RENEWAL THEORY IN THE PLANE

By PerER J. BickEL! AND JosEPH A. YAHAV

Unaversity of California, Berkeley

1. Summary. This paper presents some generalizations of the elementary
renewal theorem (Feller [9]) and the deeper renewal theorem of Blackwell [1],
[2] to planar walks.

Let U[A] denote the expected number of visits of a transient 2-dimensional
nonarithmetic random walk to a Borel set A in R’. Let S(y, a) denote the sphere
of radius a about the point y for a given norm || - || of the Euclidean topology.
Then, the elementary renewal theoem for the plane, given in Section 2, states
that limg.. U[S(0, a)]/a = 1/||E[Xy]||, where X; = (Xu, Xa) is the first step
of the walk, if E[X,] exists. Farrell has obtained similar results for nonnegative
walks in [7].

Section 4 contains the main result of the paper, the generalization of the Black-
well renewal theorem in the case of polygonal norms for random walks which
have both E|[X%] and E[X%] finite and one of E[Xy], E[Xa] different from 0.

The theorem states that

lima.., {U[S(0, a + 4,)] — U[S(0, a)]} = A/||EX]|

for every A = 0 and || - || specified above.

This result is also established with no restrictions on E[X73], E[X3:] under
different regularity conditions, in particular, for the L, norm if both E[Xy] and
E[X,] are different from 0, and correspondingly for the L; norm if
[E[Xu]l# |E[Xa]|.

Farrell in [8] has obtained more general results for nonnegative walks under
somewhat more restrictive regularity conditions and by a different method.

The next section gives the Blackwell theorem for totally symmetric transient
walks with finite step expectations, both of whose marginal walks are recurrent.

We conclude with a discussion of extensions of these results to higher dimen-
sions and some open questions.

2. Introduction and elementary renewal theorem. On a triple (2, @, P) let
X, = (Xu, X2), 7 = 1, be a sequence of independent identically distributed

random vectors with E[X;] finite. Then if S, = D1 Xi= (8,7, 8,?), is the
process of sums, suppose that ’

¢y D iaPS.eK] < w
for any compact K. In other words the plane walk is transient.
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We define Z(A) = number of times S, € A, where 4 is a Borel set in R
Then Z is clearly measurable and following Section 1

(2) UlA] = E[Z(A)] = 2 . P[S. e Al

Then continuing the notation of Section 1 we can now prove the elementary
renewal theorem. The method of proof is essentially that of Doob [4].
TuroreM 1. If || - || 4s any norm generating the Euclidean topology, then
lim,.. U[S(0, a)l/a = 1/||EXi]||, where the right side equals « if E[X;] = 0.
Proor. By the strong law of large numbers

(3) P[S./n e S[E(X,), €] eventually] = 1.

Suppose first that E[X;] # 0. Now, since [[|S,|| — »[|EXJ]||| = [|S. — nEX]||
it follows that

@) PR(IEX]| — ¢ = [S.l = n(|EX]| + ¢), eventually] = 1.

From this one may readily derive the inequality
lim sup,, n ' Z{S[0, m(||[EXi]|| + ¢)]} < 1 as.

where n = [(|EXi|| + ¢ (|EXi]|| — ¢ 'm] + 1. As usual, [z] denotes the
greatest integer in x. Similarly we obtain, lim inf,, ¢"'Z{S[0, m(||EXi]|| + €)]}
= 1 a.s., where ¢ = [(|EXi]| — € (| E[Xi]|| + €) 'm]. Noting that

Z{8[0, m(| EXA[| — )]} = Z[S(0, m[|EXi][)] = Z{S[0, m([[EXA[ + €},

we obtain

(5) a.s. limn Z[S(0, m||EX.)[)]/m|EXA| = 1/[|EX]|

from which it readily follows that a.s. lim,.., Z[S(0, a)]/a = 1/||E[X4]]|.

For any norm as above there exists a square centered at the origin containing
the unit sphere for that norm. Then, if Z, denotes the number of visits to a
square of side a, there exists a B such that Z[S(0, a)] = Z.5 for every a. But
Chung [3] has shown that if E[X;] ¢ O then supyq s E[Z.']/a* < o for ¢ > 0,
and hence 0 is supa;>c E[Z(8(0, a))]*/a*. The theorem follows if E[X;] > 0.

If E[X;] = 0, then by arguments similar to the above we obtain

a.s. lim,., Z[S(0, a)]/a = .

But then by Fatou’s lemma lim, U[S(0, a)]/a = «. The theorem follows.

In particular, if ||x|| = [D i «.’], where x = (z;, &), the theorem gives the
order of the expected number of visits to circles centered at the origin. If ||x|| =
max (|@i], |z2|), the L, norm, we find the order of the expected number of visits to
squares centered at the origin with sides parallel to the axes to be } the reciprocal
of the maximum projection of E[X;] X the side length. A similar remark holds for
the rhombuses defined by the inequality |2:| + |z2] < C upon considering the L,
norm, [|x]| = |zi] + |xe|. The above theorem holds trivially for recurrent walks,
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Le., those for which the expected number of visits to some closed sphere is
infinite.

The class of sets treated of course, coincides with the class of symmetric
(about 0) convex sets.

3. A useful theorem. In this section we will prove a theorem which plays a
substantial role in the proof of the Blackwell type theorem. Let the line segment
which starts at the origin, passes through E[X,;] and continues indefinitely, be
called the line of expectation. Let C' be any cone containing the line of expecta-
tion in its interior. Let {V.} be a sequence of sets such that d(0, V,) — « as
a — o, where d(x, B) is the infimum Euclidean distance between x and the
elements of B. Then we have

TuroreM 2. (a) If E[X1i] + E[X5] < « and E[X,] # 0 then U(V,n C°) — 0
as a — o,

(b) Let L(A, r, «) denote an infinite strip of width A at distance v from the origin
making an angle o with the x axis. Suppose E[Xi] = 0 and suppose L(A, r, o)
intersects the line of expectation. Then U[L(A, 7, a) n C°] — 0 asr — .

Proor. (a) The condition given implies that

(6) P[S:eVenC]l—0 as a— « forevery k.

Without loss of generality assume E[Xs] # 0 and take C = {(z, y): E[Xu]/
E[Xn] — ¢ < z/y < E[Xul/E[Xuz] + €. Now choose 6 so that [x — E[Xy]| <6
and |y — E[Xy]| < 6= |2/y — E[Xul/E[Xa]| < e. Then

(7) PI[Sk e C] = Pl|(8:V/8:?) — (E[Xu]/E[Xz])| = ¢
P[[(8¥/k) — E[Xul| 2 8] + PI|(8:?/k) — E[Xu]| = ol.

Since D _py P[S.Y — kE[X4)| = k8] < « for 7+ = 1, 2, by a fundamental
theorem of Erdés [5], (6) and (7) establish Part (a) of the theorem.

Proor. (b) Let Z,* = number of visits of S, to L(4, 7, a) n C°. We require

Lemma 2.1. lim,.,, P[Z,* = 1] = 0.

Proor. P[Z,* = 1] £ P[S, ¢ L(A, r, a), S, € C°, for some n]. Now choose C
and 6 as before. Then

fIA

P[S, e L(A, r, @), S, € C°, for some n]
8 S PS.eL(A, 7, ), [8."/n — E[Xy]] = 5 for some n]
+ P[S. ¢ L(A, r, a), [Snm/n — E[Xa]| = 6 for some n].

Now each of the probabilities on the right of (8) converges to 0 as r — o« by
the strong law of large numbers and the lemma follows.

We proceed to prove the theorem. Let M, = L(4, r, @) n C°. Since U[M,] =
E[Z,*] = > w_  PIZ,* = n] it suffices to show upon applying Lemma 2.1 and the
lominated convergence theorem, that there exists a sequence {an}, D n an <
such that P[Z,* = n] < a, for all . Define #(r) to be the first n such that
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S, ¢ M, and S;( to be the composite random variable. Then,
PIZ,* z n] = [xea, PIZ{M, — x} 2 n — 1] dP[Ss) < x]

by the strong Markov property.

Let L(A, a) denote the infinite strip of width A making angle a with the x
axis and centered at the origin. By the formula given above we have P[Z,* = n]
< PIZ{L(24, @)} = n — 1] for n = 2 and P[Z,* = 1] < 1. Let T denote the
rotation that maps L(w, «) onto L(w, 7/2). Let T1(x) be the first coordinate of
T(x). Then the hypothesis that the line of expectation intersects L(4A, 7, a)
implies that T1(E[Xi]) 5 0 which in turn implies that 7:(S,.) is a transient walk.
Therefore ), P[{L(24, @)} = n]< « which yields the theorem.

4. The Blackwell theorem. In [2] Blackwell proved that, for one-dimensional
transient nonarithmetic walks with E[X;] > 0, lims.. Ul(a, a+ A)] = A/E[X].
We employ this result heavily in the following generalization. Call a norm whose
unit sphere is a polygon a polygonal norm.

Turorem 3. Suppose E[Xi] = 0. Let || - || be any polygonal norm and suppose
the union of the compact supports of the ||S,|| s dense in (b, «) for some b.

1. If E[X%] + E[X5] < o, then

limg.e U[S(0, @ + A) ~ 8(0, a)] = A/||EX]].
I1. If S(0, a) does not have any face parallel to the line of expectation, then
limg., U[S(0, @ + A) ~ S(0, a)] = A/||E[X4]]|.

Proor. I and II will be proved simultaneously, but the proof will be separated
into two special cases.

Case (1). The line of expectation crosses S(0, a) through one of its faces. For
this case, by Theorem 2 of Section 3 it is enough to find the limit as @ — « of
the expected number of visits to the infinite strip of width A which is the exten-
sion of {S(0, a + A) ~ S(0, a)} at the face which intersects the line of expecta-
tion. Let L(A, r, «) denote that strip and let T' be the rotation which maps
L(w, », @) onto L(w, r, #/2). Then we have T\(E[Xi]) = ||E[Xi]|| where T:(x)
is the first coordinate of 7. By the Blackwell theorem for the univariate case we
have

(9) lim,.., U[L(A, 7, a)] = A/T1(E[X4]).

This completes the proof of Case (i).

Case (ii). The line of expectation crosses S(0, @) at one of its vertices.

By Theorem 2 of Section 3 we know that the only faces of S(0, a) that are of
interest to us are the two faces which are adjacent to the vertex on the line of
expectation. If b is a unit vector parallel to one face and c is a unit vector parallel
to the other face then one can find a nonsingular linear transformation which
maps b into (0, 1) and ¢ into (1, 0). In the new coordinate system the vertex of
the transformed S(0, a) at the transformed line of expectation will have a 90°
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angle. So by the above nonsingular transformation, then by rotation and change
of scale and by using Theorem 2 one can reduce the general Case (ii) to the
following problem.

Let E[Xu] = E[Xa] = 1, K(a) = {x:x < a}. Find lim,.., U[K(a + A) ~
K(a)]. Let A1(a, b, A) denote the horizontal semi-infinite strip of width A whose
initial points are (a, b) and (a, b + A) which is infinite in the positive direction.
Let As(a, b, A) denote the vertical semi-infinite strip whose initial points are
(a,b) and (a + A, b) which is infinite in the positive direction. By the Blackwell
theorem for the univariate case and by Chung [3] we know that U[K (a 4+ A) ~
K(a)] + Uldi(a, a, A)] + UlAs(a, a, A)] — 2A as a — . Therefore it suffices to
show that U[4(a, a, A)] + UlAs(a, a,A)] > Aasa— .

Let r(a) denote the first n for which S, € [K(a)]° and let S, denote the loca-
tion of the walk at that time. We employ U[B | -] to denote the expected num-
ber of visits of S, to a set B given the conditions ( - ), i.e.,

U(B,')=ZnP[SnEB']

Finally let C denote a cone of fixed acute angle less than 90° about the 45° line
through the origin. We can now state

LeEmMa 3.1. For every e > 0, there exists a Bi(e) such that |U[A:(a, a, A)|S%%
Sa—B;,8% >a —A| <efor allasuﬁcwntly large.

Proor. For simplicity denote the condition [S{6) < a — B, S{)y > a] by *.
We note that for B sufficiently large

(10) |UIL(a, A, m)| *] — A] < ¢/2 for all a,

where L(a, A, ) is the full strip obtained by extending 4.(a, a, A) indefinitely.
This is possible by applying the strong Markov property and Blackwell’s theorem
to the walk 8,®

Now, U[L(a, ,A, m) ~ Ay(a,a,A) | %] = [UlL(a — y, A, 7) ~ Ay(a — =,
a =y, A)]dP[S;o) = x| *]and UlL(a — y, A, 7) ~ As(a — z,a — y,4)] =
UflL(a — y, A, 7) ~ Ay(a — 2,a — y,A) nC)} forz > a,y < a — B. The
last term converges to 0 as B — « uniformly in a, by an argument similar to
that used to establish Theorem 2.

Now, choose B = B, sufficiently large to satisfy .(10) and U[Li(a, A) ~

Ai(a, a, A) | ] < ¢/2. The lemma now follows.

We may sumlally establish that for suitable By(e), |U[4s(a, a, A) | S{2)
a — By, 8{0) > a] — A] < e for a sufficiently large.

Together these statements are equivalent to

(11)  limp., lim (sup, inf)ase Ulds(a, @, A) | S < a — B, . 8% > a] = A,
(12)  limp., im (sup, inf)e.. Ulds(a, a, A) | 80 < a — B, 8% > a] = 4,

IIA

where the inner limit may be either lim inf or lim sup. Now,
UlAi(a, a, A)] + UlA:(a, a, A)]
= Uldi(a, a, A) | 852 = a — B, 8% > a]-PIS%) < a — B, 8% > a
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+ Uldi(a, a, A) | S5y < a — B, 8% > a]-P[S{) < a — B, S& > a]

+ U[A2(a) a, A) IS‘t(‘%c)z) =a-— B) Sil(.t)l) > a]P[S‘l('%‘)l) =a-— By S‘l(’h)') > a]

+ Ulds(a, 0, A) | S50 < a — B, 8$%) > alP[S') < a — B, 8&) > 4
+ Uldi(a, a, A) | N1i<2 [S$0) < a — B, 8% > af]

‘PN 1<i,7/<2 [Sib)n < a-— B, Sigt)z) > a]].

Upon consideration of this sum it follows that to establish the theorem, it
suffices to show that

(13) lim infp, im inf,.., {P[S0) < @ — B, 8%, > q]

+ P[S{ < a— B,8%% > al} =1

and, for 7 = 1, 2,

(14) limp,,lim (sup,inf)se Uldi(a, a,A) | 80y < a — B, S%)) > a,i % j] = 0.

Equation (14) follows by an argument analogous to that used to prove (10)
and Theorem 3. Proving (13) reduces to showing

(15) lim 8ups.. {P[S%) < —a] + P[S{, < —a]) = 0,
(16) lim SUpp.. lim SUp,.e
Pla—B<S8% <a+Ba—-B<8% <a+B]=0,
(17)  lim SUps. lim sUps.s {Pla — B < 8{Qy < a + B, 8% = a + B]
+ Pla—B<8% <a+B, 8% 2a+ B]} =0.

Equation (16) follows as a consequence of the main theorem of Chung [3].
Equation (15) follows as a consequence of Blackwell’s theorem for the line. To
prove (17) we let, following Blackwell [2], ¢, £, --- be those values of n at
which the successive maxima of S, are reached. Let Z; = SE::, — 8 be the
“ladder point” random variables. The Z; are nonnegative, independent, iden-
tically distributed, and have finite expectation (Blackwell [2]). Let S,* =
S = 2t Zi. Then PIS{y — a 2 B] < P[Ska — Stwo = Bl — [BZ]
“E[Z\I*(Z, — B)] as a — «, by the key renewal theorem (Smith [10]), where
I"(z) = 1if 2 2 0 and 0 otherwise. Hence lims.«, lim sup,.., Pla — B < S,
<a+B,8% = a+ Bl =0.

A similar argument for the second probability involved in (13) now establishes
the theorem.

5. Blackwell’s theorem for totally symmetric transient walks with recurrent
marginal walks. It was pointed out to the authors by D. Freedman that transient
walks in the plane with recurrent marginal walks could be constructed. Examples
of such walks are those with independent coordinates whose steps follow a stable
law of index p < 2. Since such walks have E[X;] = 0, by the elementary theorem,
if the Blackwell theorem holds in this instance, convergence should be to «

)
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as in the recurrent case. We have been able to prove this for totally symmetric
walks, that is, walks for which (Xu, Xu), (Xu, —Xz), and (—Xyn, —Xu)
are identically distributed. The methods are essentially those of Chung [3].

THEOREM 5. Suppose S,, n = 1, is a totally symmetric random walk in the
plane. Then, if E[X] exists and S,, S,* are both nonarithmetic,

limg. U[S(0,a + A) ~ 8(0,a)] = .

We will prove the theorem first for the L, norm and then indicate the modifica-
tions required for the general case. Let K(x, a) denote the sphere of radius a
about x for the L, norm. We require first,

LeEMMa 5.1.

lin,,o, infyp2 U[K(X, a)]/a = .
Proor.
UK(x, a)] = [xexaa (1 + UK(x — ¥, a)]) dG(X)
where G(x”) is the distribution function of the first sum to enter K (x, a). Hence,
infeers U[K(X, a)]/a Z infeer? infyexw .o (1 + [K(x — X, a)])/a
= infexe.o UIK(2, a)l/a + a”'

and it suffices to show that the last quantity goes to «. Let O;(a),1 = 7 < 4,
denote the intersections of the respective quadrants of the plane with K(0, a).
Let Z:(a), 1 = ¢ £ 4, denote the number of visits of the walk to O;(a). By
Theorem 1 of Section 2, limg.., (1/a)E[> i=1 Zi(a)] = « a.s. By the total
symmetry of the walk, U[O:(a)] = E[Z.(a)] = E[Zi(a)] = UlO:i(a)] =
1E[> i1 Z«(a)]. We can conclude from the preceding remarks that

lim, min; U[Oz(a)]/a = .,

The lemma follows.

Our next lemma again exploits the symmetry of the walk.

Lemma 5.2. Let {S,} be totally symmetric and S,™, S, both be nonarithmetic.
Therz, if K, denotes the compact support of S, , we have that C = Usp—; K, is dense
in R

Proor. Since S,", S,* are nonarithmetic, the projections of €' on both axes
are dense in B. But if (z, y) ¢ C'sois (—=, y) by the total symmetry of the walk,
and hence since C is a semigroup (0, 2y) € C for every y in the projection of ('
on the y axis. Similarly (2z, 0) ¢ C for every z in the projection of C on the axis.
Hence, (s, t) ¢ C for all se Cy, t ¢ C;, where C;, Cs are dense in R. The lemmac
follows.

We require further notation before starting the next lemma. Let U(x, a) =
UIK(x,a + A) ~ K(x, a)]. Denote infy lim inf, .., U(x, @) by U*. It follows that,

Lemuma 5.3, If a(n, X,) — © asn — x for each fized m and

lim, Iim, U[x, , a(n, X,)] = U*,
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then lim; limg Ulxm; — v, a(m , Xm;)] = U™ for a dense set V of v = (v1, vs)
in R* (possibly dependent on X,), for some subsequences Xm; , 0(N , Xm;) both
possibly depending on v.

PROOF. UlXm, a(n, Xn)] = [4, U(Xn — Vi, a(n, X,)) dG(vV1, -+, i)
where Apn = {(Vi, -+, W) V; 2 KX, a(n, X,,) + A) ~ K(Xn, a(n, Xn))}
and @ is the joint distribution of S, , ---, S;, by the Markov property.

By Fatou’s lemma, lim inf, U(x,., a(n, X,)) = flim inf, I(Amn) U(Xn — Vi,
a(n, Xn)) dG(vi, -+, w) = [lim inf, U(Xn — v, a(n, X»)) dF*(v) where F*
is the distribution of S, . The last assertion follows since I(An,) — 1 for m
fixed as n — . But U* = lim,, lim inf, U(Xn , a(n, X,,)) = inf,, im inf, U({Xn,
a(n, X,)) = inf, [ lim inf, U(x, — v, a(n, x,)) dF*(v) = [ inf, lim inf,-
U(xm — v, a(n, X,)) dF*(v) = U™

From Lemma 5.2 and Fubini’s theorem we can conclude that

inf, lim inf, U(xm — v, a(n, X»)) = U*

for a dense set of v in R’. But now we can first choose X, depending on v such
that lim; lim inf, U(Xm; — Vv, a(n, Xm;)) = U* and hence a(m , Xn,;) which de-
pends on X,,; and v such that lim;limy U(Xn; — Vv, a(n , Xn;)) = U™, and the
lemma is proved.

Suppose now that lim inf, U(0, a) < . Hence, U* < « and we can choose
{X,} and {a(n, Xn)}, m, n = 1 such that lim, lim, U(X,, a(n, X)) = U™

Let B > 0andJ = [4B/A] + 1. By successive applications of Lemma 5.3 we
can define a finite sequence V¥, --. | V* such that,

(1) V¥ =o.

(2) A2 =V — V¢ <A 12k

(3) lim; limy Ulxm; — v, a(m, Xn;)] = U™
for a subsequence Xx,,; and subsequences a(n , X»;) of a(n, X,;) which depend
on Xn;,and 0 < s = J.

Letu(k,j) = (a(n , Xm;) — B, a(n , Xm;) — B). Then by elementary geom-
etry for k so large that a(ni , xn;) = B

== )

(17) U[K(xmj + u<ka .7)} B)] = Z£=O U(XM;,' - V(r)y a(nk> xm,‘))-

Hence, lim sup; lim supx U[K (Xm; + u(k, ), B)] < lim; 2 g U(Xm;— v,
a(ne , Xn;)) = (J + 1)U* < 4(B + A)U*A™. Finally, we have

lim sups.« lim sup; lim supx B"IU[K(xmj—}— u(k, j), B)]< 4U*/A < .

But now Lemma 5.1 provides a contradiction and the theorem is proved for the
L norm.

To prove the theorem in full generality consider first a polygonal norm whose
unit sphere has a vertex (v, v) on the diagonal in the positive quadrant and is
such that the sides meeting at that vertex are perpendicular to each other. Let
I, 1, denote the lengths of these sides. Remark that S(0, a) in this case has a
vertex on the diagonal at (av, av) and the sides meeting at that vertex are
perpendicular and have lengths al; , al, , respectively. We can now repeat for this
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norm the program followed for the L, norm by first defining
U* = inf, lim inf, U[S(x, @ + A) ~ S(x, a)]

and then stating and proving the appropriate version of Lemma 5.3 by substitut-
ing S(x, a) for K(x, a) throughout.

We define u(k, j) = (a(nx, Xm;)v — B, a(n, X»;)v — B) and consider
K(xn; + u(k, j), B). The proof now goes through verbatim by substituting S
for K in the quantities on the right side of (17), and changing the requirement
a(ni, Xm;) 2 B to min (L, L)a(m , X.;) 2 B.

We remark that the preceding proofs continue to hold for any walk with
expectation 0 satisfying the statements of Lemmas 5.1 and 5.2.

Suppose now that we are given any polygonal norm. As we have seen in the
preceding section there exists a nonsingular linear transformation 7" which maps
the boundary of S(0, 1) onto a polygon with a vertex (v, v) on the positive
diagonal such that the sides meeting in that vertex are perpendicular. Denote
this convex polygon and its interior by S*(0, 1) and in general let S(x, a) be
the sphere of radlus a about x of the norm whose unit sphere is S*(0, 1). Let
S, = TS,, K be the compact support of S.* U¥[A] the expected number
of visits of S,* to 4, etc. Then, clearly UlS(0,a + A) ~ 8(0, a)] — « for every
A>O4:>U[S (0, a+ A) ~ 8%0, a)] = .

From our preceding remarks it suffices to show that S, satisfies Lemmas 5.1
and 5.2. Since T'is 1-1 and continuous, Uj—, K,,* = Us—, T(K,) = T( U,,=1 K,)
which is dense. Hence, S, satisfies Lemma 5.2. On the other hand, U*[K(0, 1)]
= U{T'[K(0, 1)]}. But T '[K(0, 1)] is a bounded open set and hence,
U{T K0, 1)} = UIK(O, c¢)] for some c¢> 0. Hence, U¥K(x, a)] =
U{TTK(x, o)} = U{T'(x) + aT[K(0, D]} 2 U[K(T"I(X), ac)]. W
conclude that inf, U*[K(x, a)]/a = c infy U[K(x, ac)]/ac and hence

limasw infx UK (x, a)]/a = ©

and Lemma 5.1 is satisfied.
The theorem is proved.

6. Conclusions. We remark first that the restriction to 2 dimensions may be
immediately dispensed with, with the possible exception of Theorem 3. There
Case (ii) which now corresponds to the line of expectation exiting through the
boundary of a face presents some difficulty.

There are clearly many directions of generalization, such as more precise
estimates of the renewal function U[S(0, a)] in the presence of higher moments,
consideration of the renewal density in the presence of absolute continuity of F
and similar extensions of the type discussed in Smith [10]. The most attractive
generalization (to nonpolygonal norms) has been dealt with to some extent in
Farrell [8].

It also seems that generalizations (or parallel theorems) for arithmetic walks
can be made without difficulty.

Unfortunately, the Erdos-Feller-Pollard [6] approach in the above case, and
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the Feller-Orey [10] approach to the nonarithmetic case in one dimension does
not seem to generalize at all.

The remark made by Smith in [11] about univariate renewal theory, spe-
cifically Blackwell’s theorem, we feel has even more force in the multivariate
case, i.e., there should be a general relatively simple argument which would
establish these results. Unfortunately, so far none has presented itself.
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