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Purdue University, Columbia University, and Purdue University

1. Introduction. Let (2, ¥, P) be a probability space, let 2;, x5, --- be a
sequence of random variables on @, and let &, be the s-algebra generated by
Zi, -, Tn, with F = (¢, Q). A stopping variable (of the sequence 1, s, - - -)
is a random variable ¢ on @ with positive integer values such that the event
[t = n]eF, for every n = l.iLet S, = D7 a;;then S, = Suw(w) = D12
is a randomly stopped sum. We shall always assume that

(1) Elz,| < =, E(%n41|Fa) = 0, (nz1).

The moments of S; have been investigated since the advent of Sequential
Analysis, beginning with Wald [9], whose theorem states that for independent,
identically distributed (iid) x; with Ex; = 0, Et < o implies that ES; = 0. For
higher moments of S;, the known results [1, 3, 4, 5, 10] are not entirely satis-
factory. We shall obtain theorems for ES,” (r = 2, 3, 4); the case r = 2 is of
special interest in applications. For iid z; with Exz; = 0 and Bz = ¢* < «, we
shall show that Bt < « implies ES;® = ¢ El.

2. The second moment. It follows from assumption (1) that (S, , F, ;n = 1)
is a martingale; i.e., that
(2) E|S. < w,  E(Su1|Fn) = Sa (n = 1).

The following well-known fact ([3], p. 302) will be stated as
LeEmMmaA 1. Let (8,,F. ; n = 1) be a martingale and let t be any stopping variable
such that

3) EIS) < ©,  liminf [(om [S.] = 0;
then
(4:) E(St,gn) =8, if t=n (n > 1)’

and hence ES, = ES; .
LemMa 2. If ED i |a] < o, then (3) holds.
Proor. |S,] £ D1 Iz, so that E|S,] < e, and
lim f[t>n] !Snl § lim f'[¢>n] Z{ l(l),l = 0.
In the remainder of this section we shall suppose, in addition to (1) that
(5) Ex,) < (nz=z1)

and we define for n = 1
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The sequence (Z,, F, ; n = 1) is also a martingale, with EZ, = 0.
For any stopping variable ¢, let ¢{(n) = min (n, ¢); then Lemma 1 applies to
Z, and t(n) so that EZ,, = 0, and hence

(7) t(n) = EZt(n) T

Letting n — o we have S} — S and >_i™ z/ DT Hence, by Fatou’s
lemma and (7),

(8) ES! < lim ES} ) = lim EY ™ 22 = EY Lzl

The question now arises under what circumstances equality holds in (8). (By
Lemma 1 this will be the case if (3) holds with S replaced by Z, but, as we shall
see, this requirement is unnecessarlly stringent.) According to (8), we need only
consider the case in which ES; < oo, and it will suffice to prove that

(9) ES} z ESiw (n = 1).
LemMma 3. If
(10) lim inf f[t>n] [8a] =0,

then ES; = E) ixf.
Proor. We may suppose that ES;” < « whence, by (10) and Lemma 1, (4)
holds. Hence

= Juzm 88 4 [iom (8 + (8e = 84))°

Juzm 8¢ + [iom 8 + 2[1om SuB(Se — 8u|Fa) = ESiw .
Lemma 4. If

(11) lim inf [(pm Si* < o,

then (10) holds.
Proor. Suppose (10) does not hold; then lim inf f“>,,] [Sa] = € > 0. Hence

for any constant 0 < @ < =,

v

. . 2 . .
lim inf f“>,,] S," = alim inf f[,>,,,|sn|>a] [S.] = ae,

which contradicts (11), since ¢ may be arbitrarily large.
LemMA 5. If EY tal < o, then (11) holds.
Proor. Setting Sy = 0 we have

f{z>n] St = >t (f[t>'i] S — f[t>i 181
Z i=1 f[t>¢] (S - Sz—l) Zl f[z>¢x xz = EZI xz < o,
From Lemmas 1-5 we have

TurEorEM 1. Let (S,, F.; n = 1) be a martingale with ES,’ < « and let t
be any stopping variable. Set x1 = Si, 11 = Spy1 — Su . Then
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(12) ES’ < EX {zl.
If any one of the four conditions
(13) lim inf [mn [Sa] = 0, lim inf [(sn Sp® < o,

EZ{I(I)A < ©, EZ{%,?< =}
holds, then
(14) BS? = EX ! al.

If either E) 1|z, < « or E> ta® < o, then (3) and (4) hold.

Theorem 1 generalizes (a) and (b) of Theorem II of [1]. In order to apply it,
we first verify

LEMMA 6. For any stopping variable t and any r > 0,

EX {la = EX 1 E([ni]'|Fim).
Proor.
EXd | = 25 frmn 2i= ol = 2231 [uza ol
= >t fuza B’ | Fix) = B2 1 E([2f" | $i1).

For independent z, , we have from Theorem 1 and Lemmas 1 and 6

THEOREM 2. Let &1, x5, - -+ be independent with Ex, = 0, E|x,| = an, Ex,’
=0 < o(n=1)andlet S, = 2. x:i. Then if t is a stopping variable, either
of the two relations

(15) EXYitai< o, E)ie’ <o
implies that ES; = 0 and

(16) ES? = E> {x’ = E) {o’.
If o, = ¢ < o, then Et < o« implies

(17) ES} = EY {zl = J'EL

Some stronger sufficient conditions for (17) have been given in ({10], (1], [5],
(3] (p. 351), [4]).

COROLLARY 1. Let z, , 22, - - - be independent with Ex, = 0, Ex,’ = 1, and de-
fine t*(resp. tx) = 1st n = 1 such that |S,| > n'(resp. <)(= o otherwise). Then
Et* = Ety = .

Proor. If Et* < o, then t* is a genuinestopping variable, i.e., P(t* < w) =1,
and by the definition of t* and (17),

Et* = ESHL > Et,

a contradiction; similarly for ¢« .

We note that both ¢* and ¢4 are genuine stopping variables if the z, are, in
addition, identically distributed.

The example Pz, = 1] = Pz, = —1] = } shows that the > (<) cannot be
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replaced by > (£), since Bz, = 0, Ex,” = 1, and ¢* = tx = 1. On the other
hand, if t* is redefined as the first n > 1 for whlch IS,| = n, Et* is again infinite;
snmlarly for ¢4 .

Corollary 1 is a generalization of Theorem 1 of [2]. The following corollary
generalizes Theorem 2 of [2].

COROLLARY 2. Let x1, @z, - - - be independent with Ex, = 0, Ex,} = 1, P[|z,| <
a< ow]=1For0<c<landm =12 --- definet = firstn = m such that
18, > en}. Then Bt < o.

Proor. Fork = m,m + 1, --- ,putt = min (4, k) and 4; = [w:m < ¢ Z k].

Then ¢’ is a stopping variable and by Theorem 2
EP[t > K] + [rent = El = ES) = [1onSe + Jrsm 8¢
or
EPt > k) + [at < PPt > k] + [4 (8 + ) + m.
Hence
(1 — &) (kP[t > k] 4+ [a 1) < 2ac [4, 8 + O(1).

Therefore, as k — fAkt = 0(1) and P[t > k] = O(k™) = o(1), so that ¢ is
a genuine stopping varlable and Bt < .

COROLLARY 3. If 1, %a, - - -, are iid with Ex, = 0, Ex,’ = o, Pllz.] =
a < ©]=1,and if ES? <  for a stopping variable t, then Bt < o« if (md only zf
(18) lim inf nP[t > n] = 0.

Proor. The “only if”” part is obvious. Now suppose (18) holds. Then since
[inm [Sa] < anPlt > n], the first condition of (13) holds and hence
@Bt = ES2 < »,s0 that Bt < « if ¢ > 0. (If * = 0, then Plz, = 0] ='1and
hence ¢ is equal a. e to a fixed positive integer, so E¢t < oo in this case too.)
Applied to the case Plz; = 1] = Plz; = —1] = 3, with¢ = firsst n = 1 such-
that S, = 1, we have by Wald’s theorem Et = «, but by Corollary 3 the stronger
result lim mf nP[t > n] > 0.
COROLLARY 4. Let (2, ,n = 1) satisfy E(Zn1 | F2) = 0 and let E(zh1 | Fa) =
o2 < o be constant for n = 0. Then for.e > 0,

Plmaxncn |Sa] = €] < €7D T on’.
If moreover Sup, »1 |[&a| = 2z with Ez < o, then
(19) P[maxn§,,, |Sn| = E] = 1' - [E(e :[— z)z/Z'ln a—n2].

Proor. Define ¢ = first n = 1 such that |S.| = e. Then { = min (¢, m) is a
hounded stopping variable. Hence, by (14) and Lemma 6,
EP[Mmax,<n |Su| = e = €Pt < m] S BSy = E 21 o0’ < 2.7 0.
If Ez < «, then

E(e+2)" = ES, = E 2 { o f[t>m] >rel = (21 af)Plt =2 m]
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and (19) holds.

The first part of Corollary 4 is a special case of submartingale inequalities
([6], p. 391), and the second part generalizes slightly one of the Kolmogorov in-
equalities ([6], p. 235) which requires that z be constant.

3. The fourth moment. The analysis in the case of the fourth moment of S; is
somewhat easier than that of the third moment and consequently is presented
first. In this section Ez," will be supposed finite and Ex; = 0. Define for
r=12234andn =12 ---

Urn = E(xnr l ":Fn—l)y Ur,n = Z;‘ Ur,j,
(20) Vrn = B([2a" | Fat),  Viw = 2000y,
Tr,n = Zf Ilery Tl,n = Tn .

In these terms, Lemma 6 asserts that ET,, = EV, ;.
Lemma 7. If ES? < o and lim inf [ (s |Sa| = 0, then
E(8/|%.) = 8. and E(|S{||F.) = |S.]  for t> n.
Proor. For any A ¢ §, , by Lemma 1
[atom 8¢ = [awom 182" + 28,080 = 8a) + (8 = 82)'] 2 [ateom 8"

Hence the first inequality of the lemma holds, and the second inequality follows
immediately from Lemma 1 and the fact that E(|S| | F.) = [E(S:| Fn)|.

TuEOREM 3. If t is a stopping variable such that Elt Y 3 E(z| F,.1)] < oo,
then ES, < « and

(21) ES! = EU., + 4ES.Us,, + 6ESUs, — 6E Dt us;Us ;.

Proor. Set ¥, = S.' — 68.°Usn — 48,Usn — Ui + 6 2 j1us,; Us; and
{ = min (¢, %). Since { Y, , F, ; n = 1} is a martingale with EY; = 0, by Lemma 1,

ESY = 6ESUs,y + 4ESyUs.w + EUsy — 6E( D us ;Us;)
6(E'St) (B'US ») + 4(E'SE)(E"'V3E) + EU..,
whence, if ES} > 0,

(22) E'SL < 6E'Ui. + 4(E™ViE)(BSL)™? + (EU.e)(BSH)™
Nowifp > 1,r > 0,

(23) Viw = i Bila)" | §:0) < 07 ( X0 B[] | 5,01)""

< a7 e Bl | $m])? = nTVEE,

A

Il

and thus setting p = 2,7 = 2 and then p = %, r = 3,
(24) EU;, = EV;, < EtV,, < o, EV3} < Et\V,, < =.

Moreover, EUs,; < E(tUs,) < » and E(2 = us;Us;) < EUj,, < . Thus,
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the LHS of (22) is a bounded function of k, implying via Fatou’s lemma that
ESt4 < o,

Since 'Y"l é Sn4 + 6Sn2U2,n + 4 'Sn] V3,n + U4,n "I‘ 6 Z;‘;l uz,jUz,j = Y,,,
(say), it follows from the preceding that

E|Y) < EY/. < ES! + 6(F'S)(E'UL..)
+ 4B (EVVYY) + BU., + 6BUL, < .

From (24), ET.,, = EU,,; < . Thus, (8) of Section 2 and Lemmas 4 and 5
are valid, whence by Lemma 7, E{8; |5} = S fort > k, k = 1,2, ---.
Consequently,

Jiom 8¢ = [iom 8" 4 28,°(87 = 8,°) 4+ (88 = 85" = [1om S
+ 2 f[t>n] SJSE(SE — 8, [ Fal = f[z>n1 S,
implying f[bn] S,' = o(1) and concomitantly
Jion 8 Usn = (Jiom 8! (Jiom Us0)P = o(1),
f[z>n1 [8n| Vi < (f[z>n1 Sn4)*(f[l>n] Vi) = o(1),
(25) Jtom Usn £ [tom Use = o(1),
Jiom 2t iUs; £ [iiom Usn < [1sm Use = o(1).

Thus, f{t>nl |V, = f[t>n1 Y, = o(1) and by Lemma 1, EY, = EY,
Alternative expressions for ES,* are possible as indicated in
TurorEM 4. If E(t D' B{xz;'| §,4)) < o, then seiting Sy = 0,

ES/ = 6E Z;'=1 Si_tus; + 4E Z:t‘=1 ittts,; 1+ EUs,

The proof of Theorem 4 is similar to that of Theorem 3 and will be omitted.
COROLLARY. If E(tU,,,) < «, then

B(6 2 5= Sirun; + 4 252 Siatis ;)
= 6ESU,, + 4ES,Us, — 6E(D_ ‘i us;Us ;).

It
e

It is intuitively clear that terms with like coefficients are equal, and indeed
we have

Lemma 8. If E(tUs,) < o, then ES,Us, = BE(D. ‘= Si_us;) and
E(88Us:) = B(Xi=Siruz;) + E( 2 j=1us;Usj).

Proor. It suffices to verify the first of the two relationships since the second
will then follow from the corollary to Theorem 4. Suppose first that
(26) B( i |1 Vi) < .
Then

2ot Jumy 2= 2 Uny = 251 fumiy 2,Us

= 2 71 Jusn B(zi | 5;2) U, = 0,
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whence
E(2 5= Sicttir ) = e Jremn [ 2052 Simtthr s + 251 25U ]
(27) = 201 [ty SiUri
= ES,U,,;.

Thus, if ¢ = min (¢, N), (27) holds with ¢ replaced by ¢ irrespective of (26).
However,

(28) ESUs; = > fu=k1 SeUss + f[t>N] S:Us,:
= ESvUs,y — [1om SvUsw + [1om SUse,
and analogously
(20) E(Xjm Siwa;) = E(22io0 Situss) — [rosm 2ims Siotis s
+ [rom 2252 Sicaua,; .
Now E [8,Us,| < EY, < =, and employing Lemma 7,
E 34 I8imwa = 2kt [rem 201 Sicus ] = 225 [z [Si-a il
< 27 [uzn Swssl < E|S| Vs < BY, < .

These facts plus (25) imply that all unwanted terms of (28) and (29) are o(1)
and the result follows.

Identities and inequalities analogous to (27) abound and several of these will
be catalogued as

Lemma 9. BE(D_ =1 8,%) £ EtS/ under the conditions of Lemma 7.

EC L 8,) = EiS, it EiT, < «.
ECLLT,) < EtT, it EtT, < o.

Proor.

E 3 a8 = 2 frumn 2nm1 S
= 2o f[tgnl 8. = Dowa f[tgn] E(S¢|5a)
= 2 f[tgn] S = 2 mm1 Din f[t=k] S
= Yok [ 82 = EiS}

employing Lemma 7. Similarly,

E( Ziz=1 Tn) = Z:=1 f[t;n] Tn Z:=1 f[tg n) T; = EtT; .

IIA

Finally,
E( Z:s=1 Sn) = Z:=1 f(z; n] S, = Z::=1 f[tgn] E(St I S:n) = :=1 f[tgn] Si
= EtSt
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in view of Lemmas 1 and 2 and the validity of interchanging the order of sum-
mation and integration.

4. The third moment. In this section E(|z,|*) will be supposed finite and Ez,
= (. Define

Yn Sn3 b 387;(/72,11 - Dv3,n )
(30) W, =28.—3 Z;Ll ey — Usn,
Zo=8.—3 Z;‘=1 Sius,; — Usp -

It is readily checked that (Y, ,F,;n = 1), (W, ,Fu;n> 1), (Z,, % ;0> 1)
are all martingales and that EY, = EW, = EZ, = 0.

TuEOREM 5. If EV3, < o and EV}, < o, or equivalently if ET; < o, then
E|S) < o and ES? = 3E(> '~y S;us;) + EUs...

Proor. Suppose that EV;, < «, EVi, < «. (Their equivalence with
ET} < » will be deferred to Lemma 10). Then

E 8 = 271 Jrumm 2on=1 ([Sal’ — 18aca’) = 20t 2ht frecuy (J2al’
(31) + 3(Sua| 2" + 3851 |2a])
<6 D i Dbt i (J2al® + Sh s |a])

= 6[E(2_n=1|2al") + E(2 =1 Sat |2a))].
By Lemma 6,

(32) E(X it |z.]) = EVs, < .
On the other hand, ES; < ET £ 1 + ET} < » and
Jion 8 £ Jisn T £ [ton Te S [ron (L4 T7F) = o(1)
in view of the asserted equivalence. Thus, Lemma 7 holds, whence
E( Z;=1 Siy lxnl)
(33) = Dk 2 e Saa J2al = D=1 [1ezm Saowrm
< 201 frezm E(S8 | Fuc)vrm = 2on=t [tezm Séora
Dot Dm= f[z=k] Sivi, = ES 'V, < (B 1S4*) (B*V3.0).
Replace t by ¢ = min (¢, k) in (31). Then from (32) and (33),
E|Suf £ 6EVsy + 6(E” |S,)°) (BVE,0) = 0(1) + O(1)E** |Suf
whence, by Fatou’s lemma, l
(34) E |8 < w.
Next, (34) implies that the expectation in the LHS of (33) is finite whence
(35) EB(Xne=118aal wan) = 2°%=1 frzn [Sact] @ = E( 2 n=1 [Suca )
S B2 0= ([2al® 4 8ucal* Ja])] < o0

Il

It
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Combining (34) and (35), E |[W,| < «. Since, paralleling (31),
f[z>k] lSkls <6 f[¢>k] Z’Z=1 (IiBnls + Si——l lxnl) = o(1),

Jin [Wi| = 0(1) and the theorem follows from Lemma 1.

Lemma 10. EV;; < « and E’V:i',, < o 1f and only Z:fETgs < o,

Proor. Suppose EV;,, < » and EV},, < «.The argument of (31) with T, re-
placing S yields

BT} =6 250 2 ones Ju—n (2al’ 4+ Toet |2a)).

The inequality of (33) also obtains with T replacing S in view of the fact that
T, = T,._:on the set [t = n]. Thus, analogously, ET: < O(1) + O(1)E**T%, ,
implying ET} < .

Conversely, if ET? < «, clearly EV;,, = ETs,, < ET{ < «. Moreover,

EVie = 25 Juw-n 220=1 (Vi — Vi)
S 25 2h= Jiven s + 3Viacwin + 3Viaoivia)
S0(1) 46 272 0 Jiwan Viewia
=0(1) + 6 2 n=s f[ugn] EXR .

O(1) + 6 27— 25 J 1= |2a Vi

<0(1) 4+ 6 ET,Viw

= 0(1) + O()E"*Vi .,

which implies, as earlier, that EVi, < e« and completes the proof.
TrEOREM 6. If ET <  and Et'V;,, < «, ES; = 3ESUs,: + EUs,; < .
Proor. As in Theorem 5, after setting p = §, r = 2 in (23) of Section 3 to
obtain

IIA

E [S.Us, | = (B} |S|)(E°USE) < (BV|S.]') (B*#Vs,.).

COoROLLARY 1. Under the conditions of Theorem 6, E( D' &us;) = O.

Proovr. Analogously, EZ, = 0, whence E(W, — Z,) = 0.

COROLLARY 2. Under the conditions of Theorem 6, ES,Us,, = E( D 5= Sj_1us,;).

The single requirement ET; < o, although equivalent to the two conditions
of Theorem 5, is difficult to check. The following single condition is easily seen
to imply all those of Theorems 5 and 6:

(36) E(f'Vs,) < o,
and in addition yields
ET}® = 3BTV, + 3ET (Vo — 2 Dty Vijr;) + EVs,
— BE(2 -1 Vi) — 3EB( 2 5= Vaongy + 6E( D jma vy D= Vions).

b. Sums of independent random variables. In this section, the random vari-
ablesx; , 22, - - - will be supposed independent. If Ex, = 0, all prior theorems are,
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of course, applicable but may be reformulated in especially simple terms with
conditions that are susceptible of immediate verification. For example, from
Theorems 3 and 6, we obtain:

THEOREM 7. If 21,2, -+ - are independent with Ex, = 0, Ex,’ = o*, Ex,’ = v,
Bz,” =B < o andtisa stoppmg rule with Ef* < o, then ES,* < « and

ES/' = 65°EtS} + 4vEtS; + BEt — 36'Et(t + 1).

THEOREM 8. If 21, 2, - - - are independent with Ex, = 0, Ex,’ = o*, Ez,’

E ]xnl = C < »,and zf L is a stopping variable with Eft < o, then E’S, 'yEt
+ 3¢ EtSt < oo,

Proor. According to Theorem 6 and Lemma 10, it suffices to verify that
EVs, < E(8Vs,) < CE” <
EVi, < Et(1 4+ CO) < »

In the final theorem, the requirement of Theorem 8 that Eff < « will be
relaxed at the expense of increasing the moment assumptions on z, .

THEOREM 9. If 21, %3, - - - are independent with Bz, = 0, Ex,’ = o, Ez,” = -,
Ex,! <C < w,and if tisa stopping variable with Eff < o, then ES, = yEt
+ 30°EtS, .

Proor. Here, the martingale Y, of (30) simplifies to ¥,, = 8,° — 3608, — ny.
The theorem will follow from Lemmas 1 and 2 once it is established that
EDi|Yua— Y| =E 2L E(|Vass — Ya| | Fa) < . Nowif Band D are finite
constants (not necessarily the same in each appearance),

E(,Sn+l - Sn3| ‘ ‘Jn) = 6E(,xn+1,3 + Sn2 lxn+ll I‘Jn) = BSnZ + D,
E(l(n + 1)Snx = 18| [§2) = E(I8 + (0 + Datun| | F2) < 8" + nD

whence

Il

Il

b

E(|Yau1 — Ya||F.) £ BS,” + nD.

Next, Lemma 9 is applicable below since (17) insures ES,;’ < « while Lemmas 6
and 2 guarantee (10). Consequently,

E 2 NE(|Ynu — Y| [5.) < B-E(X45.) + D-Et(t + 1)
< B-EtS/ + D-Et(t + 1)
< B-(E'*)(E'8}) + D -Et(t + 1) < .
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