A SHARPER FORM OF THE BOREL-CANTELLI LEMMA AND
THE STRONG LAW!

By LesTErR E. DuBiNs AND Davip A. FREEDMAN
Unaversity of California, Berkeley

1. Introduction. Let X;, X,, - -+ be a sequence of random variables taking
only the values 0 and 1. Let %, F1, - -- be an increasing sequence of o-fields
such that X, is F,-measurable. Let p, be the conditional probability that X,
is 1, given F,_; . To avoid trivial complications, suppose p; is a positive constant
less than 1. The main object of this paper is prove:

(1) TaEOREM. Asn — x,theratioR, = (Xi+ -+ + X.)/(p1 + -+ + pa)
converges to a finite limit L almost surely. L is 1 almost surely on the set where
D% pi is infinite.

This theorem, which is related to (Chow, Corollary 7), sharpens and unifies
two results of P. Lévy: his conditional form of the Borel-Cantelli Lemma, [( Lévy,
Corollary 68, p. 249) or (Doob, Corollary 2, p. 324)], and his martingale strong
law of large numbers (Lévy, Section 69, pp. 250 ff). Both results are stated here
for ease of reference:

(2) >F X: s finate (infinite) almost surely where
ST pi s finite (infinite);
(3) limpaen 21 (Xs — pi) = 0 almost surely.

Let exp x = ¢ and e(z) = (expz) — 1 — z. Let Vy = pi(1 — p1). Some
information about L is contained in:

(4) TueoreM. For each positive real number N\, and n = 1, 2, - - - the expecta-
tion of exp (AR,) is no more than 2 exp [\ + 2Vie(N\/V1)].

In connection with the bound in (4), it is perhaps worth noting that, if a
random variable Z has a Poisson distribution with mean v, then the expectation
of exp N(Z — v)/v] is exp [ve(N/v)].

(5) CoROLLARY. R, converges to L in rth mean for 0 < r < oo.

2. Proof of Theorem (1). Let (Q, F, P) be a probability triple; 5y, F1, - - - an
increasing sequence of sub-s-fields of &; and let Y.’ be F,-measurable. It is not
necessary to assume that the Y,,” have finite expectation; what is essential is to
assume that m, , the conditional expectation of Y, given %, , is finite almost
surely. Let Y, = Y.,) — m.. Let V., be the conditional variance of Y, given
F._1, that is, the conditional expectation of Y,’ given &,_;. It is convenient
(but not necessary) to assume V, finite.

Here is a reformulation of (Dubins and Savage 1965a, and 1965b end of
Section 1.2 and Theorem 9.4.1).
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(6) LeEMMA. If a and b are positive numbers, the probability that Yy + --- +
Y.Za(Vi+ -+ + V,) + b for some n is no greater than (1 + ab)™". This
bound s sharp.

(7) CoroLLARY. If a and b are positive numbers, the probability that |Y, + - -+ +
Y. = a(Vi+ -+ 4+ V,) + b for some n is no greater than 2(1 + ab) ™"

Proor. Immediate from (6). <>

A similar corollary (29), which can also be used to prove (1), will be pre-
sented later with a self-contained proof.

To avoid trivial complications, suppose V; is positive and constant.

(8) LemMmA. limy.e (Y14 --- + Yo)/(Vi+ --- + V.) =0 almost surely
on the set D where Y 5 Vi is infinite.

Proor. Let D(a, b) be the set where |Y1 + --- + V,| < a(Vi+ --- + V,) +
b for all n. Plainly,

(9) lim supp.w [(Yi+ -+« + Yo)/(Vi+ - + Vo) 2 a

on D n D(a, b). Let b increase to o through the integers and apply (7) to
prove that (9) holds almost surely on D. Finally, let a shrink to 0 through the
reciprocals of the positive integers, and conclude that (9) holds with a = 0,
almost surely on D. <>
(10) LeEMMA. lim,.e (Y1 + -+ 4+ Y,) exists and is finite almost surely on the
set G where Yy V; is finite.

Proor. Let Di(a, b) be the set where |YViy + -+ + Yignl < a(Vip +
<+« + Viyn) + bforall n. Corollary (7) implies that the probability of Di(a, b)
is no less than 1 — 2(1 + ab)™. Let Gi(c) be the set where Vi + -+ +
Viin = ¢, for all n. For each positive number ¢, limi.. P[G — Gi(c)] = 0.
On G«(c) n Di(a, b),

(11) [ YVigr + oo + Yign| <ac+ b for all n.

It is now routine to complete the proof, by exhibiting for each ¢ > 0 a measur-
able subset C(e) of G with these two properties:

(12) Y, Y1+ Y,, - is a Cauchy sequence on C(e);
(13) PG — C(e)] < e

For example, let 0 < b; — 0. Choose a; > 0 so large that Y r (1 + ab:)™ <
¢/4. Choose ¢; > 0 so small that a,c; — 0. Choose k; so large that Y1 P[G —
Gy, (¢;)] < €¢/2. Then put

C(e) = N7 [Gr;(ci) n Dy;(ai, b)) <>
Proor of (1). Specialize Y’ to X; of Section 1. By (8),
(14) liMpew {[(X1 — p1) + -+ + (Xa — 2a))/
Pr(1 = p) + -+ + pa(1 = pa)]}
and therefore
(15) limpsw {{(Xy — p1) + -+ + (Xa — p)V/[D2 + -+ + pal}
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are 0 almost surely where Y 7 p;(1 — p;) = o. Moreover

(16) limp.e 21 (X: — ps) ‘exists and is finite almost surely where
20 pi(l — p;) < <,

by {10). Thus (15) is 0 almost surely where Y 1 p; is infinite. Finally, > 3 p; <
o implies Y 1 pi(1 — p;) < w; from (16), 2.3 X: < « almost surely
where )y p; < . <>

3. Gambling. Proofs of some results below depend on (Dubins and Savage,
1965b, Theorem 2.12.1). A case of this theorem will be presented here (22),
in language as close to that of the reference as is convenient. F is a set (the
gambler’s fortunes), and Z is a o-field of subsets of F. The real-valued function
u defined on F is Z-measurable and bounded from below (u(f) is the utility of
the fortune f & F). For each fortune f there is a set T'(f) of countably additive
probabilities (gambles) on (F, Z); point mass at f is an element of I'(f). In-
formally, if the gambler’s fortune is f, he may choose any gamble vy & T'(f);
his next fortune will then be chosen at random from F according to v.

Recall that F, F1, --- is an increasing sequence of sub-s-fields of F. A T-
process starting from f is a stochastic process f, , fi, - - - with these three proper-
ties:

(17) f, is measurable from (2, §,) to (F, Z);
(18) fo=f;
(19) given F,, the conditional distribution of f,.; is a gamble ¢ T'(f,).

Informally, a T'-process starting from f is the sequence of fortunes of some

gambler whose initial fortune is f, who does not foresee the future, and who

gambles measurably using only gambles available in the gambling house T.
A random variable s is a stopping time if:

(20) s is a nonnegative integer with probability 1,
and
(21) the set where s takes the value n is in §,, forn = 0,1,2, .- .

Informally, if the gambler stops gambling at time s, he receives payoff u(f;).
Introduce E for expectation.

(22) TueoreM. Let Q be a real-valued, Z-measurable function on F. If

(23) u=Q

and

(24) for each fortune feF and gamble v e T'(f), the y-expectation of
Q = Q(f);
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then for each fortune f e F, for each T-process fy, f; - - - starting from f, and each
stopping time s:

(25) E(u(f,)) = Q).

Proor. (24) implies that Q(f,), Q(f:), - - - is an expectation-decreasing mar-
tingale. Taking (23) into account,

E(u(t,)) = E(Q(f)) = Q). <>

4. Bounds on I? norm. Recall the meaning of ¥, and V, from Section 2.
(26) THaEOREM. Let y and v be real numbers with v > 0, and let s be a stopping
time. Then the expectation of (y + Yi+ - + V) /(v + Vi+ -+ + v,)?

18 no more than

(27) @/ + (/).

This bound is sharp for y = 0 and all v.

Proor. The proof that (27) is a bound is an application of (22). Let F be
the set of pairs (y, v) of real numbers with ¥ > 0. Let = be the o-field of Borel
subsets of F. Define the utility function u by: u(y, ») = ¢*/»*. As a preliminary
to defining the gambling house T, let ® be the set of pairs (Y, V), where Visa
nonnegative real number, and Y is a random variable with expectation 0 and
variance V. If (y, v) is a fortune in F, then a gamble vy is in T'(y, v) if and only
if v is the distribution of (y 4+ ¥, v + V), for some pair (¥, V) in @. Plainly,
(y,v), (y + Yi,v + V1), - - - is a T-process starting from (y, »). Define Q(y,v)
as (27).

Clearly, (23) is satisfied. To verify (24), let (Y, V) & ®. The expectation of
Qy+ Y, v+ 7V)is

(28) (" + V)/ 0+ V)1 + 11/ (v + V)).

Obviously, (28) decreases as V increases through the positive reals, and is
Q(y, v) for V = 0. Therefore (24) holds, and by (22), so does Inequality (25).

To see that the bound is sharp for y = 0, let a be large and positive. Since
the bound in (6) is sharp, there is a process Y, , Y3, - - - and a natural number
n with P[(Yi+ --- 4+ Y,) Zalw+ Vi+ - + V,)] nearly (1 + o)™
Then E[(Yi+ -+ V)0 +Vi+ -+ + V) is nearly as large as
a’/(1 + a¥).

It is easy to deduce from (26) that E[(y + Y1+ --- + YV,)/(v + Vi +
<o+ V)| < |y/v] + v} This provides an alternative proof of (Lemma 1,
Chow and Robbins), a result about fair coin tossing.

(29) CoRroOLLARY. Let a be a positive number. The probability that

y+Yi+ -+ Yl Zaw+ Vit -+ V,)

Jor some n is no more than (y* + v)/(av)*.
This inequality is similar to (7)—set y = 0 and v = b/a—and may replace
(7) in the proof of (1).
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Proor. (29) is immediate from (26), Chebychev’s inequality, and (30)
below. <>
(30) Lemma. Let Z, be F,-measurable,n = 1,2, -- -, and let b, z be nonnegative
real numbers. Suppose P[Z; = z] = b for all stopping times s. Then P[Z, = 2
for somen = 1,2, ---1 < b.

Proor. Let t = o« if Z; < z for all j. Otherwise, let ¢ be the least j with
Z; =z z Let t(k) = min [t, k]. Then (k) is a stopping time, and [Z,x) = 2] T
U"lZ, = 2]Jask T . <>

5. Proofs of Theorem (4) and Corollary (8). The next proposition may be of

independent interest; here it serves only to clarify (34), which is used in the
proof of (4). Recall the definition of ¥, and V, from Section 2.
(31) ProrosiTION. Let \ and b be positive real numbers, and n a positive integer
or even a stopping time. Suppose Y v Vi < b, and |Yi| = 1 for i < n, almost
surely. Then the expectation of exp N(Yy + -+ + Y.)] #s no greater than exp
[be(N)]. This bound is sharp.

Proor. The proof is an application of (22). Let F be the set of pairs (y, v) of
real numbers, with 0 < v < b. Let 2 be the o-field of Borel subsets of F. Define
the utility function « by: u(y, v) = €. As a preliminary to defining the gam-
bling house T, let ® be the set of all pairs (Y, V'), where V is a nonnegative real
number, and Y is a random variable with expectation 0, variance V, and |¥V]| < 1
almost surely. If (y, v) is a fortune in F, then a gamble v is in I'(y, v) if and
only if v is the distribution of (y + ¥, v + V), for some pair (¥, V) in ® with
v + V = b. Define Q by

(32) Q(y, v) = exp Ay + (b —v)e(N)].
Clearly, (23) is satisfied. (24) is immediate from:

(33) If (Y, V)e®, then Elexp (A\Y)] =1 4+ Ve(A) = exp [Ve(N)].

To verify (33), expand exp (AY) as a power series in (AY). The inequality in
(31) is obtained by setting y = v = 0 in (25).

To see that the bound is sharp, take Y, : 1 < 7 £ n to be independent, with
this common distribution: Y; is —b/n with probability 1 — (b/n), and is 1 —
(b/n) with probability b/n. Let n increase to . <>

Recall that 2 cosh z = exp z + exp (—z).

(34) TuroreM. Let y, v, \ be real numbers withv > 0 and M > 0, and let n be a
stopping time. Suppose |Yi| = 1 for © £ n, almost surely. Then the expectation of

cosh\(y + Yo+ + YV2) /(0 + Vit - + V)]
s mo grealer than
(35) cosh (Ay/v) exp [ve(\/v)].

Proor. The proof is an application of (22). Let F be the set of pairs (y, v)
of real numbers, with » > 0. Let 2 be the o-field of Borel subsets of . Define
the utility function u by:
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(36) u(y, v) = cosh (\y/v).

Recall the definition of ® from the proof of (31). Define the gambling house T
as follows. If (y, v) is a fortune in F, then a gamble v is in T'(y, v) if and only
if v is the distribution of (y 4+ Y, v + V) for some pair (Y, V) in ®. Define
Q(y, v) as (35).

Plainly, (23) is satisfied. (24) will be easy to verify with the help of (33)
once the next two facts are checked:

(37) exp{(v 4+ 2V)e[\/(v + V)]} decreases as V increases through the
positive reals, and in particular has its maximum at V = 0;
(38) cosh z increases as z increases through the positive reals.

Relation (37) can be verified by expanding exp [A/(v + V)] in powers of [\/
(v + V)], and noticing that

(39) forn =2, (v+ 2V)/(v + V)" decreases as V increases through
the positive reals. <>

(40) CoroLLARY. If |Yi| = 1 almost surely for 1 £ 7 = n, and X s a positive
real number, the expectation of

(41) cosh AN(Y:1+ - + Yo)/(Vi+ -+ 4+ Vo)l

s no more than 2 exp [2Vie(\/V1)].
Proor. Given %;, the conditional expectation of (41) is no more than cosh
(\Y1/V1) exp [Vie(A/V1)], by (34). Integrate out Y1, and apply (33).
Proor oF (4). Immediate from (38) and (40).
Proor or (5). For nonnegative z, positive A, and k = 0, 1, 2, - - -

(42) z* < kIR
If Z is a nonnegative random variable, (42) implies
(43) E(Z*) £ kW *Elexp (\Z)].

Relations (4) and (43) imply E(R,*) is bounded in n for each k. This, together
with (1), gives the Corollary (for a note on uniform integrability, see Doob, p.
629).

6. Heuristics. In this paper, the main difficulty in applying (22) was guessing
suitable ’s. This section tries to explain how we were led to the @’s of Sections
4 and 5; it can be omitted without logical loss.

The Q of (26). After some fruitless attempts to guess a @ for bounding

(44) El(y+Yi+ -+ Y)/ 0+ Vi+ -+ V)T,
we decided to put y = 0 in (44). According to (6),
(45) PU(Yi+ -+ Y)/(o+ Vit -+ + Vo) = a] < 1/(1 + d%),



806 LESTER E. DUBINS AND DAVID A. FREEDMAN

and this bound is sharp. Use = for “nearly equal”. It seemed plausible that a
Y-process nearly maximizing the left side of (45) would have

P{(Yi+ -+ + Y)/(0+ Vit -+ Vo) =al = 1/(1 + d¥)
and
P(Yi 4+ -+ YY)/ v+ Vi4 -+ Vo) =01 =1— [1/(1 + a*)),
S0
E(Yi+ -+ YV)/ 0+ Vit -+ VI =/ + a) £ 1/0.
Since (¢ + d)* < 2(¢* + d°), this suggested 2(3* + v)/v" as a bound for (44),
that is, as a candidate Q. Therefore, even (27) was a candidate Q.
The Q of (31). We began by trying to bound E{exp N (Y1 + --- + Y,)]}
when
(46) 2iVisL
Using (33),
Efexp MYy + -+ + Ya)]| Faa)
(47) = exp MY1 + -+ + YVaa)]E{exp (\Y,) | Fo}
S exp MYy + -+ + Yaa)] exp [Vae(N)].
Take conditional expectations given F,._», Fn._3, - - - to obtain, at least formally,
(48) Elexp MY+ - + Y)} Sexp [(Vi+ - + Va)e(N)];
S0, in view of (46),
(49) Efexp (Y1 + -+ + Y)l} < exp [e(M\)]:

which is rigorous when each V., is constant almost surely. But (49) does not
involve V. explicitly; so it seemed plausible that (49) held for non-constant
V. satisfying (46). (At this point we had no proof of (49) for non-constant
V., because Y; need not have conditional mean 0 given F.; together with
Vy---V,.) To obtain a proof, it seemed desirable to use (22). To express
Condition (46), it seemed necessary to consider pairs (y, v) as fortunes. Change
of scale in (49) gave (32) as a candidate Q.
The Q of (34). We tried to bound

Elexp MY1+ -+ + Y)/(0 + Vi+ -+ + Vo))l
If Vi + --- 4 V,is a constant, say b, Proposition (31) gives
(50) ElexpA(Yi+ -+ YV.) /(v +Vi+ -+ V)l
< exp (bel/(v + b)),

Clearly, x — ze(1/x) decreases as z increases through positive values. The
right side of (50), being no more than exp {(v + b)e[]\/(v + b)]}, is no more
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than exp [ve(A/v)]. This function depends neither on b nor on V; ; so it was a
plausible upper bound to the left side of (50) for arbitrary V. A candidate
for bounding

Efexp Ny + Y1+ - + Yu)/(0 + Va4 - + Va)]}

was then exp [(Ay/v) + ve(\/v)]. This was not completely plausible, and we
could not verify it, because exp (A\y/v) is a decreasing function of » for y > 0,
and increasing for y < 0. When we remembered (38), it seemed natural to
replace exp (Ay/v) by cosh (Ay/v), leading to (35) as a candidate Q.

REFERENCES

Cuow, Y. S. (1965). Local convergence of martingales and law of large numbers. Ann.
Maih. Statist. 36 552-558.

Cuow, Y. S. and Rossins, H. E. (1965). On optimal stopping rules for s,/n. To appear in
Llinors J. Math.

Doos, J. L. (1953). Stochastic Processes. Wiley, New York.

Dusins, L. E. and Savage, L. J. (1965a). A Tchebycheff-like inequality for stochastic
processes. Proc. Nat. Acad. Sci. U.S.A. b3 274-275.

Dusins, L. E. and Savagg, L. J. (1965b). How to Gamble if You Must. McGraw-Hill, New
York.

Livy, PavL (1937). Theorie de Uaddition des variables aléatoires. Gauthier-Villars, Paris.

Lokve, MicrEL (1963). Probability Theory, 8rd edition. Van Nostrand, New York.



