ON THE CONVERGENCE OF MOMENTS IN THE CENTRAL
LIMIT THEOREM

By BeneT vOoN BaAHR
The Royal Institute of Technology, Stockholm

1. Introduction and summary. Let X;, X., -+, X, be a sequence of inde-
pendent random variables (r.v.’s) with zero mean and finite standard deviation
i, 1 =7 = n. According to the central limit theorem, the normed sum

Yo = (1/s4) ZLI X,

where s, = 2.1 o, is under certain additional conditions approximatively
normally distributed. We will here examine the convergence of the moments
and the absolute moments of Y, towards the corresponding moments of the
normal distribution. The results in this general case are stated in Theorem 3 and
Theorem 4, but, in order to avoid repetition and unnecessary complication,
explicit proofs will only be given in the case of equally distributed random vari-
ables. (Theorem 1 and Theorem 2).

2. Two lemmas concerning Fourier-Stieltjes transforms.
LemMa 1. Let H(z) be a function of bounded variation on (— o, «), with
the Fourier-Stieltjes transform

R(t) = [2e® dH(z),

the moments
vi= [Zo2’dH(z), i=012 -,
and the absolute moments
8, = [Zo |l |dH ()], r> 0.
(a) If 6, < @, 1 > 0, then
W) = 2jmo (vi(i)/5) + e8I,  —o <t < o,

where s 18 the greatest integer less than r, ¢, 1s a finite constant, only depending on r
and [6(t)| < 1 for all t.
(b) If 8, < o, for an integer k > 0, then

h(8) = 2ieo (vi(i)/71) + o(t").

For a proof, see Logve [6], p. 199.
Lemmya 2. Let F(z) be a distribution function (d.f.) on (— «, ) satisfying

[2ezdF(z) = 0, 2w dF(z) =1 and B, = [Z, [2[?dF(z) < o,

Received 16 October 1964.
808

@/]
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @’ )20
The Annals of Mathematical Statistics. IKONS

A

L ®
www.jstor.org



CONVERGENCE OF MOMENTS 809

where 2 < p < 3, and let f(1) = [Z ¢' dF (z) be the corresponding characteris-
tic function (ch.f.). Then there exists two absolute constants ¢’ and ¢’ so that for
every n > 0 and every interval I of length ¢’/8,"*™, we have

[rlf @ dt < ¢"/+/n.

This Lemma was proved by Esseen ([4], pp. 94 and 100) for p = 3 and can
be proved in a similar way for 2 < p < 3.

3. The case of identically distributed variables. In this case we assume with-
out loss of generality that the standard deviation of the variables is one, so that

(1) Vo= (1/v/n) 20 X
Now Y., has the ch.f. f,,(t) = f"(t/N/n), where f(t) is the ch.f. of each X,
and lim,-e f2(t) = e’

In order to estimate the rate of convergence, we expand the function ¢’ (1)
A/n) in powers of ¢, and arrange the terms in increasing powers of 1 /Vn. If;
for example 8; = E|X|* < «, we obtain

2)  (/n) = 14 TP + o(1/n%PR).
Here P;(it) is a sequence of polynomials in (4¢) of the form
Pi(it) = iy eniat)™,

where the constants c,; are polynomials in the moments a», = EX,", m = 3,
4, ---,7 + 2. We have

Po(it) = 1,
Pi(it) = (1/3)as(it)?,
Py(it) = (1/41)(as — 3)(dit)* + (10/6)as’(at)®,  ete.
It is easily shown (Cramer [2]), that
(3) lcha‘l < COBT(H%)/T

for h = j < r, ¢, being a constant only dependent of . By estimating the re-
mainder term in (2), we obtain the following lemma (Cramer [2], pp. 71 and 74,
Esseen [4], p. 44).

Lemma 3. (a) If B, < o, where 2 < r £ 3, then

ult) = P S (a(r)/nE g e
for [t £ bu(r)v/n/8" 7",
(b) If B, < «, where r > 3, then
fu(t) — ¢ "1 + 2522 0P (it))|
< (ea(r)/nD2)B I (gl L [Fe )0
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for |t < bi(r)N/n/B ", where s is the greatest integer less than r.
(e¢) If Br < o for an integer k = 3, then

fa(t) — €21 4+ 253 w7 Py(at))|
=< 62(]0) (d(n, t)/n(k—z)m)ﬂks(k—z)/k(|t|k + lt|3(k—2))e—t2/4
for |t = ba(B)V/n/Bi"".
Here the constants bi(r), c1(7), b:(k), c2(k) depend only on their arguments;
d(n, t) is bounded by one for all » and ¢, and lim-w d(n, ) = limeg d(n,t) = 0.
A proof of this lemma in Case (b) for an integer r is found in Gnedenko-
Kolmogoroff [5], pp. 204-208. The other cases can be proved in a similar way.

We now introduce the functions P;(—®)(z), whose Fourier-Stieltjes trans-
forms are ¢ " "*P,(it):

Py(—®)(z) = ®(z) = the normalised normal distribution function
Pi(—®)(z) = (—1/3)asd?(z),
Py(—®)(z) = (1/4) (s — 3)®“(z) + (10/61)a’®®(z),  ete.

Theorem 1. Let X;, X, - -+ X, be a sequence of independent identically dis-
tributed r.v.’s with zero mean and unit standard deviation, and let Y, be defined
by (1). If E|X.|* < o for an integer k = 3, then

EY," = [Z.2"do(z) + D i n (2, 4" dP;(—®) (x).
Proor. Setting
h(t) = fa(t) — ¢ "1 + X5 w7 Pi(a)
and
H(z) = Fa(z) — ®(x) — 2= n "Pi(— ) (2),

where F,(z) is the distribution function (d.f.) of ¥,, we have from Lemma
3(c), h(t) = o(¢*), and by Lemma 1(b), v = [Zw2*dH(z) = 0, which
proves the assertion.

ReEmARK. Because of symmetry properties of the functions P;(—®), it is
easily seen, that the sum will only contain terms of even degree in 1/ Vnif k
is even, and of odd degree in 1/4/n if & is odd.

In order to be able to prove the corresponding result for absolute moments,

we must express absolute moments in terms of c.f.’s. We start by evaluating the
following integral: ‘

J(v) = [T{le™ — 27 ((2w)’/iD1/w ™t} du,-

where v is a non-integer positive number: v = m 4+ §, m integer = 0,0 < § < 1.
Integrating by parts, we obtain for every » > 1, J(») = (¢/»)J (v — 1), and
by induction

(4) J(») = ["/v(v — 1)e -+ <817 e™u? du.
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By changing variable and by the Cauchy integration theorem, we get

0

e uldu = [ e dz = ¢7°T(1 — 8) = ¢ ’x/T(8) sin w9,
and thus from (4)
J(») = (" %/ v(v — 1)e -+ «8T(8) sin 78) = — (¢ 'x/T(v + 1) sin »rr).
Taking real parts, we get
I3 {eosu — 2250 [(=1)u™/(25) 1/u™} du
= (m/2T(» + 1) cos (v + 1)(x/2))

where 2 is the greatest even integer contained in ». By putting 4 = |z|¢t and ex-
tending the integration to the whole real axis, we finally get

(5) |z|” = [T(» + 1)/7] cos (» 4+ 1)(x/2)
[Zo loos @t — oo [(—1)(2t)"/(20) 114"}t

and this formula evidently holds for every positive », which is not an even integer,
and for all z. We now state the following lemma.:

LEmMA 4. Let H(x) be a function of bounded variation on (— «, ) with the
finite absolute moment

6 = [Zw|z’|dH (z)] < o, v > 0, v # even integer,
and with monents
vi = [Zea’ dH(z), J=01 -,y
and let h(t) be the corresponding Fourier-Stieltjes transform. Then
Ze |z|"dH (z) = (T(v 4+ 1)/7) cos (v + 1)(x/2)
o (RR(t) = 2250 [(=1)e,t™/(25) /18" i,

where R stands for real part, and A = [v/2].

The lemma immediately follows from the Formula (5) and from the definition
of ch.f. and of the moments, after change of the order of integration, which is
allowed since the integrand in (5) has a constant sign.

TueoREM 2. Let X;, X, , -+ X, be independent identically distributed r.v.’s
with zero mean and unit standard deviation and let Y, be defined by (1). If 8, =
E|X|" < oo, r > 2, we have for every positive v < r:

IB|Y.)" — [2|a]d®(z) — D258 077 [25 |x"dPsi( —®) ()]
< CLB /mP%) + (B, ), f2<r<3
< CLBS/MT) 4+ (B2, f3<r<4

é C[(ﬂrﬂ/n(r—2)/2) + ('Br3(v+l)/r n(v+l)/2) + (Br3(v+r)/r/n(v+r)/2)], ’L:f?" > 4’

where C s a finite constant only depending on .
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Proor. We restrict ourselves to studying the case r = 4. The other cases are
treated in similar ways. Let X; and Y, have the ch.f.’s f(¢) and f.(¢) = f*(t/A/n)
and the d.f.’s F(z) and F,(x) respectively. Putting

ga(t) = ¢ "1 + 2T TP, at)),
Gu(z) = ®(x) + 20 P y(—) (2),
ha(t) = fu(t) — ga(t),  Hu(z) = Fulz) — Go(x),

we shall estimate the expression [Z |z|’"dH,(z). If » is an even integer, we see
by Lemma 3(c¢) if r is an integer, and by Lemma 3(b) if 7 is not, that h,(t) =
o(¢"), and accordingly we have

Z |z|’"dH () = 0

in the same way as in Theorem 1.
Thus, in the sequel we assume that » = 2(A + ¢), where A is an integer and
0 <& < 1. Now, for 0 < 2j < 2\ < », we have by Lemma 3(b) h,(t) = o(¢£)
and consequently
vei = [ZoadH.(z) = 0.
Hence by Lemma 4, we obtain

(6) ff“’ lxl”dHn(x) = (I'(v 4+ 1)/7) cos (v + 1)(7,—/2)1':0 Rhn(t)/ltlvﬂ dt,

which is the starting point of our estimations.
We define two quantities,

T — b\/ﬁ/ﬂr3/r’ Tl — bn(r—2)/2r/ﬁrl/r,

and assume at first 7' = 1, T, = 1; b is a constant only depending on r, to be
determined later. We divide the right hand side integral I in (6) into three parts

I= [z + [icuse + Jiuse = L+ L+ I,

Estimation of I, : Introducting the functions g(¢) = I [a;(4t)%/7 1], where
a; = EX’, and h(t) = f(t) — g(t), we put
(7) ha(t) = hui(t) + haua(2),

where ha(t) = f"(¢//n) — g"(t//n) and hus(t) = g"(t/v/n) — ga(t), and

divide I, into two parts corresponding to the division (7) of the integrand:
I, = ju + I .
Here
I = [igs1 (Rhaa(8)/1") dt
(L/n") [0 savm R (E) = g" () (1/14") dt.

Now
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(8) ff—g" = nhg"" + Z,
where
(9) 1Z] < (lgl + 1R = lgI" = nlhllg]"™ < »*[Af|g|"™"

if n [h/g] £ 1. We must examine this condition.

From Lemma la we get [h(¢)| = ¢i8]t]". (Here and in the sequel, we denote
by e, ¢z, -+, finite constants only depending on r). From the definition of g(¢),
we have, since |a;| < 8",

1= (81t = lg(0)] = 1= (£/2) + 3(8."t])’
if 7]t £ 1. Now |t| < 1/A/n < T/A/n and < Ti/v/n, and consequently

(10) 0,9 = g(t)) =1 and nfh(¢)/g(t)] =1

if we choose the value of the constant b sufficiently small. We now get according
to (8), (9) and (10)

R(f"(t) — ¢"(t)) = nRR(t)Rg" () — nIh(t)Ig" " (t) + 6u()n’|R(t)[*lg(t)]" ",
where [6;(¢)| < 1 and I stands for imaginary part. We divide the integral n"/*I;
accordingly :
WPy = Iy — L + T .
I = [10 syva nRR(ORg"™ () (1/14") de.
Now
Ru(t) = [Zafcosat — 2250 [(—1)"(at)")/(2) Y} dF (z), (I = [r/2]),
and consequently we get, after changing the order of integration
[Iu| £ nfZala]” dF (2)
Srwicizva leos w — 2250 ((— 1)/ (25) DI/ [ul™} du.
An elementary estimation of the inner integrand a(u) gives
a(u) £ eofulH for [u] £ 1

B for |u| = 1.

< oyl
For the inner integral b(|z|/A/n), we get
b(lzl/A/n) S e/ (20 + 2 — »)](Jxl/4/n)"
= [e/(1 = H))(|el/A/n)"" for 2|/v/n

For |z|/A/n = 1 we must consider separately the two cases » < 2l and » > 2.
The case » = 2[ has been treated previously.

b(lzl/v/n)
< b(1) + 26/(20 = »)](Jal/v/0)" = Re/(1 = ))([zl/v/2)7" ity < 2

1.

lIA
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b(Jzl/+/n)
S b(1) + /(v — 21) = [e2/(1 — 3)] + ¢/ = /3 (1 — &) if v > 20
Summing up we get
b(lzl/v/n) = 2e/8(1 — #)I(Jel/v/n)", for all [z]/+/n,
which immediately gives
[Tw| = [es/3(1 — )18,/ 72",
Ins = [y syv nIh(Ig"7 (6)(1/14"*) dt.
Now |Ig" 7 (t)| < n|Ig(t)| = nea(B,"|t])°, and thus
el = nf 14 syvm et ned [t (1/1077) db = (es/n""707%)8,1 40,
| = [J161 suvm 007 R(E) Plg ()] (1/[t"+) di]
= Jlasuva B/t dt < (eoB’/nTP).
The estimations of Iy , T2 and I3 give
[Tu| = fe/8(1 — 9B, /n"").
We now consider the integral
In = [i0 si(Rhaa(8)/147) dt.

Using Lemma 3(b) for the “charazcteristic function g(¢)” or, which is more
adequate, developing the function e”’g"(¢/+/n) in the same way as in (2) and
estimating the remainder, we get

lg"(t/v/n) — ¢ "L + ZEP())| = (eo/nh)BI (N 4 [t e

for || = T. Now, if [r] is an odd integer, the left hand side equals |ha2 ()], but
if [r] is an even integer, the sum contains a new polynomial Py_;(st), generated
by the “moments” a3, a4, - -+ @y and 0. This polynomial, however, is purely
imaginary, so the inequality above holds in all cases for [Rh.(t)|. We thus get

Tsl < Jo s {(ea/m" )82 (4 4 %)™/ 14"+ dt
< o™/ (20 + 2 — )] = [e8,"/2(1 — S)n'].
The estimation of I, is now completed:
L] = lew/8(1 — 9B/,

Estimation of I, : From Lemma 3(c¢) if  is an integer, and from Lemma 3(b)
if » is not, we have

()] S (an/n XD 4 [P
for |t| = T, and accordingly
| = | [icia s (RRa()/16") dt] S (e1a/n"™"")B,".



CONVERGENCE OF MOMENTS 815

Estimation of 75 :
Iy = [iusr (RRa(8)/107+)
= Jiusr BFP WD)/ dt = [1use (Rgu(8)/0™) db = Ty — ILin.
[Ial = (1/2") [1uszrvm (F@O1/147F) dt
< (2/n") 250 [1/(K + jd) P [RE 501"
where K = T/A/nand d = ¢'/8; = ¢'/8,"". By Lemma 2, every integral is less

than ¢’ /A/n, and an elementary estimation of the sum gives
Tl < (cip/on 012820401,
In = [1u>r (Rgu(8)/147) dt.
‘We have
Rgu(t) = ¢ **(1 + i n~Poi(at)).

By the Inequality (3), we get

[Rga()] = eull + (877/4/n)* V11 + £470)e 2,
Now T = 1 implies 8,”"/+/n < b, and thus

| < cisf7 (1 4+ ) (107 dt < 1o/ T

— (cly/n("ﬂ)/2)6,3(”'””.
Summing up all estimations, we get
| |20 |a|’dHA(2)| < [T(v + 1)/x]|sin (v7/2)][c1s/F(1 — DB /)
+ (B DIy

But [sin (v7/2)/3(1 — ¢)| = sindr/9(1 — §) =< 4, and this completes the
proof in thecasel < T,1 = T} .

The main difference in the other cases occurs when 7' < 1 and r > 4 in the
estimation of Iz . Now 7' < 1 implies 8,*"/+/n = b, and thus

Tl S e (87"/7/m)™ ™[5 (1 + 47021/ at
< (8RN A/VTT) S (uf3) (8777 /"),
which causes the appearance of the third term in the stated inequality.

4. General case. We now drop the assumption of equally distributed r.v.’s,
and assume instead that each X has the d.f. F.(x), the ch.f. f;(¢), the moments

aj = EX/ = [2n2’ dF (z),
and the absolute moments

Bri = EIXilr = [Z, lxlr dF(z).
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We have

(11) EX:.=0, EX!=q/ 1 <7<,
and put

(12) Y, = (Xi+ - + X.)/s, where s, = o + -+ + .,

and we shall investigate the convergence of the moments and absolute moments
of Y, towards the corresponding moments of ®(x). We start by introducing
the semi-invariants «;; of the d.f. F.(x), defined by the equation
log fi(t) = 2j=1 (xis(it)’/j1) + (), if B < oo,
and hence from (11)
k1 = 0; Kei = 05 .
Following Cramer [2], we put
Kjn = (1/n) 2k and  Njo = K/ (Ka)™*
and obtain in the same way as in (2)
(13) " Ta(t) = exp [ Lims (\in(30) /") + 0(1)']
= 14 2507 Pi(it) + o(1/n"").
Here P, (st) are polynomials in (7t), whose coefficients are polynomials in the
Mij . Defining the functions P;,(—®)(z), as those who have the Fourier-Stieltjes

transforms ¢ */ ’P,a(it), we can prove in the same way as in Theorem 1 the fol-
lowing theorem.

THEOREM 3. Let X;, X5, -+ X, be a sequence of independent r.v.’s with zero
mean and let Y, be defined by (12) and (11). If E|X\|* < ©,1 £ i £ n for an
integer k > 3, then

EY,! = [Zoa*dd(z) + 22550 [T a" dPu(—2) (2).

By estimating the remainder term in (13), we obtain an analogue of Lemma
3, with 8. replaced by ps. , defined by

pin = Bin/(Bon)*® and By, = (1/n) D 7 Bis .

This result enables us to prove the following theorem:

TueorEM 4. Let X;, X, , --- X, be a sequence of independent r.v.’s with zero
mean, and let Y, be defined by (11). If B, = E|Xi|" < 0,1 £ 1= n,r > n,2, we
have for every positive v < r

IBIY. — [20 |2 dB(z) — D287 077 20 |2 dPyj( —®) (z)] < CR(»,7)
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where

I

R(Il, 7') (pfn/n(r—2)/2) + (prl',f+l)/(r—2)/n(v+1)/2)

xp (ev/ 35 (05/8)" (B prac ")

if2 <r<3
— pi:l/r/,n(r—Z)/Z) + (p3;v+1)/r/n(v+1)/2) ’Lf3 <r< 4
— pi:llr n(r—2)/2) + (pi;vﬂ)/r n(l'+1)/2) + (piiﬂ-r)/r/,n(H-r)/Z)

ifr= 4.
C and c are finite constants only depending on 7.

REMmARK. If the r.v.’s satisfy the conditions of Theorem 2, the right hand side
of the inequality above will agree with the corresponding expression in Theorem
2, except for the exponent 3 + 1/7 of p,, . The main difference between the proofs
of Theorem 2 and Theorem 4 lies in the treatment of the integral I3 . Here we
have

In = [juse (R ITia £(t/s0) /1071 dt = (1/82) [ ya, [R]Ti=0 £:C0) /11771 it
and by a generalisation of Hélder’s inequality

al = (1/s2") TEm (S s me, (5177107 iy 720",

Now each integral in the product is treated in the same way as I3 in the previous
proof. This product is the root of the more complicated expression appearing in
the case 2 < r < 3.

5. Application. D. Brillinger [1] has showed for independent equally dis-
tributed r.v.’s and J. L. Doob ([3], p. 225) for a class of Markov chains, that

EX;+ Xo+ - + X, £ Kn'"?, r> 2,

where K is a finite constant depending on the actual distributions. We easily
see that if the r.v.’s satisfy the conditions of Theorem 4, then

E]Xl + X2 + ot + an é Clsnr(l + R(T, 7')), r > 25
where C, is a finite constant only depending on r.
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