ASYMPTOTIC INFERENCE IN MARKOV PROCESSES'

By G. G. Roussas’

University of California, Berkeley

1. Introduction and summary. Let (¥, @) be a measurable space and © be an
open subset of a k-dimensional Euclidean space. For each 6 ¢ © let P, be a prob-
ability measure on @. We assume that for every 6 ¢ ©, {X, , n = 0} is a Markov
process defined on (¥, @) into (R, B), where (R, &) denotes the Borel real line.
Furthermore, we denote by @, the os-fields induced by the random variables
{Xo, X1, + -+, Xa}, and by P, the restriction of Py to @, .

In the present paper we give conditions under which the sequence of families
of probability measures {P,,s, 8 £ ®} has the desirable property of being dif-
ferentially asymptotically normal. This implies that in some neighborhood of
0e0, {Pnp, 00}, n = 0 can be, for certain problems, approximately treated
as if they were normal. For a detailed account of the notions involved in this
paper the reader is referred to [5], in particular, Section 5. Also in the Appendix
of the present paper one can find the definitions of the concepts most frequently
used in this work, including that of the differentially asymptotically normal
families of distributions.

In Section 2 the required notation is introduced and also the assumptions being
made throughout the paper are listed. In Section 3 we state the main result, and
in the following subsections we give the proof of it in several steps.

2. Notation and assumptions. In what follows we will take the measurable
space (%, @) to be of the form (%, @) = J]i=o (R, ®). For each 6 ¢ © the prob-
ability measure Py will be the one induced on @ by a set of transition probability
measures pg(-, ) defined on R x ®, and a probability distribution ps(-) on
®, according to Kolmogorov’s consistency theorem. {X,, n = 0} will be taken
to be the coordinate process, and then it will be a Markov process with initial
distribution ps( -) and (stationary) transition measures ps( -, - ), We will assume
in the following that the probability measures {P, ., 0 ¢ ®}, n = 0 are absolutely
continuous with respect to each other. Therefore for any 6, 6’ ¢ ® we will have
[dPo/dPos] = q(Xo; 0, 6'), [dP1e/dPys) = g(Xo, X136, 6'), and if we set
(X1 | X0;6,6) = q(Xo, X1;6,6)/q(Xo; 0, 6), we will then have for the joint
measures Po,o, Pno: [APns/dPnsg] = q(X0;0,6") [17=19(X;| Xjz;6,6). It
will prove convenient to set [¢(X; | X;-1; 6, 0))]* = ¢,(6,6), [¢(Xs=1, X;; 6, 6" =
51(6,6),5 =1, -+, n Then [dPn,y/dPns] = 9(Xo;6,6)- ITj=1 4,6, ¢'), while
it is clear that [ ¢:.’(6, 6') dPy is finite, and, in fact, equal to 1.

Assumprions. (Al) For each 6 ¢ ® the Markov process {X,, n = 0} is
stationary and metrically transitive (ergodic).
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(A2)(i) The probability measure {P,, 8 ¢ O}, n = 0 are mutually absolutely
continuous.

(ii) For any 6, 6 € ©, 6" > 6 implies Py 7 Py.

(A3)(i) For every 6 ¢ © the random function ¢,(6’, §”) satisfies the following
condition

NHé1(0 4 N, 6 + M 4+ W) — 1} — v'$,(8) in quadradic mean (q.m.) [Pel,
as A—0,

uniformly on bounded sets of h, v € & .

Clearly, Condition (A3)(i) implies differentiability in q.m. [Ps] of the random
function ¢;(0, 6") with respect to 8" at (6, 6).

(ii) If ¢1(0) is the derivative of ¢,(6, 8') with respect to 6’ at (6, 6), then
$1(0) is continuous in Pg-probability at 6, for every 6 ¢ ®, and @: x C-measurable,
where € denotes the o-field of Borel subsets of ©.

(i) &|h'$:(8)* = [|h'$:(8)° dPs is a continuous function of 6, for any
he & .

Part (iii) of (A3) is replaced below by (iii)" which implies (iii), as will be
shown in the text, and which may be easier to verify in some instances. Namely

(iii)" For each 8 ¢ © there exists a neighborhood N such that for all 6" & N, ,
Bl '61(0)) " = &of W du(6))[*£.2(6,8')} = € (6, h)( <), for some 0 < (< 1),
any heé&;.

ReEMARK. All of the results, except for one, are derived under the assumption
that ¢:1(6, 6') is differentiable with respect to 6 at (6, 8), with respect to Py .
There is only one occasion, Theorem 3.3.2(ii), where the full force of (A3)(i) is
used.

(A4)(i) For every 8 ¢ © the random function £,(6, 6) is differentiable in q.m.
with respect to 6" at (6, 8), when P, is employed.

(ii) If f1(6) is the derivative of fi(6, 6") with respect to 6 at (6, 6), then fi(8)
is continuous in Py-probability at 6, and |f,(6)| # 0 with Ps-probability > 0, for
every 0 ¢ ©.

(iii) &|hfi(8)* = [ |h'f1(6)* dPy is a continuous function of 6, for any h ¢ & .

Remark. The continuity assumption of &|k'#i(6)]> may be replaced by a
condition analogous to (A3)(iii)’.

This author has found that assumptions (A1)—(A4) are satisfied in a number
of interesting examples. Details may be published elsewhere.

From (A2)(i) it follows that [dPne/dPss] = ¢(Xo; 6, 6')- 117 ¢;%(6, 6')
is well defined except on Penull sets for all 6¢ ©. Disregarding these
null sets we define the random variable A[P, ; Pns) = log [dPn¢/dPag =
log [g(Xo;6,68") - []7-1¢7(6, 6')], and from here on, unless otherwise explicitly
stated, the basic probability measure to be used will be P, .

3. Results. Under the above assumptions we will be able to prove the main
result of this paper which is stated below.

TueorREM 3.1. Under assumptions (Al) to (A4) the sequence of famailies of
probability measures {Pr, 0 € O} is differentially asymptotically normal.
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The proof of Theorem 3.1, being long, will be given in several steps. First we
remark that by considering any 6, 6 ¢ ©, fixing 6, and letting 6" vary over ©,
we do not allow it to vary in an entirely arbitrary way. In most cases we will
take it to be of the form 8 = h-n~* with h belonging to some bounded set in
& , or ¢ = h,-n* with h, € & and h, — h, as n — . For such a choice of s
the log-likelihood ratio of the corresponding probability measures P pi,.n~3 ,
Py, i.e., AlPssin,n=1; Pnygl, assumes a certain expansion in P, s-probability
to be made precise by the following theorem.

3.1 Tueorem 3.1.1. For h, , h € & , ha — h, as n — « we have

APy pyhyon=t 5 Pyl — B -A.(8) — —A(h, 6)

in P, o-probability, as n — o, where A(h, 0) = Lh'T(8)h, K'T(0)h = &|2h'$,(0)[*,
A,(0) = 2071330 $5(6). ‘

Proor. This proof will be a consequence of a series of lemmas'to be formulated
and proved below. We consider the random variable A{Pg,o1h,-n-1; Pae =
log ¢(Xo; 0, 0 + hu-n?) + 23°7110g ¢;(6, 0 + hu-n™), and we set ¢u;(6) =
$;(6, 0 + h,-n"?). Then the first lemma is to the effect that the quantities
log ¢.;(6) appearing in the definition of A[Png4n,.n~1; Pnre] can be replaced,
asymptotically, by the quantities ¢,;(8) — 1. More precisely,

LEMMma 3.1.1.

(1) AlPnpsign= 5 Pugl — 2{ D 7wt [60(0) — 1] — 32 71 [60;(8) — 1]} — 0
in Pe-probability, as n — .

(i) AlPnginnnt; Pugl — {2 71 [$5i(0) — 1) — 3D 7 [¢7s(0) — 1} — 0
i Pe-probability, as n — .

Proor. (i) The differentiability assumption of ¢:1(6, ) and £i(6, ¢') implies
their continuity in probability, and hence the continuity in probability of
q(X, ;6,06"). Observing that q(X, ;8,0) = 1 we get then log ¢(X ;6,60 + ha-nh)
— 0 in Py-probability, as n — o, and therefore all we have to show is Do éni(0)
— 2{ 2 51 [pni(0) — 1] — 32271 [$si(8) — 1]} — Oin Pe-probability, asn — o.

Now assumption (A3)(i) implies

(3.L1) N7 166, 8 + M) — 6;(6, 0) — N'§;(6)] — 0
o in q.m. [P, as A— 0,

uniformly on bounded sets of h ¢ &, for allj (1 < j £ n). By taking the rate of
convergence of \ to be n~? observing that ¢;(6, 8) = 1, and picking any sequence
{h,} with k, & & and h, — h, as n — o, we have

(3.1.2) ni[gn;(6) — 1] — K';() in qm. [Py, as n. — o, for all j.

This last relation implies ¢,;(#) — 1 — 0 in Ps-probability, as n — o, for all j.
In fact, more is true; namely

(3.1.3) max {|¢n;(8) — 1|;1 = j < n} — 0 in Pe-probability, as n — .

To see this we write ¢,;(8) — 1 = n ' -h'$;(0) + n'-R,;(6, k), where
€| Rai(8, h)|° — 0, as m — o, as is seen from (3.1.2). Pgmax {|¢s;(6) — 1[;



ASYMPTOTIC INFERENCE IN MARKOV PROCESSES 981

IA IA

1 <7 <n} > d = Pomax {|K'¢;(0)]; 1 £j < n} > en'/2] + Polmax {[Rys(6, h)|;
1 <7 =n}>ent/2] < n-PllWé:(6)] > en'/2] + n-Pol|Rua(6, h)| > en'/2]. But
n-Pol|Rar(0, B)| > en'/2] < nd-e*-n7' &|Rur(0, B[ = 4¢ - &|Ru(6, h)|" — 0,
as n — o, and n-Py[|hé1(0)| > en?/2] = n-f:’nm dF(z), where F(z) denotes
the distribution function of the random variable |h'¢:(8)| = Z. Next

Lon-& [GuipdF(2) = [cnip (en'/2)* dF (2) < [’ dF(2)
< [FdF(z) = &lh' 1) < .

A A

Therefore

[opd dF(2) =0, as n— =
which implies

n JendF(z) =0, as n— .

This completes the proof of (3.1.3). If we set A.(0) = [max-{[¢,;(6) — 1];
1 £j = n} > ¢, then (3.1.3) implies that for n sufliciently large we have
[62(80) — 1] < ¢, 1 <j < non A4,°(0) with Ps(4.°(8)) = 1 — ¢ and hence the
expansion logy = log {1l + (y — D)} = (y — 1) — 3(y — 1) + a-(y — 1)},
la| < 1, with y = ¢,;(8) holds simultaneously, for 1 < j < n on 4,°(6); i.e.,
10g ¢n;(0) = [6ni(8) — 1] — 36nj(0) — 1I + cnjl$i(0) — 1T, Jaws < 1, 1 <
j < n, and hence D_j= log ¢ni(8) = D Fualdni(0) — 1] — 32 7= [6ai(6)
— 1P 4+ Dk anileas(0) — 1% But D7t anilén;(8) — 1 — 0 in Py-proba-
bility, as n — o, because | D71 anj* [$ai(8) — 1P| = {max-|¢.;(80) —1]; 1 <
i £ n}> i [$ei(8) — 1 — 0 in Ppprobability, as n — o, since
max-{|¢.;(8) — 1; 1 < j = n} — 0 in Pe-probability, as n — o, and
S |ni(8) — 1" — &h'¢1(8)[*( < =), in Po-probability, as n — <, as will be
shown in the next lemma. Therefore, 1= 10g ¢,;(8) — { > 7= [bni(8) — 1] —.
13" |6ni(6) — 1[°} — 0in Ps-probability, asn — «, and hence Doy log ¢2;(0)
— 2D [has(8) — 1] — 3D 7= 1l¢ai(8) — 1]} — Oin Py-probability, asn — =,
which completes the proof of (i).
(ii) It is readily seen that (3.1.3) implies

(3.1.4) max-{|¢a;(8) — 1];1 <j = n} —> 0 in Psprobability, as n— o,

since on the set 4,°(8) we have max-{l¢5;(8) — 1|;1 < j = n} < (2 + €,
(e < ). Hence the expansion

log ¢2;(0) = [62,(8) — 1] — 3éni(8) — 1 + Buileni(6) — 1P, (8] < L,
on the set 4,°(8) is justified as above, and we get
Dparlog ¢ni(6) = 25m(9ni(8) — 1 — 32j=[ehs(6) — 1F

+ D i Buileni(0) — 11

We now observe that [[¢3;(0) — 1° — [6a5(8) — 1| = [.3(8) — 1°-
{[6ns(8) + 1 — 1} < 26-|¢aj(8) — 1|°on theset A,°(8). Then >_7i|[¢n,(8) — 1T
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— [¢ni(8) — 1| < 26+ 71 |6nj(8) — 1]° — 0.in Py-probability, as n — o,
and therefore Y7 B,;{¢=;(0) — 1* — 0 in Py-probability, as n — o, and this
completes the proof of (ii).

Now we are going to show a convergence used in the proof of the previous
lemma. Namely

Lemma 3.1.2. (i) D 71 [6n5(0) — 11° — &|h'$1(8)* in Po-probability, asn — .

(ii) D 7-1[e2;(8) — 11 — &|2h'$1(0)[* in Py-probability, as n — <.

Proor. (i) We have seen that Assumption (A3)(i) implies 7} [¢n(8) — 1] —
B'$1(8) in q.m. [Ps), as n — oo, and hence

(3.1.5) n-[pn() — 1 — [W'$:(6)] — 0 in the first mean [Py], as n — o.

Now n* D 1y [W;(0)F — &k ¢1(0)| a.s. [Pg], as n — o, by the ergodic
theorem. But ZJ=1 [6n3(8) — 1] ! Z:—l [h ¢J(‘0)] = n E:—l
[6si(8) — 1 — [¥'$;(8)"}, and Po[n'112?=1n-[¢nj(0) -1 - [h'éj(0)]2}l
> ¢ £ nl¢ n &lnlpa(0) — 1 — [h'¢'>1(0)]2| — 0,asn — o by (3.1.5). Then
>y [6ni(8) — 1] — &|h'$1(8)[* in Py-probability, as n — o which is (i).

(ii) From (i) D i1 [nj(8) — 11 — &|h'$:(6)[* in Py-probability, as n — o,
and hence 4 7 [¢a;(0) — 1" — 80|2h'q51(0)|2 in Ps-probability, as n — .
So it suffices to show

2o ileni(0) — 1F — 42 7 [¢M<o) —1F-0

in Pg-probability, as n — .

By observing that [¢a;(8) — 1I° = [¢a;(6) — 1]* + 4¢,,(0) - [6as(6) — 1T,
(3.1.6) becomes )71 [nj(0) — 11* + 427 [¢nj(8) — 1]*— 0in Ps-probability,
as n — «. On the set 4,°(6) on which we are Working we have |¢,;(8) — 1]* <
|6a;(8) — 1[°, and since D7 [¢,.,(0) — 1> - 0 in Py-probability, as n — o,
we also have Z,,,l [#2;(8) — 1]* — 0 in P,-probability, as n — . Hence (3.1. 6)
is true and so is (ii).

We are now going to establish a further result which will be used on various
occasions in the sequel, and then we will make some comments on the results
obtained so far and those that are still to be established, in order to complete
the proof of Theorem 3.1.1.

We have seen that n}-[¢,;(8) — 1] — h'$;(6) in q.m. [Py}, as n — . Also the
following is true:

LemMa 3.1.3. 0} [¢5;(0) — 1] — 2k'¢,(8) in the first mean [Py, as n — oo, for
all 3.

PROOF It is ea,sﬂy seen that n'-[¢%;(0) — 1] — 2’ qS,(()) = ¢ni(0)-
{n [¢ni(0) — 1] — h¢;(0)} + 1'¢(0)-[¢ni(0) — 1] + n'- [¢m(0) - 1] =
h¢,(0) Therefore & In ‘[$a:(0) — 1] — 28 ¢J(0)| 8 'd’m(o){n [¢m(0) — 1]
- hd’:(e)}l + & Ih ¢J(0) [¢m(0) - 1]' + & In [d’m(e) - 1] - hd’:(o)l =
&t Ind-[6ns(0) — 11 — H(0)° + &' [W;(0)[-&' [6ni(0) — 1 + &ln'-
[pni(0) — 1] — K ¢;(0)| by Holder’s 1nequahty and the fact that 89¢,.,(0) = 1.
Since & |n*-[$a;(0) — 1] — B'¢;(0)| = &' In-[s;(6) — 1] — R'$;(0)]* — 0, as

(3.1.6)
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n— ®, & |pni(0) — 1° = 0, as n — oo, and since & |h'¢:1(0)]" < o, we get
& |nt-[¢5;(0) — 1] — 2k'$;()| — 0, as n — =, as was to be shown. By Lemma
3.1.1(i) and Lemma 3.1.2(i) Theorem 3.1.1 becomes

Dot bai(8) — 1] — n 7 D071 B's(0)

(3.1.7) boe .
— —18 |h'$:1(0)|" in Pe-probability, as n — .

The proof of (3.1.7) is based on the following facts: We set, as usual,
e = ®(Xo, X1, *-, X,), 7 2 0. Then we will see that &{d;(0)]| @;—1} = O ass.
[Pg], 7 = 1. This property of ¢;(8) will also be used heavily in the next subsection.
Furthermore, while -1 [¢,;(8) — 1] may not converge anywhere and in any
sense, it will be shown that, upon conditioning the random variables ¢.;(6) by
the o-fields @1, we will be able to make a convergence statement about the
resulting conditioned sum. In addition to that it will also be shown that if we
center the random variables [¢,;(8) — 1] — n*-h'$;(8) at their conditional ex-
pectations, given @;_1 , the sum of them over j converges, as n — . Formally we
have

LeEmMA 3.1.4. (i) For every j = 1, &{$;(0)| Qj—1} = 0 (= thezerok X 1 column
vector), a.s. [Pg). We set ¥,j(0) = &{dnj(0)| @sa}, 1 = j = n. Then

() Dot [¥n; (6) — 1] > —18& |h'1(8)|® in Py—probability, as n — o.

(i) Dt [{[6ns(0) — 1] — 0K $i(8)} — &f{[6ns(0) — 1] — nH'$;(0)}] @]
= Dt {[bns(8) — 1] — n W $5(8)} — 251 [¥as(6) — 1] — O in Po-probability,
asn— o,

Proor. (i) It is easily seen, by means of the Markov property, that
&{dai(0)] @iz} = 1 as. [Pg]. On the other hand, from Lemma 3.1.3 we get
n}-[¢2,00) — 1] — 2h'$;(0) in the first mean [Py], as n — oo, and hence &ofnt-
[6258) — 11| Gjo1} — &{2h'¢;(6)] Gs—a} in the first mean [Py, as n — =, by a
well-known property of conditional expectations. Since Sofnt-[92;(0) — 1]] @i}
= 0 a.s. [Pg], we get &{h'$;(8)| @j—1} = 0 a.s. [Pe], for any h & & which gives (i).

(ii) From the ergodic theorem it follows that

(3.1.8) 17 X i8e{[Wdi(0)] @it} — & [K'di(0)] as. Pl as n — .
But
251 &{[0ni(0) — 1| @sa} — 7t D7 &f [W'5(0)[*| Gya} — 0O

in Pe-probability, as n — o,

and this because Pol| 2 =1 &o{[6(0) — 17| Qi) — 27" 2= &f|R'6:(0)["
Gy} > € = €8 [n-[dar(8) — 1 — [W'1(0)F] — 0, a8 n — 0, by (3.1.2).
Then (3.1.8) and (3.1.9) taken together give

(3.1.10) Z;';l &of[n;(0) — 1]2 I @} — & |h'<i>1(0)|2 a.s. [Pg], as n — .

We now write [¢2,;(8) — 1] = [#aj(8) — 1] + 2[¢4;(8) — 1]. Conditioning both
sides by @;_; and taking into account that & [¢%,6) — 1] @ja} = 0 a.s. [Pe], we
get 0 = &{[pni(0) — 11| @jua} + 2[ni(6) — 1] as. [Po].

(3.1.9)
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From this it follows
2 3 01 [Wni(8) — 1] 4+ D71 &o{[6ni(8) — 1P| Gja) = O aus. [Po).

By taking the limits, as n — o, and on account of (3.1.10) we get
2 3 i (8) — 1] — — & [W'$1(8) [ in Ps-probability, as n — «, which is (ii).
(iii) We have to show that

2251 {[60i(6) — 1] — n7K'$;(0) — [Yni(0) — 1] >0
in Pg-probability, as n — .

This is an immediate consequence of the extended Kolmogorov inequality ([6],
p. 386). In fact, from the definition of ¥,;(0) and Part (i) of Lemma 3.1.4, we
have that the random variables [¢,;(8) — 1] — n - h'¢;(0) — [¥ni(8) — 1] are
centered at conditional expectatlons given the predecessors Therefore,
P0”21=1 [d’m(e) - 1] - n h¢’:(0) - [‘I’m(e) - 1]}, e] = 5_2‘

80 In*-[6n(8) — 1] — B'$1(8)° — & |n-[¢mi(6) — 1]} — 0, as n — o, because
- [¢n1(8) — 1] — B'¢:1(6) in q.m. [Py), as n — «, and hence n}- [Wu(6) — 1] >0
in q.m. [Pg], as » — . Now adding up (ii) and (111) of the present lemma we get
(3.1.7). Since we can replace Py by P, everywhere, the proof of Theorem 3.1.1 is
complete.

3.2. The meaning of Theorem 3.1.1 is that for n sufficiently large and high
Py-probability, the log-likelihood ratio A[P, s4s,n~3 ; Pa,l is equal to a certain
random variable h'A,(0) plus a nonrandom quantity A4 (%, 6). In this subsection
we will show that the random variables A,(6) are asymptotically normal, and
this fact will force the log-likelihood ratios to be asymptotically normal them-
selves. The proof of the relevant theorem will be based upon the central limit
theorem for martingales, whose proof can be found in [2], pp. 788-792. For easy
reference we state it below as

Lemma 3.2.1. Let (%, @, P) be a probability space and {u,}, n = 1, be a stationary,
ergodzc stochastic process defined on (%, @, P) into (R, B) such that &(w) = 0,
&lwl* < o, and &{u; |, -+, uia} = 0 a.s. [P].

Then £[n D oraui| Pl — N(0, & [uyf*), as n — ». Now we give a formal ex-
pression of what we vaguely described above. Namely,

THEOREM 3.2.1. £[A(0)| Prs] — N(0, I'(6)), as n — o, where T'(0) s given
in Theorem 3.1.1, and hence L[A[P,o11,n-3; Pagll Pasl — N(—2K'T(0)h,
R'T(0)h), asn — .

Proor. Assume we have shown

(3.2.1) £[A,(0)| Pnyl — N(0,T(8)), as n— .

Then £[k'A,(0)| P,4 — N (0, K'T(8)h), and in view of Theorem 3.1.1 our second
assertion in Theorem 3.2.1 is an immediate consequence of the first assertion.
So we have only to establish (3.2.1). For any h ¢ & we set u; = 2h'¢;(6), 7 = 1.
Then, in order for (3.2.1) to be true, it suffices to show that

(3.2.2) e D u;| Pagl — N(0, KT(0)h), as n— o.
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We will demonstrate (3.2.2) by showing that the stochastic process {u;}, 7 = 1,
defined as above satisfies the conditions of Lemma 3.2.1. That this is so follows
easily because & |us]” = & |2h/$1(0)° < o, &(wus) = &[2h'$1(0)] = 0 by Lemma
3.1.4(i), and finally, 8fu;|ui, -+, wa} = 8&{&lu; [@ia}| w, -+, uja},
since @1 D ®(ur, -+, Uj-1), = &o{&{2h'¢;(0)|@ss}| wr, -+, usa} = 0 as.
[Py), since &{h'$;(8)| @;_1} = a.s. [Pg] by Lemma 3.1.4(i). Hence (3.2.2) is true
and so is the theorem.

Concluding this subsection it is worth noticing that in establishing Theorems
3.1.1 and 3.2.1 we have not used the whole force of our assumptions. Those parts
we made use of so far are (Al), (A2)(i), (A3)(i), and only the continuity in
Py-probability of f:(6, 6'), as 8 — 6, from (A4), in order to show the continuity
in P-probability, as 6 — 6, of ¢(Xo ; 6, 6').

3.3. In this subsection we will work on the continuity of the covariance T'(8).
In the process of establishing this continuity we will derive another result to be
used later. Also some further properties of A,(8) will be shown.

TueorEM 3.3.1. Under either one of the assumptions (A3)(iil), (A3)(iii)’, the
Sfunction T'(8) s continuous n 0.

Proor. The function I'(8) has been defined to be I'(8) = 4&{¢:1(0) -1 ()},
or equivalently, K'T(0)h = & |2h'$1(8)[, for any h € & . So under (A3)(iii), the
eontinuity of T'(9) is immediate. It remains for us to show that (A3)(iii)’ implies
the continuity of I'(8), and we will do that by establishing the relation

(3.3.1) (A3)(iii) implies (A3)(iii).

First we prove an easy result that we formulate as a lemma for later reference,
ie.,

Lemma 3.3.1. Under the Assumptions (A2)(i) and (A4), ||Pre — Pig| — 0,
as 0 — 6, and hence Prg — P14, as 6’ — 0.

Proor. In Lemma 3.1.3 we have shown that n}-[¢%1(0) — 1] — 2h'$,(6) in the
first mean [Pg], as n — , as a consequence of differentiability in g.m. [Pg] of
the random function ¢,(6, 6") with respect to 6’ at (6, 6). Thus ¢5:(6) — 1 in the
first mean [Ps], as n — . It is clear that we will have the samerelation by allow-
ing A — 0 in an arbitrary way, and not necessarily in the same rate as the n ™%
i.e., we will have ¢,°(6, § + M) — 1 in the first mean [Py], as A — 0, uniformly on
bounded sets of & & &, . This implies that ¢,°(6, 6’) — 1 in the first mean [Py], as
¢’ — 6. Since all arguments go through exactly the same way by using f; instead
of ¢, we have fi’(6, 6') — 1 in the first mean [Py], as §' — 6. By noticing that
1 = dP;/dP,, this last relation is the same as ||Py — P4l — 0, as 6’ — 6.
Finally, that ||Py,¢ — Pi,l| — 0, as 6’ — 6, implies Py 4 — Py, as 6’ — 6, is well
known and trivial. In proving the implication (3.3.1) we will also need

Lemma 3.2.2. Under Assumption (A3)(ii) and Lemma 3.3.1, £[h'¢1(6)| P1o/]
— £[h'$1(0)| P1g), as 0’ — 6, for any h € & .

Proor. We have to show that [ f(z)de[h'¢:(8')| Pre] — [ f(z) de-
[B'$1(8)| P1), as ¢’ — 6, for any numerical function f, bounded and continuous on
R; or
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(3.2.2) Jf(W¢i(8')) dPro — [ f(W $1(8)) dP1o, as 6 — 6.

We write ff(h'él((i')) APy — JI(W$1(8)) dPry = [[f(W'1(6')) — F(H'én-
(0))]1dPys + [ f(W'¢:1(6')) d(Proer — Puo). By (A3)(il) h'¢s(6") — B'$4(6) in
Py-probability, as 6’ — 6, and hence f(h'$:(6')) — F(h'$:1(8)) — 0 in Py-proba-
bility, as 6" — 6. Since |f(h'$1(6")) — F(K'$1(8))| < 2M(<w) = P, 4integrable
(where M is a bound for f), we get

(3.3.3) JIf(R'$u(6")) — f(h'$:1(0))] APy — 0, as 6 — 6

by the dominated convergence theorem.
Also | [ f(W'$1(6')) d(Prer — P1g)| < M-|[Pre — Proll — 0, as 6 — 6, by
Lemma 3.3.1, and this together with (3.3.3) imply (3.3.2), hence the lemma.
Now we are in a position to prove (3.3.1). We have

80' 'h’qsl(ol)lZ = f:c2 dFl’o' ’ N
& W' ¢i(0)[" = [ 2" dFv,

where F,, is the distribution function of the random variable &'$,(") under
P1o, and Fi, is the distribution function of the random variable A'¢;(8) under
Pio. By (A3)(iii)’ & [W'$:(6")** = [ |a["** dF1 < C(8, h)(< ), for all §’ in
a neighborhood N of 6, for some 0 < §( <1), and this together with Fy 4 — Fy 4,
as 6’ — 0, of Lemma 3.3.2 imply [ 2* dFyp — [ 2 dF1 4, 256" — 6, or & |B'$:1(6)[*
— & |1 $:1(0)|’, as 6’ — 6, as was to be seen.

We conclude this subsection with the following:

TueoreMm 3.3.2. (i) For each n and A € @, the function 0 — P, ,(A) is Borel
measurable in 0.

(ii) For every 0 ¢ ® and v € & we have Ay(6 + v-n™?) — A (0) — —T(8) v in
P, ¢-probability, as n — .

(iii) If @ denotes the o-field of Borel sets of ©, the function A,(9) is @, % C-
measurable.

Proor. (i) A straightforward generalization of Lemma 3.3.1 gives
|Pae — Pagll — 0, as 6 — 6, for any fixed n. In fact, [dPne/dPss =
a(Xo; 6, 6)- 117~ ¢/(Xs1, X;5 6, 6') — 1 = [dPy,/dP,,] in P, e-proba-
bility, as 8 — 6. Since both sides integrate to 1, with respect to P, , this last
convergence implies convergence in the first mean, hence ||[Pn,er — Payl — 0, as
¢’ — 6, and this furnishes more than is asserted in (i); namely, that the function
6 — P, s(A) is continuous in 6, uniformly in 4 ¢ @, .

(ii) This is true, according to the theory developed in [5], for almost all
(Lebesgue) 6 ¢ ®. However, it would be necessary to check that this is true for
all 6 & © for this particular choice of A,(6).

Let {e;,7=1,2, ---, k} be a base for &, , and define the vector A,*(8) by the
equality KA 0) = D s hiM[Pp pie;n-t 3 Pagl, where b = D %= hie;. Then it
is known (see [5], pp. 56-57) that

AK0 + ven ) — A*(6) » —T(8)v in P, s-probability,

(3.34)
as n— «, forevery 0e¢® and ve&.
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We have
AP pre; =1 +on~t 5 Prnpron—t] — A[Pnpre;n=3 ; Pnol
= [log q(Xo; 0 + v 0+ ent+ond)
— log q(Xo; 6,0 + ernh) + D0y {log ¢2(60 + v-n ;6
+ en P+ vn7h) — log o6, 0 + e-n 7).

From (A3)(i) and (A4)(i) the first term in the above sum tends to zero in P, -
probability, as n — . Multiplying both sides of (3.3.5) by %; and summing over
7, we have that B'A.* (0 + v-n?) — h'A,*(0) differs from D ey {D %=1 h; log ¢;*-
O+vn o+ eant+on?) — Dkihloges(6, 0+ e-n?)) by a quantity
which tends to zero in P, e-probability, as n — . Next 2 rey {D.t=1hs
log ¢(8, 0 + em ™)} differs from A'A,(8) — D s=1 hf D 7= [6i(6, 8 + e-n?)
— 1"} by a quantity which goes to zero in P, s-probability, as n — o, from
Lemma 3.1.1 and (A3)(i).

We have denoted by ¢:(8) the derivative of ¢,(6, 6') with respect to 6’ at
(6, 8). It is easy to see that the derivative of $,(6’, 8) with respect to 6" at (6, 6)
is —¢1(0). This fact, together with Assumption (A3) (i), and continuity in prob-
ability of ¢1(8) permits us to write n*-[¢;(0 + v-n}; 0 + v-n? 4 &-n7F) — 1]
+ &'¢;(0 4+ v-n ) + R,i(6, &, v), where & |R,;(6, &, v]° — 0, as n — o,

Since Yt log ¢/ (8 + v-nt; 6 + vt 4+ gt differs from 2 D%y (¢
6+ vnt o+ vn? + en ) — 11— D60 +ont o+ ont 4
e;-n ) — 1)’ by a quantity which goes in probability to zero, a result analogous
to one obtained already, we have that D ne {2 iwihilog ¢/(8 + v-n}
0 + vn? + e-n )} differs from B'AK(0 + v-nh) — Dk haf D per [65(6 +
v 0+ v-nt 4 &-nt) — 1]} by a quantity which tends to zero in prob-
ability. Therefore 'A*(60 + v-n™?) — B'A,*(0) differs from A'A,(8 + v-n™})
— HWA(8) — D hf Dt (050 + von 0 + venh £ en?) — 1% by a
quantity which goes to zero in probability. But > 86, 0 + en) — 1
— 1¢/T(0)e; in P, g-probability, as n — =, as it has been seen already, and in a
similar fashion, Z}'_l [6i(6 + v-nt 0 + vt 4 e.-~n“’) — 1P - L/T(0)e; in
P, o-probability, as n — «. Therefore h'A,(8 + v ) — BAL6) — —K'T(0)w
in P, ¢-probability, as n — oo, for every ¢ ® and v € & , as was to be seen.

ReMmagk. In the proof, we used, tacitly, the property that {Pm 614, -»-3} and
{Pn.} are contiguous, where {A,} is a bounded sequence of elements of & . How-
ever, this is an immediate consequence of Theorem 3.2.1. More explicitly, if
{ha} C {hm} With h, — h, as n — o, h e &, then L[A[Ps o4n,n=t 5 Pnol|l Pnol
— N(—3K'T(8)h, K'T(9)h), as n — oo. If now £[x] = N(—3h'T(6)h, h'T(6)R),
then &{exp x} = [ exp x delx] = 2r) o™ [exp [~ (2 — ¢*/2)*/24"] dx = 1,
where we have set o> = A'T'(8)h. So the defining property (5), [5], p. 40, is satis-
fied, and this completes the proof.

(iii) Thisis an immediate consequence of (A3)(ii).

3.4. In this subsection we are dealing with the construction of a consistent
estimate of the parameter 6§ with the further property of converging to 6 in a

(3.3.5)
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certain prescribed rate. The problem will be dealt with in two steps. Firstly, we
will exhibit the construction of a consistent estimate, and secondly, we will
indicate a‘way of obtaining a consistent estimate attaining the required rate of
convergence.

Lemma 3.4.1. Let Assumptions (Al), (A2) and (A4) be satisfied. There exists a
sequence {0,*} of measurable functions taking values in © such that

8." — 8 in P,g-probability, as n— =, for every 0¢e©.

Proor. The proof of this lemma is basically that of Lemma 4 of [4], pp. 136
137. It will be necessary, however, to replace the sample distribution functions
being used there by some other functions of the observations, having similar con-
vergence properties, and, in general, to secure the conditions for the application
of that lemma.

Given X, X, - -+, X, from the Markov process { X, , n = 0} in question, we
consider the (random) points (X;_1, X;),7 = 1,2, --- | n, in the plane and de-
fine un({(Xj=a, X5)}) = n7,j = 1,2, -+, n. Obviously {(X,.1, X,)} & &

(=® x ®) and p, is a random probability measure on ®’; i.e., for a fixed z ¢ X it
is a probability measure on ®, and it is G-measurable as a function of x ¢ ¥.
What we are aiming at is to show that

(3.4.1) an— Py as. [Py, as n— .

That is, if W = {u|u: R x R — R, bounded and continuous}, then
gdun — fudPl,o a.s. [Pg], as n — oo, for every u ¢ U. But fudu,, =n

= u(X;o, X;), while [ wdPiy = 8u(X,, X1) with & |u(X,, X1)| < «.
Since now 7' Dty u( X, X;) — 8u(Xo, X1) a.s. [Pg], as n — o, we get
fu Aun — fu dP16 a.s. [Pg], as n — oo, which is (3.4.1).

The random measure u, , as defined above, with the property that u, — P;,4
a.s. [Pg], as n — 0, are the ones that play the role of the sample distribution func-
tions in the lemma quoted above.

Next we intend to establish a function on © into the space of bounded signed
measures on & which we will require to be 1 : 1 and continuous with respect to
the topology 3. determined by weak convergence. For this purpose we let 91
stand for the set of bounded signed measures on ®* and we make 9% into a normed
space by defining ||u|| = sup-{u(B); Be ®} = u"(Rx R) + u (R x R), for
u eI In fact, (M, ||-]|) is a linear metric Banach space, and so is (U, ||-||) if
llul| = sup-{u(z); ze R x R}. Now we denote by 91, the subset of 9 consisting
of probability measures, and we use (A2)(ii) as well as Lemma 3.3.1. These,
together with (3.4.1), provide the tools for the application of Lemma 4 of [4],
which gives the estimates 6, of the present lemma.

In the following we will need another result that we are going to establish
now.

Given the random variables X,, X1, ---, X, from the Markov process
{Xn,n = 0}, we set, for convenience, Y; = (X;_1, X;),7 =1, -+ ,n. Then, if ¢
is any numerical, measurable function on R x R which is bounded, the ergodic
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theorem gives n '+ D 11 g(Y;) — 8g(Y1) as. [P], as n — o, where we let P
denote any one of the measures Py . Here we will show a stronger result which
states, in effect, that e D g(Y;) — &g(Y;)] does not grow too big, as
n — w, provided g is of a special form. More precisely

LEMMA 3.4.2. We fix an arbitrary 0 € © and set P for the probability measure P,
Let Be ® and set Ay = B x B. Thenif g = L4, , the indicator function of A1, we
have: For every ¢ > 0 there exists b(e) > 0 such that

Plnlln™ 251 g(Y;) — 89(Y)]| > b(e)] < all n.

Proor. We have g(Y;) = Iy sy , and weset Z; = g(Y;) — &g(Y;). Then for

any ¢ > 0 we get
Pl [n™ 25 g(Y5) — &g(Y)ll >
(3.4.2) = P>} Zy > enl] £ e | 2 Zi
= g |20 + 2 2005 208 8(ZiZi)}

Tt is seen that 2 325 307 8(Z;Z:41) < M*€|Zi, (0 < M* < ), and hence
the right side of (3.4.2) is bounded by A M* + 1)8 |Z4|*, for all n. Thus, if for
e > 0 we take b(e) = b*-e'*, where b = (M* + 1)g |Z1|2, we get the result
claimed in the lemma.

- If, in the last lemma, we use P, and let 8 vary over ©, we have that b(e) is a
function of 6; i.e., we have b(e, 8) rather than b(e), and consequently

Pollnt v 2 g(Y,) — 8g(Y))]l > b(e,0)] <¢  all n

From the definition of b(e, 8) it follows that it is a continuous function of 6. So
by restricting attention to a compact subset K of ©, we have that b(e, 0) is
bounded by bx*(e), say. Thus we have

COROLLARY 3.4.1. Let g be as in Lemma 3.4.2. Then for every ¢ > 0 and any com-
pact subset K of © there exists bx () > 0 such that

Plnt-In ™ Xt g(Y) — &ag(Y) > be™(e)] (e, all n, fekK.

We let again g be a numerical, measurable function on B x K that is bounded,
and set B(6) = &g(Y1). Now we will see that 8(0) is differentiable and we will
give an explicit expression for its derivative 5(6). This fact is based upon the
Assumption (A4)(i). To demonstrate it we write

N {B(0 + Mh) — B(8)} — [ 2ghfu(8) dPy|
= |[ N {7100, 0 + M) — 1} — 2R7fu(0)]g dP|
< M-[IN{fi(6, 0 + M) — 1} — 2h73(6)| dPy — 0, as X —0,

uniformly on bounded sets of & & & . (M is a bound for g.) This shows that 8(8)
is differentiable and its derivative is given by

(3.4.3) 8(6) = [ 2¢fi(6) dP,.
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Now let y = (1, x2) represent the points of B x R and we take g to be of
the following form g = Ij(-w,z1x (-1 (ie., the indicator of the set
(— o0, 2] X (— o, z2]). Then &g(Y1) = F(y; 9), the distribution function of
Y, under Ps ,-evaluated at y, and F(y; ) = [ 2gfi(8) dPs. From (A4)(ii) we
have that | f1(8) | # 0 with Ps-probability >0, for every 6 ¢ ©. This property of
f1(8) together with the fact that |8¢f1(6)| = 0, which is a consequence of (A4)(i),
imply that for every 6 ¢ ©® there exist ys , d(6) > 0 and a (spherical) neighbor-
hood 8(6, 6(6)) such that

(34.4) |F(yo;0") — F(ys;0)| 2 |0" — 6'|-d(6), forall 8", 6" &S5(8,35(0)).

Now we are in a position to state

TueorEM 3.4.1. Let Assumptions (Al) to (A4) be satisfied. There exists a
sequence {6,} of measurable functions taking values in © such that for every e > 0
there exists b(e) > 0 so that :

Polln}- (6, — 0)| > b(e)] <,  for all m.

Proor. Since © is an open subset of & we can write ® = > w1 K;, where
{K;} is an increasing sequence of compact subsets of ®. For n sufficiently large
and Ps-probability = 1 — ¢, the consistent estimate 0,* of Lemma 3.4.1 will lie
in a neighborhood of the true parameter 6. This neighborhood, in turn, will be a
subset of K; for some j = 1, call it K, and therefore it suffices to carry through
the arguments for 6 ¢ K.

We consider the collection {S(8, 8(8)/3), 8 ¢ K} of neighborhoods provided by
(3.4.4). Then there exists a finite number of them covering K, say S(;, §(6;)/3),
j=1,2,--+,m,andlet y; = ys; be the corresponding y’s. We consider the distri-
bution functions F(y; ; 6) and let F,(y;) be the corresponding empirical distribu-
tion functions. If 6, £ S(8;, 5(6;)/3) we consider the sphere S(0:, 6(6;) and let
S(6;,,6(6;,)), ¢ =1, -, be those spheres out of {S(6;, s, 7=1,---,m,
which intersect S(8; , 8(8;)). Then we define 4, by the relation

(34.5) |Fu(ys) — F(ys;8,)| < inf sup [Fa(y;,) — F(ys,50)| +n7,

where the sup is taken over £ = 1, - - -, r and the inf over 6 ¢ K. It is possible to

give a specific rule for the choice of 6, , and show that the resulting estimate is a

measurable function. In the sequel it will be assumed that this is the case.
From Corollary 3.4.1 it follows that

Pol|nt-[Fa(y;,) — F(yi,;0)]] > bx™(e, )] < ¢, alln, 6eK.
By taking bx*(e) = max-{bx*(¢, £); 1 < £ < r} + 1, we have

(3.4.6) Pl|niFa(y;,) — F(ys,50)] > bx*(e)] < alln, feK.
From (3.4.5) it follows then that
(3.4.7) Pol|n?-[Fa(y:) — F(yi; 6a)] > bx™(e)] <¢  allm, K.

Now (3.4.6) and (3.4.7) imply
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(3.4.8) Pol|n?-[F(y: 5 6,) — F(y:;0)]| > 2bx™(e)] < ¢ alln, 6eK.

For n sufficiently large and Ps-probability = 1 — ¢, 8, lies in S(6:, §(6;)), and
thus (3.4.4) gives

(3.4.9) m P (y: 5 6n) — F(ys;6)| = nt-|fa — 6]-d(65).
Therefore (3.4.8) and (3.4.9) imply
(3.4.10) Pof|n}-(6, — 0)] = 2bx™(e)/d(6:)] < ¢ for n sufficiently large.

By increasing bx*(e) so that to take care of the finitely many exceptional n’s
which may not satisfy (3.4.10), and setting b(e) for 2bx*(e)/d(6:), we get
Pol|n}- (6, — 68)| = b(e)] < ¢, for all n, as was to be established.
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APPENDIX

In this appendix we give the definition of differentially asymptotically normal
families of distributions (DAN families of distributions, for short), and briefly
explain its meaning.

It is well known that in cases where we are dealing with a family of probability
measures which are exponential—in particular, normal—we can use this family
in a satisfactory way for problems of statistical inferences. However, this is not
so if the family of probability measures in question is not of this special form.
In order to be able to handle the same problems in more general situations,
Professor L. LeCam has introduced the notion of DAN families of distributions,
the meaning of it being that, roughly speaking, DAN families of distributions
can be, for certain problems, approximately treated, in some neighborhood of the
underlying parameter, as if they were normal. This is made precise by the
defining properties of DAN families of distributions to be given below.

Let (%, @) be a measurable space. Then

DerFintTioN 1. Let g, » and \ be any three finite positive measures on @ such
that p K \, » € \ (e.g., N\ = u + »). Then we denote by f = du/d\, g = dv/d\
and we define

Alu; ] = log [f/g], iff-g>0,
= arbitrary, if f-g = 0.

Next let @, be a sequence of sub-¢-fields of @ and P, be a sequence of probability
measures on Gy . If Ty : (¥, @) — (& , "), G,-measurable, where @* = [ &,
we denote by £[T, | P, the probability distribution of T, under P, . Then, if P
is a probability measure on &", we give the

DerFiniTION 2. &[T, | P,] — P, as n — o, if for every numerical bounded
and continuous function f on &, [ fde[T.| P.] — [ fdP,asn — =.
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DeriniTioNn 3. Let T, be as in Definition 2. We say that the sequence
{&[T, | P.)} is relatively compact if for every subsequence {n'} < {n}, there is a
further subsequence {m} < {n'} such that £[T, | P,] converges to a probability
distribution.

Equivalently, for every e > 0 there exists b(e) > 0such that P,[|T,| > b(e)] < e
for all n. Let now ® be an open subset of & and for each 6 ¢ © let P, 4 be proba-
bility measures on @&, . Then we give

DEerFintTioN 4. (DAN families of distributions.) The sequence of families
{Pno, 0c 0}, is called DAN if the following (DN1) to (DN7) conditions are
satisfied.

(DN1) For each 8 ¢ © there exists a k£ X 1 column vector u(8), a covariance
T'(6), and a sequence {A,(6)} of @,-measurable functions taking values in &
such that if h, — h, asn — o, h, , h £ & , then A[Py g15,.n-1 ; Png — h'A(0) —
—A(h, 8) in P, g-probability, as n — o, where A(h, 8) = k'u(8) + Lh'T(0)A.

(DN2) Both u and T' are continuous functions of 6 ¢ ©.

(DN3) £[An(6) | Pu,s] = N(u(6), I'(6)), as n — oo.

(DN4) For every 6 ¢ © and v ¢ & we have A, (6 + v-n?) — A,(0) —» —T(8)v
in P, g-probability, as n — «.

(DN5) For each n and A ¢ @, the function § — P, ¢(A) is Borel measurable
in 6.

ReMmaArk. (DN5) is slightly different from the corresponding definition in
[5]. We give it in this form, in order to avoid the introduction of further defini-
tions which are not needed in this paper.

(DN6) If @ denotes the o-field of Borel sets of O, the function A,(6) is @, x €-
measurable.

(DN7) There is a sequence {#,} of k-dimensional, G,-measurable functions
such that for each 6 ¢ © the distributions {£[r*- (8, — 6) | Pagl} form a relatively
compact sequence.

DrrintTION 5. Let u, » and A be as in Definition 1. We define the L;-norm of
u — v, denoted by ||u — »|, as follows: |lu — »|| = [ |f — g| d\. If u, » are proba-
bility measures we also have ||u — »|| = 2 sup {|u(4) — v(4)|; 4 ¢ G}.
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