Ca(r),for A > 0and 0 < 7 < 1: All {C,} & @4 such that
lim sups.o im suppoe infrres Ca(t) = —A;
(4.1) e for A > 0: Upeq @a(7);
e (r), for A > 0and 0 < r < 1: All {C,} € Ca(r) such that
Cu(t) =0for0 <t<1l,n=1,2 ---;

GA+3 fOI' A > 0: U0<r<1 GA+(T)'

The class €4 corresponds to situations in which the distance between the hy-
pothesis distribution H and the alternative G, is

A = SUP_wcrcw |H(x) — Gu(2)| = AnF + o(n™h).

In the class €a* we have G,(z) = H(z) for all x: that is, the hypothesis and
alternative are ‘‘stochastically comparable” as defined by Birnbaum and Scheuer
[3]. It is for such situations that a one-sided test, such as the K, * test, seems most
appropriate; however, the K,” test is actually suitable in the larger class @;*
where G,(z) may be less than H(z) for some values of z. The classes @, (r)
and Ca(7), which may perhaps be of little interest per se, correspond very roughly
to situations in which G,(z) = H(x) + An™' + o(n™*), where z = H7\(r) for
some specified .

It should be noted that not all the bounds of this section are entirely new.
Various authors have considered the power of the Kolmogorov-Smirnov tests
in the case where the sample size increases while the alternative distribution
remains fixed. In particular, Birnbaum [2] and Chapman [4] have derived asymp-
totic expressions equivalent to our results for the K, test in @4, €™ (r), and
e4"; and the lowest bounds of Theorem 4.4(b) and (c) are essentially the well-
known lower bounds due to Massey [11].

TuoEOREM 4.1. Let C be any of the classes defined by (4.1); then

U'la, €] = exp [-2(A — d")’]  forA £ d¥(a)
=1 for A = d*(a).
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Proor. If {C,} is any member of @, define B,(t) = —supocic1|Ca(?)],
0 <t < 1,0 that {B,(t)} converges to B(t) = —A, 0 < t < 1; then Co(t) =
B.(t), so that Q.(d,"; — o, Cu) = Qu(ds"; — o, B,), and thus

infic,ee im infraw @u(da®; — o, Cu)
2 lim infpse Qu(dn™; — @, Ba) = Q(d™; —, B)
by Theorem 3.3. On the other hand, if
B.*(t) = —tn* 0 <t = A/
=-A aAMmPst<],
then {B,*} also converges to B, and {B,*} is a member of €, so
inf cyrec lim infase @u(dn’; — 0, Ca) < lim infose Qu(dn™; — 0, Bu¥)
= Q(d"; —, B)
by Theorem 3.3 again. Hence
U'le, €] = 1 — infic,ee im infrow @u(dn™; — o, Cu) = 1 — Q(d*; — 0, B);

and the explicit evaluation follows from (2.6).
THEOREM 4.2. Writing d* for d*(a), we have

(a) L*a, @a] = exp [—2(A + d")’);
(b) L, €a(r)]
=&((a — d")/Ir(1 — D)) — &((—34 — d")/[+(1 — 7)])
+ exp [—2(A + dH)@([—A1 + 27) + dT(1 — 20))/[r(1 — 7))
+ &([—AB — 27) — d*(1 — 20))/[r(1 — D))};
(¢) L¥le, €s%] = infocrar L', @4 (7)]

- e—z(A+d+)2 for A < d+,
= &(2A — 2d%) + fi(4, dV) for A = d,
where 0 < fi < e——z(A+d+)2—sA2 < as;

(d) L+[a, eat(m)]
= 3((a — d)/lr(1 — D)) — &((—=A — d")/lz(1 — 7))
+ af@([—4a + d*(1 — 20))/[=(1 — )]}
+ &([—A — d"(1 — 20))/lr(1 — 1))};
(e) L'a, @a1] = infocrar La, @aT(7)]
=« for A < d¥,
= (24 — 2d7) + fo(4, dT) for A = d,

where 0 < fi £ f» < aexp (—24%) = o~
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Proor. Given any sequence of functions {C,}, define
C*(t) = lim sups.o im SUPp.e infer,s Cu(r),

and write d,” for d, ().
In proving (a), let C®(¢) = 4, 0 < ¢ < 1; then for any {C,} ¢ €, clearly
C*(t) = C(1),0 < t < 1, so that by Theorem 3.5,

lim SUPn»w Qn(dn+; — ®, Cn) = Q(d+; — ®, C*) é Q(d+; — ®, C(a))y

and hence sup(c,jces im SUP,ae Qu(dn™; — @, C,) < Q(d*; — o, C). On the
other hand, let

B,.(t) = A, 0<t=1— A/
=}l — 1), 1—a/m 2t <1

then Qn(dn+; — @, Bn) = Qn(dn+; — ™, C(a)) since Zn(t) = n*(l - t) + dn+
for all £. And {B,} is a member of €, , so

SUp(cu1eea M SUPnae @u(dn™; — 0, Cp) = Hm SUPpaw Qu(dn™; — 0, B,)
= Q(d"; — =, C?).

Hence L'[a, @] = 1 — Q(d¥; — w, C”), and the explicit evaluation follows
from (2.6).

In proving (b), let C®(t) = A for ¢  r, and C®(r) = —A; then for any
{C.} eCa(r) clearly C*(2) = C®P@1), 0 < t < 1, so that by Theorem 3.5,
lim SUPp->00 Qn(dn+; — >, Cn) = Q(d+; — %o, C*) = Q(d+; -, C(b))7 and hence
SUP{cycea IM SUPnaw Qu(dn’; —w, Co) = Q(d%; — oo, C?). On the other
hand, let

B,(t) = A, 0<t=r1—2\n,
=nd(r—t)—a r—28/t=t<n,
= A, r<t=1—AM,
=}l — 1), 1—Am 2t <1

then {B,} is a member of Ca(r) and hence
SUD| caeea () HM SUPpre @u(dn™; — 0, C) = lim SUPnawe Qu(dnt; — 0, B,).
In this last expression it will make no difference if we replace B,(t) by
B.*(t) = Ba(t), 0<t=1-—a/nt
= A, 1-Amst<],
since from its definition we have that B,(f) < n*(1 — t) for 0 < ¢t < 1; and
({— o}, {B,*(t)}) converges to (— o, C®) in the sense of Theorem 3.6 with
T = {7}, so
1 $uppe @u(da™; — 0, B,) = lim supp.e @u(da*; — 0, B,*)
= Q% — =, C¥),
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Hence L™[a, @a(7)] = 1 — Q(d*; — C(b)), and the explicit evaluation follows
by an argument similar to the one used in proving Lemma 2.1.

Since €2* = Uicrar @a(7) it is clear that L+[a, GA * = 1nfo<,<1 La, GA(T)
as stated in (c) above. If A < d* then LYa, €% < lim.oL" [oz, Ca(7)] =
exp [—2(A + d") by (b); but since @s* < @4 we have L'[a, €2*] = L*[a, €4
= exp [—2(A + d*)] by (a). Now suppose that A = d"; then, recalling the
definition of C“”, we have Q(d"; —w, C®) < P{Z(z) £ —A + d)=
®((—A + dMR(r)) so L'[a, eA(T)] <I’((A — d)R(r)), and this latter ex-
pression is minimized for 1 = 3, so L+[a, Ca(r)] = (24 — 2d¥). On the other

hand,
L'la, €] £ L'[e, @a(3)]

= &(20 — 2d7) — &(—6A — 2d") + 2exp [—2(A + d7)|®(—44),
where —®(—6A — 2d7) < 0 and &(—44) < 3 exp (—84%), so L¥[e, €] =
®(24 — 2d%) + exp [—2(A + d¥)* — 8A%]. Since exp [—2(d")?] = a, we see

that the proof of (¢) is now complete.
In proving (d), let C®(t) = Ofort = r, and C”(r) = —A;and let

(4.2) B.(t) =nlr—t) — A 1—-Am=St<nT,
=0, otherwise
and T = { }; then the result follows by the same a,rgument as for (b)

Since €at = Uocrar @aT(7), it is clear that L'[a, €a*] = 1nfo<,<1 Lt [a, eat(r)]
as stated in (e) above. Now if A < d" then L'[a, €a™] < lim,.o L'[e, €a*(7)] = a
by (d); but for any {C.} e st we have C,(¢) < 0for 0 <t < 1s0
lim Suppae Ca(t) = 0 and Lim Sups.e Qu(dt; —w, C,) = Q(d; —, 0)
by Theorem 3.2, and Q(d; — », 0) = 1 — o. Hence

LYe, €a'] = 1 — supc,cea+ im supow Qu(dn’; —©, Cr) Z @
Now since €s* < €% clearly L'[a, @€4*] = L*[a, €2¥], while on the other hand
L'e, €a*] = Lo, €47 (3)]
(24 — 2d7) — ®(—24 — 2d7) + 2ad(—24)
(20 — 2d7) + a exp (—24%)

by the same argument as for (¢); thus the proof of (e) is complete.

IIA

THEOREM 4.3.
(a) Ula, €] = Ula, Ca(r)] = Ula, €47
=230 (=) e A < d(a)
=1 for A = d(a)
(b) U[a, GA+(T)] — U[a, eA+] — ZI:O=1 {(’—2[kA—(21c—1)d]2 + 6—2[(1c~—1)A—(21c—1)cl]2
e AN g A < d(a),
=1 for A = d(a).
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Proor. If {C,} is any member of C,, define 4,(f) = supocici |Cn(t)| and
Ba(t) = —A,(t), so that {A4,(t)} converges to A(¢) = A and {B,(t)} converges
to B(t) = —A, for 0 < ¢t < 1. Then 4,(t) = C,(t) = B.(t), so that

Qn(dn 5 Cny Cr) 2 Qu(ds 5 A, Bn),
and thus
inficyeea M infraew @u(dn 5 Cay Co) Z liminfn.,, @u(ds 5 A, , Ba) = Q(d; 4, B)
by Theorem 3.3. On the other hand, if
A1) = B.5(t) = Asin (nht(1 — £)/A), 0<t<l,

then {4,*} and {B,*] converge to A and B respectively, in the sense of Theorem
3.6, with T the null set; and furthermore {4,*} = {B,*} is a member of Cx(r)
for every 7,0 < 7 < 1, and hence a fortiori of €,* and of €, ; so

inf(c,jeey Hm infore @u(dn 5 Cuy Cn) S liMpw @u(dw 5 4,7, B,*) = Q(d; 4, B).

Hence Ula, Ca] = Ula, €2*] = Ula, Ca(r)] = 1 — Q(d; 4, B) and the explicit
evaluation follows from (2.5), giving part (a).

The same argument will serve for part (b) if we take A,(t) = 0, B,(f) =
—Supocict [Ca(B)], A(2) = 0, B(t) = — A,and 4,%(t) = B,*(t) = —Asin® (n't-
(1 —1¢)/24),0 <t <1.

THEOREM 4.4.

(a) Let @ be any class of sequences {C.} of functions C, as defined by (1.1)
and write d for d(a); then

Lla, €] 2 L*lexp (—2d), €] = L'[}e, €].
(b) For every 7,0 < 7 < 1, let

B'(f) = -4, t=r,
= A, t# 7,
and
B'(t) = -4, t=r,
=0 t# 1
then

&((a — d)/lr(1 — D)) + &((—=a — d)/[+(1 — )]

1 —Q(d; —A, B)

Lla, €s(7)]

Lia, €a*(7)]

1 — Q(d;0,B")

8((a — d)/[r(1 — ) +

IA A TIA - HIA

A
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(e¢) Let
f(a, d) =0, A < d(a),
= $(2A — 2d), A = d(a);
then
f(4,d) £ Lla, €4 = Lo, €4"] < (4, d) + a.

Proor: (a) Let € be any class of sequences {C,} of functions C, as defined by
(1.1), and for every integer k define

(@) = sup, {x: infass [da¥(2) — du(a)] = 0}.

Then if n = k we have du(a) = d.*(ci), so that Qu(d(a); Ca , Co)=
Qu(dnt(c); Co, Cr) < Qu(dnt(er); — o0, C). Hence, using the definition of L,
we have immediately that L[a, €] = L*[ci(«), €] for every k. As k — o, ¢ (a) —
exp (—2d°) and hence Lle, €] = L'lexp (—2d%), €]. But from (1.2) we see
that exp (—2d°) = %, and hence certainly L*[exp (—2d’, €] = L*[3q, @].

(b) Let {C.} be any member of €4(r). Then for any 8 > 0 write I = I(r,B)
and define

Aa(1) = = supocica [Ca(2)], 0<t<1
and
B,(t) = —A, tel,
= Supeci<a |Cn(2)], t2l.
Clearly 4,(t) = Ca(t) for 0 < ¢ < 1, and C,(¢) < B,(t) for ¢ £ I. Hence,
Qn(dn 5 Ca, Cn) — Qu(dn 5 44, Ba)
S P{Za(t) = Cu(t) + dn, tel; but Zu(t) > Ba(t) + d, for some ¢ I}
= Plinfur Zu(¢) = infir Ca(t) + dn, Supuer Za(t) = Supir Ba(t) + da)
= Plinfu; Z4(t) = infer Ca(t) + du < supwrZa(t) + A + infer Co(t)}
< ER(7)[B! + max {0, A + infu; Ca(t)} + 07
by Lemma 3.4. Asn — o, {A,} and {B,} converge in the sense of Theorem 3.6 to
A(t) = —A, 0<t<l,
and
B®(t) = —a,  tel,
= A, tel
with T null, and hence
lim SUPn Qu(dn 5 Ca , Ca) < Q(d; —4, B?)
+ ¢R(7)[B" + max {0, A 4 lim Supa.. infuz Ca(t)}].
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This being true for every 8 > 0, we may let 8 — 0 and thus obtain
lim SUPy->0 Qn(dn H Cn ) Cn) é Q(d’ _A7 B,)7

since lim supg..o im SUpp.« infeer Co(f) = —A by the definition of @,(r). Then
since this result holds for every {C,} € @A(7) we have immediately the second
inequality of (b) by the definition of L. But

Q(d; —A,B") S P{—A—d £ Z(r) £ —A + d}
=o((—A+d)/[r(1 = D) — &((—a — d)/Ir(1 — )}

which is the first inequality.

Now since () D @a T(r) it is clear that Lia, @s(r)] £ Lle, Ca*(7)], which
is the third of the required inequalities.

But consider C,({) = B.(t) as defined by (4.2). We have {C,} e €2T(7),
and {C,} converges in the sense of Theorem 3.6 with A(¢t) = 0, B(t) = B"(t),
and T = {r}. Hence limy.e Qu(dy ; Cn, Cn) = Q(d; 0, B”) and the fourth in-
equality follows immediately. But

1 —Q(d;0,B") = P{Z(r) > —A + dor |[Z(t)] > d for some ¢, 0 < ¢t < 1}
é P{Z(T) > —A + d} + P{supo<,<1 |Z(t) l> d}
(A — d)/lr(1 = D)) +

which is the last of the required inequalities.

(Exact values for the two probabilities indicated here may be obtained in a
straightforward manner by the method used in the proof of Lemma 2.1; however
the resulting expressions are formidable and probably of little interest:)

(¢) From (b) and the definitions of e.* and @,* it is clear that

infocrcr {@((A — d)/[r(1 — 7)) + &((—A — d)/[r(1 — 7))}
< Lle, €4*] £ Lla, €a™] < infocrar {2((4 — d)/[7(1 = 7)]}) + o}

I

and hence
infoc,c1 ®((A — d)/[r(1 — 7)) < Lla, €*] £ Lla, €47] ,
< infocraa ®((A —d)/[r(1 — 7)) + a;

and the indicated infimum is precisely f(4, d), obtained by letting + — 0 if
A < d(a) and by taking r = 1 if A = d(a).

We remark that if A = d(a) + % then the entire sum {®((A — d)/[r(1 — )]}
+ &((—=A — d)/[r(1 — 7)]')} is minimized by taking r = %, thus yielding the
slightly better lower bound {®(2A — 2d) + ®(—2A — 2d)}. It is of course
possible to obtain an even better bound by using the exact probability expres-
sion for Q(d; —A, B’) of part (c¢), but we have not been able to produce any
simple result in this manner.
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