ON INFORMATION IN STATISTICS
By D. A. S. FrRASER

University of Toronto

1. Summary and introduction. The three familiar definitions of statistical
information, Fisher (1925), Shannon (1948), and Kullback (1959), are closely
tied to asymptotic properties, hypothesis testing, and a general principle that
information should be additive. A definition of information is proposed here in
the framework of an important kind of statistical model. It has an interpreta-
tion for small samples, has several optimum properties, and in most cases is
not additive with independent observations. The Fisher, Shannon and Kullback
informations are aspects of this information.

A variety of definitions of information may be found in the statistical litera-
ture. Perhaps the oldest and most familiar is that due to Fisher (1925). For a
real parameter and a density function satisfying Cramér-Rao regularity condi-
tions it has the form

I:(6) = [ [(8/36) In f(z | O)Ff(x | 6) du
= [ —(8"/96°) In f(x | 0)f (= | 6) da;
for a vector parameter 6 it becomes a matrix
1,(8) = cov {(38/36) In f(z | 0)| 6}
[ —(8/00)(8/660") In f(x | 0)f(x | 8) dx

where cov stands for covariance matrix and where the integrand being averaged
in the second expression is the matrix of partial derivatives of the log-likelihood.

Shannon (1948) proposed a definition of information for communication
theory. In its primary form it measures variation in a distribution ; with a change
of sign it measures concentration and is thereby more appropriate for statistics:

I5(0) = [Inf(z|0)f(x|6) dx.

Kullback (1959) considers a definition of information for ‘‘discriminating in
favor of H,(6:) against Hy(6,)”:

Ix(6r, 8) = [In[f(x|6:)/f(x|6)]f(x ] 6:) da.

These information functions are additive with independent observation; in
fact, additivity is taken as an essential property in most developments of in-
formation. The three information functions are defined for quite general sta-
tistical models, (mild regularity required for Fisher’s definition). And the Fisher
and the Kullback definitions are tied closely to large sample theory and to Bayes’
theory respectively. The emphasis in this paper is not on information in a
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general model based on general principles. Rather it is on information in an
important and somewhat special model—the location model and, more generally,
the transformation-parameter model.

2. For a real variable and a real parameter. Consider the location model
f(z — ) involving a real variable z and a real parameter 6. As a measure of in-
Sformation concerning the parameter value 6 given the outcome x, consider

I(6|z) = Inf(x — 0).

For interpretation, this can be viewed as the log-likelihood (old definition with-
out indeterminate constant). Or, alternatively, for those that accept structural
probability [Fraser, (1965)] this can be viewed as the logarithm of the structural
density at the parameter value 6 as determined by the outcome z. The informa-
tion function is zero for unit structural density and measures logarithmically the
structural density with respect to that reference value; a large positive value for
I(8 | x) is strong information for that 6 value and a large negative value is strong
information against that value.

If 6° denotes a true value for the parameter, the value determining the dis-
tribution of z, then the mean information attached to the value 8 when the dis-
tribution is 6° is

Il

olnf(z — 0)f(x — 6°) da
ZoIn f(y — 8)f(y) dy

I1(6]6")

where & = 6 — 6".
Consider some aspects or characteristics of this information function. First, the
information at the true parameter value is

1(6°16°) = [Inf(z — 6")f(x — 6°) da
= Is(6").

Second, consider how much this exceeds the information attached to some other
parameter value:

I(6°|6°) — I(6]6") = [In[f(zx — 6°)/f(x — 0)]f(x — 6) dx = Ix(6", 6).

This difference is always nonnegative [Kullback, (1959), p. 14]; accordingly
1(86°) as a function of 6 attains its maximum at the true value § = 6.

Third, consider the curvature of the information function at the true value
9 = 6°. For this, assume the Cramér-Rao regularity conditions that allow 6-differ-
entiations to be carried inside the integral. The slope of 1(8 | 6°) is

(3/80)1(0]6°) = [ (8/06) In f(x — 60)f(x — 6°) da,
(8/36)I(6]6") = 0
where 9/96° is abbreviated notation for the operator defined by
(8/06)1(6, 6°) = [(3/36)/(6, )]s .
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And the curvature at § = 6, is

—[(8°/36°)1(6 | 60)]s -0

It

[ —(8%/96") Inf(z — 0)f(x — 6°) dalss,

= I F(OO) .
Thus the information 7(8]6,) as a function of § has maximum value I s(6")
at the true value, has curvature I-(6°) at the true value, and has discrepancy to
another 8 value I(¢°, 6).

3. For a vector variable and a vector parameter. Consider the location-model
f(x — 8) involving a vector variablex = (z;, ---, ,) and a vector parameter
0 = (6, -, 0,); this is an example of a transformation-parameter model. As
a measurement of information concerning 0 given x, take

I(6]x) =Inf(x —0).
The mean information attached to the value 6 when the distribution is 6° is
I(6]6) = [Inf(x — 0)f(x — 0°) dx

= [Inf(y — 8)/(y) dy
where 8 = (6, — 6, -+, 6, — 6,).
In the pattern of the preceding section, the information I(8 | 8°) as a function
of 6 has maximum value I5(8°) at the true value 6, , has discrepancy to another 6
value I(6°, 8) and has curvature matrix I»(6’) at the true value.

4. For a vector variable and a real parameter. Consider n independent vari-
ables z;, - -+, , with location models fi(x; — ), - - -, fo(z, — 68). In particular
this might be a sample from a location model; or it could be generalized to a vari-
ablex = (a;, -+, x,) from f(x — 61) wherel = (1, ---,1).

The orbit under translation can be described by the ancillary statistic
d = (dy, -+, d,) whered, = z; — z; and the conditional sufficient statistic by
z1 ; the density for d is

() = [Zofi(O)fe(t + do) - fult + dy) dt

and the conditional density for z; is
g(xl — 0 I d) = f](l‘] — 0)f2(x1 — 0 + dz) st fn(’vl — 40 + dn)/h(d2 y T 7'dn)~

As a measure of information concerning 8 given the outcome x = (x1, -+, Zu)
consider I(6 |x) = In g(z, — 0] d). This can be viewed as the log-likelihood
based on the conditional distribution ; or as the logarithm of the structural density
at the parameter value 6 as determined by the outcome z.

The mean information at 6 when the distribution is 6° is

I(9]6°,d) = [Ing(z, — 6|d)g(ex — 6| d) day
given the ancillary d, and is
1(6160) = [Ing(z; — 6| d)fi(x; — 6)II das

marginally.



INFORMATION IN STATISTICS 893

The curvature of the information at § = 6° is given by I»(6,) since
(8°/96°) Ing(zy — 0| d) = (8°/96°) In Ifi(z: — 6).

The discrepancy from 6° to another 6 is given by I(6° |6 — I(6|6") =
Ix(6°, 6); and it follows that I(8 [ 6°) is a maximum at 6 = 6",

Before considering the information at the true 6° it is convenient to consider
a more general model of the type discussed in the preceding section. Suppose that
(1, dy, --+, dn) has a density function g(x;, — 6|d; — o, -+, d, — 7,)
h(dy — 75, -+, dr — 7,), with marginal density for (ds, --- , d,) given by
h(ds — 79, -+ ,dn — 7). Then

I(616°) = [[Inf(x — 61) — In h(d)]f(x — 6°1) dx
= [I*(6, = | 6", =) — I%(%]| ©)]emo

where I is the information function calculated for the marginal distribution of
the d’s.

The information at the true parameter value can be obtained from the pre-
ceding expression: 1(6° | 6°) = Is*(8,) — Is%. The information at the true param-
eter value is thus the Shannon information in the full distribution less the Shannon
information in the distribution of the ancillary variable.

As an example consider a variable z that is uniformly distributed on the
interval @ + %. For a single observation

16|16 =0 if 6=2¢°
= —o otherwise;
for § # 6, the mean information against 8 is infinite. For two observations
I(616") = [6 —In (1 — R)2(1 — R) dR
=1 if 9=2¢6
= —w otherwise.

The information with two observations is more than twice the information in a
single observation. This is in accord with the intuitive picture for information in
such sampling.

5. For the transformation-parameter model. For a generalization, let e be

an error variable on a space X, let G = {g} be a unitary group of transformations
(if 2" = gx = hz, then ¢ = h), and consider the model z = [6]e where [6], a typical
element in G can be indexed alternatively by 8 = [0]6, taking values in a param-
eter space . Suppose that e has a density function f(e) with respect to an in-
variant measure m on X: m(gd) = m(4).
- Let [z] be the transformation that produces z from a reference point a(z) on
the orbit through x. Then the ancillary statistic can be expressed as a(z) = [z] 'z,
and the conditionally sufficient statistic as [z].

Let u be the left measure on the group G: u(gH) = u(H). Let v be the right
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measure on the group: »(Hg) = »(H) = u(H ). And let A be the modular func-
tion: du(g) = A(g) dv(g).

The probability element for = is f([6] ') dm(z). This leads to the conditional
distribution of [z] given a(z):

k(a(2))f (6] '2) du(lz]) = k(a(x))f([0]"=)A([e]) dv([z])
= r([z] | a, 0) dv([z]);
and to the structural distribution for [6] given x:
k(a(2))f([16]"2)A(6] " [z]) du([6]) = k(a(z))f([6] "z)A([z]) dv([6])
= r([2]| a, 6) dv([0]).
As a measure of information concerning 6 given the outcome z consider
I(0|z) = Inr([z] ]| a,0).

This can be viewed as the log-likelihood based on’ the conditional distribution;
or as the logarithm of the structural density for [6] determined by the outcome z.
The mean information at # when the distribution is 6’ is

1616, a) = [1(6])r(lx] ]| a, 6") dv([x])
given the ancillary a, and is
1016") = [Inr([] | a,6)f([6') ") dim(x)
marginally.
First, consider the information at the true parameter value 6°. For thislet n

be the measure for the ancillary statistic determined by dm(z) = dn(a) du([z])
and let s(a) = k™'(a) be the density function for a with respect to n:

f([6]%) din(x) = r([z] | a, 8)s(a) dv(la]) dn(a).

)

Then
1(6"16") = [ [In {f([6T"2)A([z])} — In {s(a)})f([6") "x) dm(x)
J o (F(6°T =) A=) 116 "2)A([2]) -4 ([2]) dm(x)
— fln {s(a)}s(a) dn(a)
I5(6) — I

I

in this expression the Shannon information for z is calculated using a density with
respect to the adjusted measure A™([z]) dm(z), which corresponds to right in-
variant measure on the group. Thus the information at the true value 6° is the
Shannon information in the full distribution less the Shannon information in the
ancillary distribution.

The discrepancy in the information from 6° to 6 is again given by

I1(6°)6") — I(6]6°) = Ix(6°6)
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and is nonnegative. The information function thus attains its maximum at the
true value 6, .

Suppose now that the group @ is continuous and has Euclidean coordinates.
Then the matrix of partial derivatives satisfies

(9/90)(8/00") In (r[z] | a, ) = (8/06)(3/30) In f([6] z).

If in addition the distribution satisfies the Cramér-Rao regularity conditions
then

[—(8/30)(3/36')1(0 | 6")]Jg—go = Lr(6°).

6. Three optimality properties. Consider a variable # having a transformation
model as described in the preceding section. And, in addition consider a reduc-
tion y = w(z) and suppose that the new variable y admits the definition of
information in the preceding section. In this section, the effects on the informa-
tion function of a statistical reduction will be examined.

Let A(y) be the ancillary statistic for y in reference point form, y = [y]4(y).
Towards an ancillary for x consider the solutions of the equation w(z) = A(y).
The relation y = [y]A(y) shows that on any orbit for x there is exactly one
solution; designate it by a(z). Then z = [z]a(z) where [y] = [w(z)] = [z]. In
addition it follows that A is a reduction on a: A = v(a). Thus the reduction
xz — w(x) is equivalent to ([z], a) — ([z], v(a)).

TureoREM 1. Under a statistical reduction y = w(x) that maintains a transforma-
tion model

@) = 1°6° | ),

with strict inequality unless the distribution of the transformation variable [x] s
determined by the ancillary statistic for y.
Proor. Consider the conditional information given the ancillary A4 :

IF(6° 6 A) = E{I’(8°| 6, a)}
where the expectation is taken with respect to the distribution of a given A.
Then
@6, A) = E{f nr([z] | a, 6")r([z] | a, 6") dv(lz])}

= [ E{lnr(lz] | a, 0")r([2] | a, 6°)) dola]

2 [InR([z]| 4, 6)R([z] | 4, 6") dvla]

= 1°(6"| 6, 4);
the inequality uses the convex function'¢ In tand the expression R([z] | 4, 6°) =
E{r[z] | a, 6°} is the average with respect to a of the conditional density of [«]
given a, and is therefore the conditional density of [x] given A. With the straight-
forward checking of the equality case, this completes the proof.

THEOREM 2. Under a statistical reduction y = w(x) that maintains a transforma-

tion model
@6 — I1°(0]6°) = 1°(6° | 6°) — I"(6|6").
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Proor. This is a specialization of Corollary 4.3, Chapter 2, in Kullback (1959).

TuEOREM 3. Under a statistical reduction y = w(x) that maintains a transforma-
tion model, the curvature matriz Ix(6°) of the information function at the true value
6° satisfies

Ip’(0°) > IF”(OO)

where > denoles the natural partial ordering on positive semi-definite matrices.
(A > B if and only of A — B is positive semi-definite.)

Proor. Consider any statistical reduction y = w(z). Let g(y | 8) be the density

function for y with respect to a measure derived from the measure m for the
variable z; then

f(x|6) = g(y|0)h(x]y,0)

where i(z | y, ) is the conditional density for | y with respect to the conditional
measure. The logarithmic gradient vectors at 6 satisfy

olnf(x|6)/90" = alng(y|6)/96° + 9 1n h(z |y, 6)/36".

The second term on the right side has a conditional expectation given y at 6°
that is equal to zero; as a result, the cross covariance matrix between the two
vectors on the right side is equal to zero. The covariance matrices then satisfy

r@’) = 16" + ')
and therefore I7(6°) > I%(6°).
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