INVARIANT CONDITIONAL DISTRIBUTIONS

By J. A. BATHER
Stanford University

1. Introduction. Let {6, ;n = 0} be a time-homogeneous Markov process
whose behaviour is of interest, but which cannot be observed directly. Suppose
instead, that at each stage an observation is taken from a distribution deter-
mined by the current state of the process. Let {x, ; n = 1} be a sequence of ob-
servations, in which each z, arises from a density f(z, | 6,) and is conditionally
independent of its predecessors. Suppose now that any realisation of the Markov
process must be accompanied by a sequence of decisions, each of which involves
costs depending on the corresponding state but not explicitly on the time. We
can imagine for example, that a prediction is required at each stage, or perhaps a
decision whether or not to apply some external control in order to modify its
state and renew the process.

However, the present investigation is not concerned with any particular sequen-
tial decision problem, but in general with the information on which such deci-
sions must be based, and with the possibility of expressing this in a simple and
useful form. For any specified initial conditions, the information available at
time 7 consists of the distribution of 6,, given the previous observations
Ty, X2, - X, . In general as n increases, the situation becomes more and more
complicated, because of the number of quantities involved. It is a considerable
advantage if this increase in the dimensions of the relevant information does not
occur: in other words, if the conditional distribution always reduces to a form
depending only on a fixed number of variables. Such a reduction occurs in the
case of sampling from a fixed distribution, provided that the distribution is of
exponer.tial type. Then statistical inferences concerning the unknown parameter
can be analysed in terms of sufficient statistics, whose dimensions are unaffected
by the sample size. We might expect distributions of exponential type to possess
similar advantages here, where the parameter changes stochastically. As we shall
see, this is so; although further conditions must also be satisfied.

An example will serve to illustrate the possibilities. Let the process {6,} have
independent normal increments, each with zero mean and variance (1 — ¢)%/c,
where ¢ is a constant; 0 < ¢ < 1. Let the observations {z,} be normal, such that
x, has mean 6, and unit variance. Then the following properties can be established
inductively. If 6, is normally distributed, then every subsequent conditional
distribution is also normal: the distribution of 8, in terms of the observations
Z1,®2, - Zn, hasmean (1 — c)u, and variance (1 — ¢)v, , where

1/v. = {¢/I1 — ¢(1 — v.))} +1 — ¢,
Un/Vn = {CUn—a/[1 — ¢(1 — v )]} + @n.
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We notice that {v,} and hence the sequence of variances is deterministic, so that
the conditional distribution depends only on n and the value of u, generated by
the second relation. Further, as n increases, v, converges to 1, which indicates
that the form of distribution also converges. In particular, if v, = 1, then v, = 1
always holds and the conditional distributions are invariant in the sense that
each depends only on the corresponding quantity u, = o, + cTpy + -+ ¢ 21
4+ c"up. Thus we have an exponentially weighted moving average which is
always sufficient.

The above example has been used as a simple control chart model [1]. The
present work arises from a study of its special properties and makes some progress
towards characterizing the class of models with similar properties. We consider
first, the general conditions for the existence of a sequence of statistics {u.};
such that a complete description of the current state is always possible, in terms
of n and u,(x1, 2, * -+ &,). It is shown that the conditional density functions as
well as f(z, | 6,), must be of exponential type and that a certain integral re-
currence equation must be satisfied. The discussion of invariant conditional
distributions is based on this equation, and several examples are produced. The
final topic is the question of convergence. It is established that, if a suitable
invariant distribution exists, then as » increases, it will gradually dominate any
initial effects and emerge as the limiting form of the distribution of 6, relative to
u, . In this paper, attention is restricted to processes with continuous state
spaces. A treatment of discrete spaces appears to raise special problems which
will require further research. For convenience, it is assuimed throughout the
arguments that 6, and u, are 1-dimensional quantities. However the results can
be extended to the case when both are vectors of the same dimension, without
any fundamental changes.

2. Exponential forms. Consider the Markov process {6,} with state space
© contained in the real line and suppose its transition law is known. For any given
state 6,1, let p(6, | 6.—1) be the probability density with respect to Lebesgue
measure, which generates 6, ¢ ©. Suppose that for each 6 £ ©, f(z | 8) is a proba-
bility density with respect to a fixed measure u on the subset X of the real line.
Further let f(x | 8) > 0 always, so that the sample space X does not depend on
6 and suppose that the family of distributions parametrised by 8 is completely
identifiable: f(z | 6) = f(x|6) a.e. (1), only if 8 = 68" Let the process begin at
6, prescribed by a density go(6y) and let the subsequent states 8, 62, -« -, give
rise to observations @, 2, - -, where z, is distributed according to f(x, | 6,)
and is conditionally independent of all preceding states and observations.

We shall investigate the consequences of the following assumption. Associated
with the above system is a sequence {u,(Z:, 22, - - - , 2,)} of real valued functions
such that in general, the conditional distribution of the state 6, depends on the
observations x;, T2, - - - ., only through the corresponding value of w, .

Let ¢,(0, | un(21, - - - 2.)) be the density of 6, when z, , x5, - - - x, , are known,
and let A,(0, | Un—1(x1, -+ s—1)) be the one which applies just before z, is
observed. The relations between these functions are determined by the two basic
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operations of the system. The first is obtained by considering a typical transition
and the second describes the effect of a new observation.

(2-1) hn(on l Um—l) = fe p(ﬂn I on—l)gn—l(on—l | uﬂ—l) 0,1 .

(2.2) gn(0n I Un) = [ha(6n l Un—1)f (Zn | on)]/[fe hn(6n l Un—1)f (Tn l 6,) db,].

Under suitable regularity conditions, Equation (2.2) implies that each of the
densities concerned has an exponential form. The differentiability requirements
made in this derivation may seem inappropriate, but it is not easy to weaken
them substantially. We suppose that the space X can be extended to an interval
in such a way that each function u, is continuous in its arguments and possesses
partial derivatives du,/dx,_; and du,/dz, , which do not vanish identically. The
range of possible values of u, is therefore an interval U, . Suppose further that for
some fixed 6" and any 0 ¢ ©, the derivatives

(8/3x){log [f(x | 0)/f(x | )1},  (8/0un){log [ga(8] un)/gu(6’ | ua)l},
(8/0Un—1){10g [1a(0 | Un_1)/hn(6 | Un-1)1},

exist and are continuous in z, u,, u,_1, respectively. Then Relation (2.2) can
be treated as follows.

10g [gn (8 | %n)/gn (0" | un)]
= 10g [~ (0 | Un-1)/hu(0" | Un1)] + log [f(zn | 0)/f (2 | 6')];
(8/Un){10g [gn (0 | Un) /(0" | Un)]} (IUn/0%n_1)
= (8/0un—1){10g [An(0 | tn1)/Bn(8" | Un-1)]} (OUn—1/0T0_1),
(8/9un) {10g [gn(0 | %n)/gn(8" | n)]} (OUn/0s)
= (8/0,){log [f(za | 0)/f(za | 6)]}.

The first equation is a direct consequence of (2.2) and the others are obtained
on differentiating this with respect to z,—; and z, . Now let us choose another
fixed state 6” 5= 6’ and compare the last two equations with their counterparts
for 6 = 6”. Hence

(8/0xn){log [f(za | 0)/f(xa | 8')1}/(8/0x4){log [f(zn | 8")/f(za | 6)]}
= (9/0un){10g [gn (6 | un)/gn(8" | ua)1}/(8/Oun){10g [gn(6” | Un)/gn(6’ | un)]}
= (8/9tn—1) {108 [hn(8 | Un)/Rn(8" | un2)1}/
(8/9n1) {10g [1a(0" | Un1)/Bu(0' | Uns)]l} = 6(6).

Since the densities f(z | 0); 0 £ ® are completely identifiable, the denominators
here cannot vanish identically. We observe that the first ratio depends on 6 and
Z, , whereas the third does not involve z, at all. Hence the common value of these
ratios depends only on 6.

The result is that each density is determined formally as the solution of a
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differential equation. For example,
(9/0x) log f(z | 6) = (3/9z) log f(x | ') + ¢(6)(8/0){log [f(x | 8")/f(x | 6")]}.

The general solution for f(x | ) has the form a(8)b(z) exp {¢(8)t(x)}. However,
this can be simplified without loss of generality. The function ¢(6) defines a
(1, 1) correspondence, since the family of distributions is completely identifiable.
It follows that {¢(8,)} is a Markov process and we can transfer our attention to
this instead of {6,}. Further, with the above density function, ¢(z) is sufficient
for the parameter § and since we are not directly concerned with {x,}, the observa-
tions {t(x,)} are equivalent. The original notation is preserved by substituting
6 for ¢(8) and x for ¢(x). Similar remarks apply to the general forms obtained for
the other densities. Then the results can be expressed as follows.

f(@]6) = a(6)b(z) exp (62),
(2.3) g2(0 | u) = ma(0) exp (w8 — Na(u)),

ha(0 | u) = s.(6) exp {ea(w)0 — pa(ca(u))}.
Finally, by substituting these in Equation (2.2), we can deduce that
(2.4) $.(0) = m,(0)/a(8), Un = Co(Un—1) + .

Our conclusions so far, correspond closely to the criteria for the existence of
sufficient statistics for a fixed parameter. But here, we must take into account
transitions of the unobservable quantity. Equation (2.1) can now be written:

(2.5) f o D(6n | 0n1)Mn_1(6n—1) €xp (Un—16p—1 — An1(Un—1)) dbns
= [M4(62)/0(0,)] €xp {Ca(Un-1)0n — pn(cn(tn_1))}.

The rest of our investigation is mainly concerned with this relation which repre-
sents the effect of a typical transition. The exponential forms (2.3) are necessary
if we are to obtain the required simplification of all the conditional distributions.
The sequence of densities {g,(6, | u,)} must then satisfy (2.5), but the proper
interpretation of this relation is by no means obvious. We remark first that, if
it can be satisfied, all the regularity conditions which have been assumed are
automatically valid. In fact, much stronger properties are implicit and these will
be useful in what follows.

The set of values of 6 for which f(x|6) is properly defined by (2.3) is an
open interval, possibly unbounded, which can now be identified with the state
space ©. Thus O is the set of all § for which Jx b(z)e” du(z) is finite. Similarly,
let us define U, by the existence of the transformation f ma(0)e” do =
exp M.(u). By considering the variance of the associated dlstrlbu‘mon it follows
that U, is an open convex set, which we suppose contains the range of possible
values of u,(21, %2, -+ .). Further, since its definition involves a Laplace
transformation, the function \,(w) can be regarded as analytic in the strip of the
complex plane whose real projection is U,. Later, we shall consider the charac-
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teristic function which corresponds to the density g.(6 | w), and this is simply
Joma(8) exp {(u + )0 — M(u)} df = exp {M(u + 5£) — M(w)}.

Again, let fe s,(0)e® d6 = exp p,(c) be finite whenever ¢ lies in the open in-
terval C, . Then p,(c) is analytic in the appropriate complex strip. In view of
Equations (2.4), we suppose that ¢,(u._1) + z, e U, for every u,_; ¢ U,_; and
z, € X. Finally, for each fixed 8, ¢ ©, Relation (2.5) defines a Laplace transforma-
tion and we can deduce that, when complex values of u, ; are admitted, the
function ¢,(u.—1) is analytic.

Suppose now that we can choose go(6) in such a way that it generates a se-
quence of densities gn(6n | Un) = Mn(6,) €xp {Unbn — Ma(u,)} with associated
connecting functions ¢,(#.—1), by the repeated application of (2.5). Then, as we
required, the distribution of 8, given all previous observations, depends only on
the single statistic u, and the time index. The value of u, can be calculated by
using the relations u; = ¢;(u;-1) + z; ;7 = 1, 2, - - - n, successively. However, a
further simplification may be possible: the conditional densities ¢,(6, | u,) may
not depend explicitly on n. It will be established later, under suitable restric-
tions, that if there is an invariant form g(6, [ u,) = m(6,) exp (b — A(un)),
and a fixed connecting function ¢(u,_;), then the conditional distribution of
0., given 1, Ty, -+ Z,, is approximately described by ¢(6, | u,) when n is
large; no matter what density is prescribed for the initial state 6, . This con-
vergence property suggests that it is most important to examine whether an
invariant conditional density can be found.

3. Invariant conditional densities. At this point, it is convenient to adopt a
simpler notation. Consider a typical stage in the development of the process
{6.}, and suppose that the current state 6 ¢ ® is described by the probability
density

(3.1) (6 u) = m(6) exp (ub — Nw)),

where the appropriate value u ¢ U is determined by the preceding observations.
We next encounter a transition from 6 to a new state ¢ ¢ ® and this is followed by
observing z ¢ X according to the density

(3.2) f(@]e) = a(4)b(z) exp (¢x).

The information regarding ¢ immediately after the transition, will be less precise
than that concerning 6, but we are supposing that the new observation z modifies
this in such a way that after both operations, the density of ¢ is still in the same
family {g(¢|v);ve U} as (3.1). In view of the previous analysis, this can only
happen if

Jop(o|0)m(8) exp (wd — Nw)) do = [m(¢)/a($)] exp (cp — p(c))

for some ¢ = c(u), and then the particular density obtained finally, will be
g(¢ | c(u) + ). Let
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(3.3) (¢, 0) = a(¢)p(s|0).

Thus (3.1) is an invariant conditional density function if and only if the integral
equation

(34) [eq(s, O)m(0)e” ds = m() exp {c(u)d + Mu) — p(e(u))}

can be solved for the functions 7(8) and c¢(u). In this case, provided that there
exists a suitable normalising factor exp (—A(u)), whenever u ¢ U, there is no
difficulty in constructing the function p(c) from the ratio m(¢)/a(¢). The kernel
of Equation (3.4) is determined by the transition density and the sampling
density (3.2). The central problem is to find an invariant function m(6), to-
gether with a connecting function c¢(u).

In general the solution of this integral equation is no easy matter and in what
follows, we shall concentrate mainly on a special case for which explicit solutions
can be obtained. We shall see by examining the joint distribution of state 6 and
its successor ¢, that the problem has a relatively simple interpretation when
c(u) is linear in w. This is not the only possibility: Example (iv) discussed in
Section 5, involves a connecting function c(u) = u}. However, the linear case
seems to be most promising from the practical point of view.

Consider, for an arbitrary u ¢ U, the distributions of 6 and ¢ determined by
(8.1) and (3.4). For the reasons mentioned in Section 2, we can extend the
definitions of N(u), p(c¢) and c¢(u) to admit complex arguments and hence find
the appropriate characteristic functions. In particular, for the distribution of 6
conditional on ¢ we have

E(e®| ¢, u) = [ p(¢]0)m(0) exp (ud + 1) db
(3.5) [f g (& | 8)m(6) exp (ub) o]
exp [{M(u + 1) — Mu)} — {p(c(u + &) — p(c(w))}
+ ¢le(u + &) — c(u)}l.
This is a direct consequence of (3.4). The joint characteristic function is then
E(e'H |u) = exp [(Mu + ) — NMu)}
+ {p(c(u + 1€) + i) — p(c(u + £))}].

However, a more interesting view of the distribution is provided by (3.5). When
the natural order of the states is reversed and @ is considered conditional on ¢,
the cumulants of 6 are linear in ¢. Suppdse now that

(3.6) c(u) = cu + k,
where ¢ and k are constants. Then we have
B | ¢, u) = exp [{Mu + @) — Mw))
— {p(c(u + &) + k) — p(cu + k)}],

It
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and since this does not depend on ¢, it follows that the random variables ¢ and
¥ = 0 — c¢ are independent. This implies certain relationships between the
density functions and hence leads to a solution of Equation (3.4).

4. Linear connecting functions. The joint density of the states 6 and ¢ can be
expressed in terms of either marginal density. We have seen that if the distribu-
tion of 0 has the form (3.1) and this is an invariant conditional density for the
process, and if the connecting function is linear as in (3.6), then 8 = ¢ + ¥,
where ¢ is independent of ¢. Let the random variable ¢ have probability density
w(¢ | u). The two alternative forms for the joint density of § and ¢ are then

(41) m(6) exp (ud — Mw))p(e|0)
= [m(¢)/a($)] exp {(cu + k)¢ — p(cu + k)jw(8 — c¢ | u).

This identity holds almost everywhere and it will be shown that the exceptional
null subset of the (6, ¢) plane does not depend on w ¢ U. Consider the necessary
conditions on the function ¢(¢, 8) = a(¢)p(¢|6).

Let ©, = {6 £ ©O;m(6) > 0} and notice that a(§) > 0 for every 6 ¢ O, since
this inequality defines the state space. Having fixed a particular value of u, we
can select ¢ ¢ ©,, such that (4.1) is valid for almost all real values of 6. On re-
placing 8 by c¢ + ¢, we have

w(y |w) = [m(cp + ¥)/m(¢)la(¢,cd + ¥) exp {—ke + up — N(u) + p(cu + k)}:
It follows that this density is of exponential type and can be written

(4.2) w¥ |u) = v(y) exp {up — Nu) + p(cu + k)}.
Then relation (4.1) reduces to a form not depending on u:
(4.3) m(8)q(e, 0)e ™ = m(¢)v(8 — c¢)

and this holds except in a fixed null set N. Its interpretation as a condition on
¢(¢, 6) differs according to whether ¢ = 1 or not.

Case ¢ = 1. The transition density p(¢ | 6) can be modified arbitrarily on any
null subset of the (6, ¢) plane, without affecting the process {6,}. In particular, it
can be arranged that Condition (4.3) remains valid at those points (8, ¢) ¢ N,
for which 6 ¢ ©,, . Then

(4.4) q(¢, 0)e™ = m(¢)v(0 — ¢)/m(8),

whenever m(8) > 0. This factorisation is necessary, but not sufficient for the
existence of an invariant conditional density, since it does not imply (4.3).

Case c # 1. Here we can obtain a more explicit factorisation. In the first place,
we may assume without loss of generality, that ¥ = 0. Otherwise this can be
arranged by absorbing a factor exp (k6/(1 — ¢)) into m(68) and exp (k¢/(1 — ¢))
into »(y). Having set k¥ = 0 in Equations (4.1)-(4.3), and c¢(u) = cu, we can
then modify p(¢ | 6) as before, so that

(4.5) q(¢, 0) = m(¢)v(6 — cp)/m(6),
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whenever m(8) > 0. Now set 6§ = ¢ = ¢/(1 — ¢) and suppose that
¥/(1 — ¢) € ©, . Then

(4.6) v(¥) = q(¥/(1 — ), ¥/(1 — ¢)).

This may not provide a complete description of the function »(¥), but otherwise
we can make a further modification of (¢, 8), along the line § = ¢. Thus, by
redefining p(6 | 6) where necessary and by suitably extending the definition of
q(6, 6) for 8 ¢ O, Condition (4.5) can be replaced by the more convenient fac-
torisation:

(A7) (e, 0)/ql(6 — c6)/(1 — ¢), (6 — ¢d)/(1 — )] = m(e)/m(B).

This must be satisified when 8 ¢ ®,, for every ¢, provided that we allow its
validity at any point where the left hand side reduces to a ratio of zeros. Con-
versely suppose that, given q(¢, 8), there is a constant ¢ > 1 and a function
m(0) = 0 such that the ratio

(48)  ro(e, 8) = q(4,0)/ql(8 — c#)/(1 — ¢),(6 — c8)/(1 — ¢)]

can be factorised according to Condition (4.7). Strictly, an invariant conditional
density may not exist. However, if Equation (4.3) can also be satisfied, with
k = 0, and if [ m(6)e* df converges for suitable values of u, then a solution of
the basic Integral Equation (3.4) is determined.

Several examples of this type of invariant conditional density will be discussed
in Section 5, but first let us summarise the general characteristics of {6,} and the
parallel process {u,} which can be constructed when the invariance property
holds. ,

The initial state 6, is described by a density g(8 | uo), where wu, is the starting
value of the second process. Subsequently, for each state 8, which occurs, an
observation z, is taken and %, = ¢(u,—1) + 2, is calculated. We can imagine that
the values uo, w1, -+, are plotted successively on a control chart so that the
transitions between states 6y, 6;, - -, can be tracked as precisely as possible.
Then at any time, the current state 6, is described by the density ¢(8, | u.) and
this always retains the same form given by (3.1). Unlike the observations {z,},
the sequence {u,} is a Markov process. It follows from the relations already
established that its transition law is

(49) P(un < v|tUna = u)
= Jogrew b(x) exp.{A(c(w) + ) — p(c(u))} du(z).

We might expect a similarity between this and the law of the original process
{0,}.

One reason for interest in linear connecting functions is that the sequence
{u,} then has a very simple structure. If ¢(u) = cu, then in general u, = z,
+ Tway + -+ "1 4+ c"uo. Thus, the only quantity relevant to a decision
about the state 6, , is an exponentially weighted sum of the previous observa-
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tions. If [¢| < 1, the greatest weight is always attached to the most recent ob-
servations and as n increases, the effects of u, and any early observations
diminish to zero. So far, we have assumed that the initial conditions on the sys-
tem can be chosen in a mathematically convenient form. There would be little
practical value in formulating invariant models if their desirable properties
depended critically on this assumption. However, it will be shown that if in the
linear case, |¢| < 1, and in general under analogous conditions, then the par-
ticular initial distribution will gradually lose its effect and leave the invariant
form of conditional distribution dominant in the long run. Section 6 contains a
detailed study of this type of convergence.

6. Examples. The first three examples below, illustrate linear connecting
functions. Example (i) is a more general version of the one mentioned in the
introduction, now discussed in a wider context. All the distributions concerned
are normal. For this model, the factor ¢, which roughly represents its memory,
always lies in the range |¢] < 1. In Example (ii) the observations are from a
gamma distribution with a changing scale parameter. Here the magnitude of ¢
is unrestricted. Thus if ¢ > 1, the most recent observations are always given least
weight in calculating the value of w, . However, this can only occur when the
process {0,} is automatically decreasing to zero, while {u,} is increasing at least as
fast as the sequence {¢"}. Example (iii) is concerned with the mean of a Poisson
distribution and illustrates the special case ¢ = 1. The final example demonstrates
an invariant conditional density for which the connecting function is non-linear,
and suggests the need for further research in this direction, rather than any
immediate practical applications.

Ezxample (i). Let the observations {x,} arise from a normal distribution with
known standard deviation which may be taken as the unit of measurement, and
mean 6 which changes according to the autoregressive scheme:

0, = abpy + €, (n=1).

The errors {e,} are normal and independent with common variance ¢*: @ and
o” are given constants, and we suppose for convenience that each error has mean
zero. The process {6,} cannot have a stationary distribution unless |a| < 1,
but here we are interested in the conditional distribution of 6, at each stage and
such considerations are unnecessary. The variables = and 6 range over the whole
real line and the appropriate functions are as follows.

f@]8) = @m)Fexp (=36 — &' + 62), a(6) = ¥,
p(616) = (2r0")F exp [(—1/26") (¢ — af)?],
q(¢, 0) = (2m0") ™" exp [(—1/26"){(1 + o)¢' — 2040 + o'6%}],
re(8,8) = exp {(—1/2)[{1 + o* — [//(1 — ¢)*l((1 — @)® + o*)} ¢’
+2{[e/(1 = ¢)'l(1 — @)* + o*) — a}¢d
— {1/ = V(1 = @)® + o) — 6},



838 J. A. BATHER

The condition for a factorisation according to (4.7) is obtained either by equat-
ing the coefficients of ¢* and —6” in this expression, or by demanding that the
coefficient of ¢ should vanish. In both cases, the result is a quadratic equation
for ¢:
o + (1 + o+ e+ a = 0.

If this is satisfied, then o* = [(a/¢) — 1](1 — ac) and we can take m(6) =
exp {—36°/[1 — (¢/a)]}. It is not difficult to verify that, except in the trivial
case a = 0, the equation for ¢ always has two real roots c and ¢’ with the properties:
le] <1,0 < c/a < 1;|c| > 1,¢/a > 1. Thus the function m(6)e" is integrable
for all values of u if ¢ is used, but never in the case of ¢". The invariant conditional
density is given by

m(0) exp (ud — A(u))
= {2x[l — (¢/a))} " exp {—3[0 — [1 — (¢/)ul’/[1 — (c/a)]},

and we have the following result. Given an initial distribution of this form, the
conditional distribution of any subsequent state 6, is normal with mean
1 — (¢/a)lu, and variance [I — (c/a)], where u, = o 2y + Cuo.
The process {u,} is similar to {8,} in that {[1 — (c/a)lu.} follows exactly the
same transition law. Then any sequential decision problem associated with the
states {6,}, can be formulated in terms of the derived sequence {u,}, which can
be observed.

Ezample (ii). Suppose that the observations {x,} are taken from a gamma
distribution with fixed index v, and scale parameter § which changes as follows.
Given the stafe 6,_,, the ratio c6,/6,_, has a beta distribution with indices o
and v. The corresponding density functions are

J@ o) = (T} ™, a(6) = ¢,
p(¢[6) = {cl'(s + v)/[N(a)T ()]} (1/8)(c/6) (1 — (c8/0))" ™" (0 < ¢ < 8/c).

The constants ¢, ¢ and v must be strictly positive and by changing the sign in
the above exponent, we have arranged that the variables have ranges z > 0
and § > 0.

Notice that if ¢ 2 1, p(¢ | 6) vanishes along the line § = ¢, so that we cannot
apply Condition (4.7) without modifying the definition. However, it is imme-
diately clear that Condition (4.5) is satisfied.

a(¢, 0) = {¢T(c + v)/[N()T(W)]}6"" (0 — c¢)" /67",
Hence m(8) = 6°"'is an invariant function with c¢(u) = cu;u > 0. The cor-
responding density
m(8) exp (—ud — Nu)) = {D(c + v)] " u e %™

represents a gamma distribution with index ¢ 4+ v and scale parameter ». The
transition law for the process {u.} is easily determined and it follows that the
sequence {u, '} behaves exactly like the original process {6,}.

It

I
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Example (iii). Let {z,} be Poisson variates, for which the corresponding
means {u,} are generated by the rule

pn = (14 (1/0) Jtns + n (n 2z 1).

Here, {3,} is a sequence of independent gamma variates with common index
k > 0 and scale parameter ¢ > 0. Thus {u.} is necessarily an increasing sequence.
If we set u = ¢ and consider the process so determined, then we have

f(z|0) = exp (—é')e"/x! (x=0,1,---),
a(8) = exp (—¢),
p(#]6) = [o/T(K)]e*foe® — (1 + o)’} exp {—(o¢® — (1 + 0)d')},
g(9, )¢ = [o/T(k)] exp {— (1 + o)’} {o — (1 + o)’ *}*
lexp {=(1 + o)¢'}]7,

whenever ¢ > 0 + log [I + (1/¢)]. Condition (4.4) is satisfied for m(6) =
exp {— (1 + ¢)¢’}. The associated invariant conditional density determines the
following density for u, given v > 0:

(1 4+ o) exp {—(1 + o)u}/T'(w) (u > 0).

Thus, if a suitable initial distribution is chosen, then each subsequent state
un is described by a gamma distribution with scale parameter (1 + ¢) and index
Un = Uo + 1k + Z?=193j.

Example (iv). Consider the observations {z,} from the gamma distribution
with density function

f(z]8) =-67"e™/T(});
a(6) = 6 (z>0,0>0).

Let the corresponding Markov process {6,} be generated by the transition
density

p(e]0) = [22/T(2)1¢ 7% exp {—¢’/46} (¢ > 0).

For this system, m(8) = 6% is an invariant function, with connecting function
c(u) = u!; u > 0. For each value of u, the associated conditional density is

m(8) exp (—ub — Nu)) = w6 /T(3),

and the process {u,} is determined by u, = ub_1 + . . All the above statements
can be established by verifying Equation (3.4), which is an elementary but
non-trivial exercise.

6. Convergence. We turn now to the general question of stability for invariant
conditional distributions. Roughly speaking; if invariance is possible, then
provided that the initial density prescribed for the system does not differ too
greatly from the invariant form, the conditional distributions which describe its
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subsequent ‘states must converge to this form. Several assumptions will be
needed in order to make this assertion precise.

We begin by restating the essential properties of such a system. To each value
6 in an open interval O, there corresponds a distribution on the subset X of the
real line, having density function a(8)b(z)e* > 0, with respect to a fixed measure
. {0,} is a Markov process with continuous state space © and transitions accord-
ing to the conditional density p(6, | 6.—1). {z.} is a sequence of observations with
each x, ¢ X, distributed according to the corresponding state 6, . We assume that
there is an invariant function m(8) > 0 within a subset ©,, of the state space and
otherwise zero, with a connecting function c(u) defined for values of # in an
open interval U, such that fe m(0)e” df = exp (A(u)) < o,

[ m(9)/a(6)1e"® dg = exp (p(c(u))) < w
(5]

and c(u) + x & U, whenever z ¢ X, u ¢ U. These functions must also satisfy the
integral equation

(6.1) [op(s10)m(6) exp (ws — Nu)) db
= [m(9)/a(9)] exp {c(u)é — p(c(w))}.s

The basic property which follows is that if the specification of the processel
{6,} and {x,} is completed by a density m (6y) exp (ufe — A(uo)) for the initia
state 6, where uo & U; then in general, the density for 6, conditional on the
previous observations x;, ¥y, -+ ¥n, is m(6,) exp (w0, — N(u,)), where u; =
c(ui—l) + Z; 7.7 = 1; 27 s,

Convergence to this invariant form of conditional distribution depends on the
way in which the sequence {u,} is constructed from the observations. It is clear
that if the particular choice of u, affects every element of the sequence even when
n becomes large, then the system cannot be stable under more radical modifica-
tions of the initial conditions. In view of this, we make the following assumption :

(a) Let the distribution of 6, correspond to a value ug e U. Let u, be any

complex number with real part ¢ U and set u,” = c(up_y) + 2n;n = 1.

Then for almost all sequences {x,},

liMapsw(tn = %n) = 0, e (AN(%a") — N(ua)) = O.

From this, it follows immediately that the particular value of u, has only a
transient effect. Suppose that u, ¢ U defines another initial distribution and
compare the corresponding densities m(8,) exp (un6, — A (u.)) and m(6,)-
exp (uafn — A (u.)), as m increases.' For a proper comparison, these must be
evaluated at a fixed point 8, = 6, not depending on n, in which case their ratio
is exp {(un — )0 — (M) — Mu,))} and this converges to 1. The aim in
what follows, is to prove a similar result for a more general initial density (6,)
subject to the condition:
(b) =(8) is a probability density function on the space ®, such that for
some u & U, the ratio =(6)/m(8)e*” is bounded and continuous in 6.
Finally, we need some condition which ensures that the initial densities com-
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pared, cannot lead to fundamentally different behaviour of the process {6,}.
Let {B.} be a sequence of Borel subsets of ® and suppose that f 8, P(0n | 001) dby
= 1 whenever 6, ;¢ B,_;; n = 1. If such a sequence exists, then we demand
that one of the following conditions must be satisfied:

(¢1) For any 8¢ O, P(8, ¢ B, for somen = 1]6,) = 1;or
(cp) If fBO m(6) exp (ufy — M wo)) dby < 1, then fBO w(6) dby < 1.

We shall consider various distributions connected with the processes {6,}
and {z,}. In what follows, the symbols ! and L represent densities and distribu-
tion functions respectively. The particular cases concerned will be clear from
their arguments and the appropriate initial conditions will be indicated by a
suffix 7 or u, . For example, the result established in Theorem 6.3 is that for al-
most every sequence {z,}, the ratio (6, |x1, -+ Zu)/l,(a |21, -+ a),
evaluated at a fixed point 6, = 6 ¢ ©,,, converges to 1 as n becomes infinite.
Notice that the phrase alinost every sequence can be used without ambiguity in
the following sense. Let A be any class of sequences {x,} such that P, ({x,} ¢ 4)
= 1. Then

Jo P(A [0)m(8)) exp (uwby — Nuo)) dby = 1
and hence P(A]86) = 1; 6y ¢ O,

except perhaps in a subset of Lebesgue measure zero. Thus P,,-(4) = 1 holds
for every u,’ ¢ U. Further, by Assumption (b), #(6,) = 0 if 6, ¢ ©,,, so that
P.(4) = 1.

The theorem depends on two preliminary results, the first of which concerns
the existence of certain conditional distributions and does not involve our
special assumptions.

LemMa 6.1. For almost cvery sequence {,}, iMpw Lyg(0; | 21, Ty, -+ 2,) =
Lyy(0; | @1, o, - -) exists and is a distribution function in 6; ;5 = 0,1, -+ .

For each fixed 6; and any given observations x;, 2, --- x;, the random
variables L.,(0; | 1, @2, -+ 2); k = 1, 2, -+, form a uniformly bounded
martingale sequence. The lemma can be obtained from the properties of mar-
tingales established by Doob ([2], p. 319). We omit a formal proof, since it is
not central to the present discussion.

Consider sequences of observations which are well behaved in the sense of
Lemma 6.1. Let By = {#¢©; x(8) > 0} and let 4 be the class of sequences
{x.} for which P, (6o & Bo| 1, &2, - - - ). > 0. The next lemma shows that almost
every sequence possesses this property.

LeEmMa 6.2. Under Conditions (b) and (¢), P.,({z.} € 4) = 1.

Proor. Let A" be the complement of 4 within the class of well behaved
sequences {2,}. Suppose that P,,( A") > 0. Tt will be shown that this contradicts
Assumption (¢), in both its alternative forms.

Consider any fixed {x,} ¢ A". We have

Puo(aoeBO'xl, Ze , ) = f®P110(00£BOI01)dLul(OIIxQ, T3, ) = (),
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This is obtained by considering the distribution of 6; and noting that
Puo<008Bolol,l‘1,£L‘2, ) = Puo(eoé‘Bolal)

since 1, 2z, - - -, are independent of 6, when 6; is given, and Ly, (6: | 21, Z2, -+ -)
= Ly (01| 2,25, - -+ ), where us = c(uo) + 2. Let By = {6, ¢ O; Puy(60 € Bo | 61)
= 0}, and set B, = © — B,. Since the above integrand is strictly positive when-
ever 0, ¢ By, it follows that P, (61 e By |2z, 23, ---) = 0. Now consider

Puy(8o e Bo | 61) = [[5, p(81] 60)m(8) exp (ucho — A(uo)) dbo]
[f o P61 ] 6)m(80) exp (ucbo — N(uo)) do] ™.

Since By < ©,, by Condition (b), this ratio vanishes only at those points 6;
for which p(6: | 6) = 0 almost everywhere in B, . In particular, the sets By, B,
do not depend on the value of uoe U. Further, by removing a null subset of
By, it can be arranged that f31 p(61] 60) d = 1 for every 6, € By . Such a modifi-
cation of B, cannot affect the class A, nor can it alter the essential property that
[o,7(80) dy = 1.
We can now repeat the above argument using the equation

Pu(breBilay, a5, ---) = [ePu(fieBy|8) dLu,(6] 25, x4, ---) = 0,

where u; = c¢(u1) + ;. Proceeding in this way, we determine a sequence of
sets {B,} such that f 8, P(0n | 0,1) dB, = 1, whenever 6,_; ¢ B, ; n = 1. This
sequence does not depend on the particular choice of {x,} ¢ A" and hence, in
every case, Py, (0, & By | Tpi1, Tuya, --+-) = 0. Consider the product set ® =
By x B/ x .- . Then for every {z,} ¢ A’, we have P,({6:} e® |21, 22, ++ )
= land it follows that Py, ({6s} ¢ ) = Pu(®n A") = Pu,(A") > 0. But this is
inconsistent with Assumption (c). If (c;) holds, then P({8,} e®|6,) = 0
for every 6 ®. Otherwise (c,) is satisfied and P,,(8oeB;) = 1,since
[ 5, w(6) d8y = 1. Again we have a contradiction and the proof is complete.

We are now in a position to investigate the asymptotic form of the conditional
density functions I (6, | 21, 2, - - x,).

TueoreM 6.3. Let the initial state 6y of the system be determined according to the
density w(6y) and suppose that Conditions (a), (b) and (c) are valid. Then for
almost every sequence of observations {x,} and any state 0 ¢ O, ,

hmn«»oo [lfr(on l L1, T2, * - rn)]/[m(an) exp (unen - )‘(un))] = 1:

where the densities are all evaluated at the fixed point 0, = 0.

Proor. We shall restrict attention.to a particular sequence {z,}. In view
of the preceding lemmas, it may be assumed that the distribution function
Luy(80 | 1, 5, -+ ) is properly defined and that Py (8o & By |21, 22, ---) > 0.
It follows from this and Assumption (b) that

(62) [ m(60)/Tm(8) exp (uofs — N(wo))] dLug(8 | 21, 22, ---) > O.

The argument is based on the fact that the distribution of 6, conditional on
Ty, Ty, -+ %o, and any fixed value 6 of 6, , converges as n increases, to the dis-
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tribution represented by L.,(6 | 1, x2, ---). Although we are concerned with
the same state 0 ¢ ©,, at each stage, it is useful to retain the appropriate time
index.

Consider the joint probability density l.,(z1, 2, - - %, 6,) given by

Jg - Jgm(8) exp (ueby — N(uo) ITis (m(6;] 6,22)a(6)(;)e"*3} dby - - - s .

By applying the Invariance Property (6.1) repeatedly, this becomes

(6.3) lug(wr, @2, -+ @, 6n) = exp { 251 Muy)} exp {— 2320 p(c(wy))}
T b(2)m(6,) exp (wab — Nwn)).

Formula (6.1) also holds for complex values of u and by extending this argu-
ment, we can evaluate the characteristic function which corresponds to

Lug(Bo | @1, 22, -+ Tu, 0,)
= [l(x1, T2, - Tn, On|6)m(6) exp (uebo — A (uo))]
g (@1, Tay -+ Tw, )]
E,,o(e“% | &1, o, <+ 2y, 6,)

exp { 270 (M(w') — Muy))} exp {— 23 (p(c(u’)) — p(e(wy)))]}
-exp {(u,,' — u,.)0,, - ()\(un) - )‘(un))})

where uy’ = uo + 1§, u; = c(ujg) + ;55 =1, 2, - - - n. Further, the density
luy(%1, @3, + -+ x,) is given by integrating out the last term of (6.3) and the
characteristic function associated with l,,(6o | 1, 2, -+ - z,) is obtained from
(6.4) simply by omitting the final term there. We observe that since 6, is fixed,
this term of (6.4) depends only on (u, — w,) and A(u,’) — Mun), and therefore
converges to 1, by Assumption (a).

Now compare the two sequences of distributions with typical density functions
Lig(60 [ 21, @2, *++ n, 6a) and Ly (60 | 21, 22, - - - @), Tespectively. We can apply
Levi’s continuity theorem, which establishes that any sequence of distribution
functions converges if and only if the corresponding characteristic functions con-
verge. Here, we have two sequences for which the characteristic functions have
the same limiting behaviour. Since the second sequence of distributions con-
verges, it follows that both sequences converge to the same limit, represented
by Luy(6o |21, 22, ---). Finally, let us apply the Helly-Bray theorem to the
expectations of the function 7(6,)/m(8,) exp (uo — A(uo)). Since this ratio
is bounded and continuous, both sequences of expectations converge to the limit
given by (6.2). On referring to the definitions of lu,(8 | 1, 22, -+ 2, , 6,) and
lug(00 | 21, 22, --- x,), we find that

(6.4)

Moo []ar(xl Ty, vt Ty, Bn)]/[luo(xl y Lo, v T, 0")]

= h'm,._m [l‘x(xl y Lo, xn)]/[luo(xl y L2, 0 (l)n)] > 0.
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Then by considering the ratio of corresponding terms, we have the required
result:

]imn»oc [l'lr(on l X1, Xg,y * - xn)]/[lu()(on l Ty, T2,y * xn)] = 1.

One consequence of the theorem concerns the uniqueness of the invariant con-
ditional density. Let m*(8) be any other invariant function and let ¢*(u), N*(w)
be the corresponding functions of u, satisfying Equation (6.1).

COROLLARY 6.4. Suppose, that for some constant d, the ratio m*(8)e™/m(6) s
bounded and continuous in 6. Then there exists a constant d* such that m™*(6)e™*/
m(8) does not depend on 6 & O,, and ¢*(u + d*) = c(u) + d*;ueU.

Proor. Set w(8) = m™*(8) exp {(uo + d)6} for some uo e U and u™ = uo + d,
un" = ¢*(ux_1) + @, ;n = 1. Then for each 6, 6" ¢ ©,, and almost every {xn}, we
have

limaoe [m*(8)/m(8)] exp {(u* — )8 — (\*(u,*) — Mun))} = 1
and similarly when 6 is replaced by 6'. Hence
limye exp { (" — u,) (68 — 8)} = [m™*(8)/m(6)][m(6")/m*(8")],

and (u,* — wu,) converges to a limit d* which does not depend on 6 or 6'. The
first assertion follows immediately and ¢*(u) is then determined by the properties
of m(6) and c(u).

In a practical decision problem such as we have imagined underlying this
investigation, although an approximate knowledge of the values of the condi-
tional density function at each stage of the process {6,} is important, we may be
more interested in a particular event 6, ¢ B, where B is a fixed subset of ©,, .
The convergence discussed in Theorem 6.3 is not established uniformly in 6,
so that we cannot deduce the analogous result for the probability of a collection
of states. However, the result can be obtained by repeating the same argument,
at least when the set B is bounded.

TurEOREM 6.5. Under the conditions of the previous theorem, for any bounded
event B C 0O, and almost every sequence {x,} :

limyoe [Pr(6, e Bl @1, Zoy + - @0)/Puy(BneB a1, %2, -+ 2a)] = 1.

Proor. This follows by considering the event 6, ¢ B instead of the single
state 8, = 6, throughout the proof of Theorem 6.3. In Equation (6.4), the critical
last term becomes

[[sm(6,) exp (w60 — A wa')) d8,)/[[5m(6:) exp (uabn — A uy)) db,]

and provided that this converges to 1, the argument leads on to the required
result. Let 8, = w,’ — un . Then limye 8, = 0and lim,... (A(u,’) — Mu,)) = 0.
It is sufficient to verify that
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limy, .o [[ 5 m(8)e™ (™" — 1} db/ [ m(8)e’ df] = 0,

for every sequence {u,} with w, e U and complex numbers {8,} such that
lim,.. 6, = 0. But since B is bounded, it follows that lim, . (e‘s"o — 1) =0
uniformly in 6 ¢ B, and the proof is complete.

It would be preferable to extend this result to any Borel set within the effective
state space. In fact, the theorem remains true in the case when B is a semi-
infinite interval, but its proof is more awkward. However, it is not clear whether
the corresponding general result can be established without some strengthening
of Assumption (a).

In conclusion, we consider very briefly, how the theory developed here applies
to the examples in Section 5.

Condition (a) is not difficult to verify, where it is valid. In the case of linear
connecting functions, u,” — u, = ¢*( uy — uo) and this tends to zero if and only
if |¢| < 1. It remains to see whether lim,.. (Mun') = NMu,)) = 0. In Example
(i), M) « o’ and it is sufficient if lim, .., ¢"u, = 0. But we can express ¢"u, =
coc” MUny + c"n., where {n,} consists of independent and identically dis-
tributed normal variates, and |ca] < 1 follows from the quadratic equation for c.
For Example (ii), we have A\(u) « log w and hence it is sufficient to show that
liMpow (Un /) = 1 or lim,,, (¢"/u,) = 0. But when ¢ < 1, this follows from
the behaviour of the process {u, '}. The condition is slightly more difficult to
verify in Example (iv). In this case u, = uhy + ., w, = (un_t)? + 2,
where the square roots are taken with non-negative real parts. It is necessary to
show that lime (¥n — %.) = 0 and limuse (us /u.) = 1. However, since the
observations are always positive, {u,} is bounded away from zero and only the
first limit need be considered. To establish this, we observe that in general

[umir = tnps] = |((un)? + 2)F = ((aet)? 4+ 22)¥ = [(un0)t = (una)?].

Since u,_; and the real part of u,_; are non-negative, the maximum occurs here
when z, = 0. Thus, at worst, we must account for a sequence of zero observa-
tions. But in this case lim, .. u, = lim,. u, = 1 and the differences obviously
converge to zero.

In these examples, where Condition (a) is satisfied, it is clear that (¢) also
holds. The only case for which there is a non-trivial sequence of sets {B,}, of
the type envisaged, is Example (ii) and for this, (e;) is valid when ¢ < 1. Con-
dition (b) however is much more restrictive, although it may be possible to
relax its demands in specific applications. It means roughly, apart from con-
tinuity considerations, that the initial state 6o must not be defined with either
too much or too little precision. The properties of the normal example mentioned
in the introduction, suggest however, that neither demand is completely neces-
sary. A normal initial distribution with variance (1 — c)v,, always leads to
normal conditional distributions whose variances converge, whether or not the
inequality 0 < vy < 1, required by Assumption (b) is satisfied. But it should be
noted that here we have a very special type of convergence, involving a sequence
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of connecting functions all of which are linear. In fact this can only occur when
the transition density is of exponential type, as well as all the other distributions.
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