GAUSSIAN PROCESSES ON SEVERAL PARAMETERS!
By R. M. DubLEy

University of California

1. Introduction. In this paper, we study certain Gaussian random processes
on multidimensional parameter spaces. The main examples, treated in Sections
6-8, are processes with “independent values” and stationary processes, which
are Fourier transforms of each other (Section 6); the processes with nearly
independent values which arise in connection with “empirical measures” (Section
7); and various generalizations of Brownian motion (Section 8).

We begin in Section 2 with a general continuity theorem for ordinary Gaussian
processes on several parameters. Section 3 is devoted to “random linear fune-
tionals”, including random Schwartz distributions or ‘“generalized random
processes’’. Sections 4 and 5 give continuity results for certain random linear
functionals based on the theorem in Section 2. Sections 5, 6 and 7 are independent
of each other.

Some remarks on the continuity theorem in Section 2 seem to be in order here.
It asserts that if {x(¢), ¢ ¢ R"} is a Gaussian process on a k-dimensional Euclidean
space such that for some a > 1andC 2 0,

Elz(t + k) — z()[ = C/llog |A||*

for all sufficiently small 4 and all ¢, then the sample functions z(¢) may be taken
continuous with probability 1. Yu. K. Belaev [1] proved this for stationary
processes with k = 1, and showed that for @ < 1 it need not be true. (It appears
that his inequality (53) requires the condition ¢ + h < ¢, .) His proof is based on
Fourier transforms and a theorem of Hunt [9].

My proof is more direct and does not use Fourier transforms, and the result
is improved. However, the hypothesis is not invariant under homeomorphisms
of R*, while the conclusion is. This inelegance is avoided in work of V. Strassen,
who formulates the hypothesis instead in terms of the “e-entropy” of the set of
Gaussian variables z(¢) for ¢ in a compact set, which need not lie in a Euclidean
space. His result easily implies mine and hence Belaev’s; I understand that his
proof is quite similar to mine. Section 2 is included here only because Strassen’s
work has not yet appeared.

2. The continuity theorem. If V is a finite-dimensional linear space over the
field F of real or complex numbers, a Borel probability measure x on V will be
called Gaussian if it is concentrated either in a point or in a linear space W C V,
and in the latter case it is of the form

du(z) = e ™ d\(2),
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where @ is a positive definite quadratic form on W (i.e., Q(y) = (y, y) for some
nondegenerate inner product ( , ) on W), w e W, \ is Lebesgue measure in w,
and ¢ > 0.

Let R* be the linear space of k-tuples, ¢ = (4 , ***, t), of real numbers, with
[t = (&' + -+ + &)%. Then by (Gaussian) process on R* I shall mean an assign-
ment to each finite set F C R* of a (Gaussian) probability measure ur on a
finite-dimensional linear space Vr and real linear functionals zx(t)( ), ¢t ¢ F,
on Vg such that if F C @ finite, the joint distributions of the z#(t)( ) and the
z¢(t)( ) for t ¢ F are the same.

According to a well-known theorem of Kolmogorov (Logve [16] p. 93), there
exists for any process a probability measure » on the set ¥ of all functions from
R" to the real numbers, defined on the o-field $ generated by all sets of the form

S(t(D; T t(n); B) = {feg: <f(t(1)); e ,f(t“”))SB},

where ¢, - -+, ™ ¢ R* and B is a Borel set in R", with »(S(t®, - -+, {™; B)) =
pr((xe(t®), -+, ze(t™)) e B), where F = (£, ... , 1}. We say the process
has continuous sample functions if v*(€) = 1, where € is the set of continuous
functions in & and »* is v-outer measure. Then »* is a countably additive proba-
bility measure on the sets 4 n @, A ¢8§: this includes the Borel sets for the su-
premum norm in € on any fixed bounded set.

We return now to standard notation by letting Pr = », E = integral with
respect to Pr, and z(¢) = the function f — f(¢) on &.

THEOREM 2.1. Suppose given a Gaussian process (x(t), Pr) on a finite-dimen-
sional Buclidean space R* such that for some a > 1, C > 0, and all sufficiently
small h,

E[(z(t + h) — 2(t))"] = C/|log [h||*

for all ¢. Then the process has continuous sample functions.
Proor. If y is a Gaussian random variable with mean m, then E(y’) =
E((m +y — m)*) = m’ + E[(y — m)’]. Thus if E(z(¢)) = m(¢),

(m(t + k) — m(t))* < C/|log |h||*
for & small enough, so that m is continuous, and
El(z(t + k) — m(t + k) — (2() — m(1)))"] < C/[log [R|*

Thus we can assume m(t) = 0.

If @ has Pr-outer measure less than' 1, it is included in a set G in $ with
Pr (G) < 1, and G'is in the o-field generated by countably many sets {x(t,) € B,}.
Thus it suffices to prove uniform continuity with probability one on an arbitrary
countable bounded set. Also, we can restrict ourselves to the cube, 0 < ¢; < 1,
j=1 -k

Forn = 0,1, ---, let D, be the set of dyadic rational numbers, /2", r =
0,1, ---, 2" and let L, be the “lattice” D, X --- X D, in R*. Let M, = Lo .

For each n, we consider the set G, of Gaussian random variables z(s) — z(¢),
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where t ¢ M, 11 and s is one of the points of M, at minimal distance from ¢. There
are at most 2k such points, so G, contains less than (2“"'+1 + 1)% 2k < ot
random variables.

Since |s — #| < k/2”"", we have for some K > 0,

EZ) =C/|(2"+1)In2 — Ink* £ K/2™

for any z ¢ G, if n is large enough.
Now if y is any Gaussian random variable with mean 0, E(y®) = ¢* and b = 1,
then

Pr ([y/o] Z b) = [1/(2m)"] [1a1z0 exp (—2%/2) da
< 2/2m)Y] [3 z exp (—2%/2) dx < exp (—b%/2).

Thus for each z £ G, ,
Pr (Jo| = 1/n*) < exp (—2"/Kn*) < exp (—2)
for n large enough, where ¢ = (1 + a)/2 > 1. Thus
Pr (max,.q, 2| = 1/7°) < 2 exp (—27),
which approaches zero faster than exponentially as n — . Thus
Z::=l Pr (max.cq, [¢| = 1/n%)

converges, and with probability one, || < 1/n’ for all z¢ G, with n = r =
r(z( )).

Now this implies that with probability 1, z(¢) is uniformly continuous on the
union of all the M, , as follows: if 1 < r < n each p ¢ M, is in a cube of side
1/2"" with vertices in M, , possibly on a face of one or more such cubes.

Given ¢ > 0, let u be an integer greater than max (r(x( )), 6/¢) + 1. Now
if p e M, and q ¢ M, forsomem and nand|p — ¢| < 1/2,then p and ¢ must be-
long to cubes with vertices in M, and sides 1/2™ having at least one common
vertex v. We can assume m = u and n = w.

Now we move from p to a nearest point of M,,_;, then to a nearest point of
M,._, , ete., until we arrive at p, € M, , and similarly from q to g, € M, . We then
have

le(p) — @(p)] < 1/w' + 1/(u+ 1)+ -+ £ 1/(u — 1),

and [z(¢g) — 2(qu)| = 1/(u — 1).

Now p, and ¢, are vertices of cubes with a common vertex v € M, . There is a
point p,—1 of M,_; such that both p, and v are nearest to p,—1, and a q,_1 &€ M,
nearest to both » and ¢, . Hence |z(p.) — z(v)| < 2/(u — 1)*and |z(g.) — 2(v)|
< 2/(uw — 1) Hence lz(p) — z(q)] £ 4/(u — 1) +.2/(u — 1)
6/(u—1) <e

Thus, indeed, we have uniform continuity with probability 1 on the union M
of all M, . For any ¢ > 0 and & > 0, let As be the set of all z( ) such that
[z(s) — z(t)| = € for some s and ¢ in M with s — ¢| < 8. Then for any ¢ > 0,
there is a 8 > 0 such that Pr (4;s.) < e. Now if @ is any countable subset of the
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unit cube, and s, t £ Q, |s — ¢| < 8, then since z( ) is continuous in probability
and M is dense in the unit cube, |[z(s) — z(¢)| < 2¢ for almost all z( ) not in
Aj;. . Thus for almost all z( ) not in As, [z(s) — z(t)| < 2¢for all s, t ¢ @ with
|s — ¢| < 8, since there are only countably many such pairs. Thus x( ) is uni-
formly continuous with probability one on @, and the proof is complete.

Our method applies to processes defined only on certain subsets of a given
finite dimensional linear space; for example, certain countable unions of closed
cubes (e.g. open subsets). Arbitrary subsets and more general spaces, with a
suitable modification of the statement, are covered by the more general theorem
of V. Strassen (as yet unpublished).

The extension of Theorem 2.1 to processes with values in any finite-dimensional
real or complex linear space is trivial. Possibly it can also be extended to processes
with values in locally compact groups, Gaussian in the sense of Urbanik [22].

If we weaken the conclusion of Theorem 1 by changing “a > 1” to “a > 37,
the proof becomes somewhat easier, since one can use the lattices L, rather than
M., . The theorem for a > 3 is easily strong enough to cover all the applications
below except in Section 5. The simpler proof for a > 3 is essentially that of P.
Lévy [15] for the continuity of his “Brownian motion on several parameters”,
which will be discussed further in Section 8.

3. Random linear functionals and random distributions. In probability
theory, one very often has to deal with probability measures on a topological
linear space T, possibly infinite-dimensional. If T is finite-dimensional, there is
a 1-1 correspondence between Borel probability measures and consistent assign-
ments of joint distributions to finite sets of linear functionals on 7', belonging to
a set S sufficient to separate points of 7. In general, however, such an assignment
need not define a countably additive measure on T, and becomes an independent
object of study. The space S becomes an arbitrary linear space, and T becomes
irrelevant. I will sketch the elementary theory of such assignments, or “random
linear functionals”.

Let S be a linear space over the field F of real or complex numbers, and let
S* be its (algebraic) dual space. For 2;, - -+, 2, ¢ S and B, a Borel set in F",
let

8*(s1, <+, @3 B) = {yeS¥:(y(w), -+, y(za)) e B}.

Now a random linear functional (rlf) on S is either

(A) an equivalence-class of maps L from S into measurable functions on a
probability space (Q, S, P), such that'if a, be F and f, g& S, L(af + bg) =
aL(f) + bL(g) almost everywhere with respect to P; where L and M are equiva-
lent if for any z;, -+, Z, €S,

(L(21), =+, L(za)) and (M(m), -+, M(22))
have the same probability distribution on F*;

or
(B) an assignment of a probability measure u(z;, -+, 2,)( ) on the Borel
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sets of F" to each ordered finite set (z;, ---, z,) of elements of S, such that
S*(21, -+, Zm; B) = 8*(y1, -+, ya; C) implies

u(xlr e 7xm)(B) = “(yl; Tt y")(C);

or
(C) a probability measure P in S* on the o-field generated by all sets
S*(xy, -, xn; C).
There are natural 1-1 correspondences between the objects defined as rlf’s in
(A), (B) and (C), as follows: first given L as in (A), let

p(@y, -+, @) (B) = P(L(m), -+, L(z) ) ¢ B)

for any Borel set B C F". The almost-everywhere linearity of L implies easily
that u( )( )isanrlfin sense (B), and clearly u depends only on the equivalence-
class of L.

Given an rlf in sense (B), there is a probability measure P on S* such that

P(S* (1, -+, #n; B)) = p(a, -+, @) (B);

one can prove this by choosing a Hamel basis in S and applying Kolmogorov’s
theorem on probability measures in product spaces (Logve [16], p. 93 A), or its
generalization, Bochner’s theorem on inverse limit measures (see Dudley [3],
Theorem 1).

Finally, an rlf in sense (C) yields one in sense (A) where @ = §* P = P,
8 = o-field generated by the sets S*(z;, --+, z,; B), and L(z) is the map
y — y(z) of ¥ into F for each z ¢ S.

Below, sense (A) will generally be used, and a particular L will be chosen,
leading to the helpful abuse of language, “an rlf L --- .”

It a sense of sequential convergence is defined in S, e.g. by a topology, an rif
L on 8 is called continuous if x, — x implies L(x,) — L(z) in probability (or,
using (B),

[ef(Ouza)(dt) = [¢f(O)u(z)(dt)

for each bounded continuous real-valued function f on F).
If 8’ is a linear subspace of S*, sufficiently large to separate points of S, let

S,(xl; ,xﬂ;B) = S’nS*(x17 7xn;B)'
An 1lf P on 8* (sense (C)) defines a “semimeasure” Q on S’ by
QS (m, -+, an;B)) = P(S*(@, -+, @3 B)).

The separating property implies that @ is well-defined, but it need not be count-
ably additive on S’. Clearly it is countably additive if and only if S’ has P-outer
measure 1 in S8* If S has a topology, S’ is its topological dual space (the con-
tinuous linear functionals), and L is an rlf on S such that @ is countably additive,
I shall say L “is a measure on S’ ” or “is countably additive on §'.”

Clearly any rlf on a finite-dimensional space S is a measure on S for S’ separat-
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ing, since then 8 = S*. The standard example of an rlf which is not a measure is
the “normal distribution’”, defined as follows. Let (H, ( , )) be a separable,
infinite-dimensional Hilbert space over F. Then the normal rlf L is Gaussian
(i.e. each pu(fi, -+, fa)( ) is Gaussian) and E(L(f)) = 0, E(L(f)L(g)) =
(f, g) for all f, g ¢ H. To prove that such an L exists, we can take an orthonormal
basis {f,} in H and let L(f,) be independent, normalized Gaussian random
variables (that is, the density of any u(f1, - -+, fa)( ) with respect to Lebesgue
measure in F™ is a constant times exp (—% D7 |t;/*)). L is not a measure on the
topological dual space H' since D n—; |L(f.)|* diverges with probability 1.

An1lf L on a Hilbert space H is a measure on H' if and only if it can be written
L(f) = M(A(f)), where M is continuous rlf and A is a Hilbert-Schmidt operator
(Kolmogorov [14], Minlos [17], Gross [8]).

An rlf L on a linear space S will be said to have second moments if E(|L(f)|*)
is finite for all f ¢ S; this implies that B(f, ¢) = E(L(f)L(g)) is also finite for
all f, g € S. B is clearly linear in f and conjugate-linear in ¢, i.e. “‘sesquilinear”,
and conjugate-symmetric.

Now if S is a metrizable linear space of second category and L is a continuous
rlf on S, f, — f implies B(f, f) < lim inf B(f., f.) by Fatou’s lemma. Thus for
any M > 0 the set of f ¢ S such that B(f, f) < M is closed. Thus, by a category
argument, f — B(f, f) is continuous at zero in S. It follows that for each g ¢ S,
f — B({, g) is continuous on S.

If Sis an LF-space, i.e. it is a union of locally convex complete metric linear
spaces S, , and S has the strongest locally convex topology such that each injec-
tion S, — S is continuous, then it clearly remains true that f — B(f, ¢) is con-
tinuous if L is continuous (in probability).

An important special case of rlf’s is the random distributions, which are (sequen-
tially) continuous rlf’s on the linear space D(R*) of C* functions with compact
support with its usual convergence, i.e. f, — f if all f, vanish outside a fixed
compact set and D?f — D?f uniformly for each partial derivation

oo oot
Dp - ap1+ m/axlm . amkmc.

Incidentally, ® is an LF-space (Schwartz [19], Chapter III, Section 1, Theorem
II, p. 66) for a topology which yields the above sequential convergence.

Another property of the topology of D, its “nuclearity’, yields the pleasant
fact that every random distribution is a measure on ® (Gelfand and Vilenkin
[7], Chapter IV, Section 2, No. 4, p. 407). We call such a probability measure on
D' the “Minlos measure” of the associated random distribution.

For any random distribution L with second moments, f — E(L(f)L(g))
is a continuous linear functional T'(¢) on D, i.e. a distribution. The map g — T'(§)
is linear from © to D', If g, — g in D, T(§.) — T(J) in the weak™ topology of
®’, hence the strong topology (Schwartz [19] Chapter III, Section 3, Theorem
XIII, p. 74). Thus g — T'(§) is a sequentially continuous linear map from D to D’.
Since both spaces are bornologic, it is continuous (Dudley [2], Theorems 6.1
and 6.3). Now by the “theorem of kernels” (Schwartz [20], I Proposition 25,
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p. 93 or [21], Section 4), there is a distribution K ¢ ©'(R* X R*) such that
B(f, g) = K(f ® §), where (f ® §)(z, y) = f(x)§(y), =, y e R".

One can show likewise that if L is a random distribution with values in a
finite-dimensional vector space V and E(])\(L(f))lz) < « for each NeV/,
then for any p, o ¢ V' there is a distribution K, , with

E(p(L(f))o(L(9))) = K,.(f ® 9).

4. Continuity on blocks. This section is devoted to continuity results for
Gaussian random distributions which are rather special, but sufficient to cover
the cases in Sections 6-8.

Let u be a Borel measure on R*, finite on compact sets. Suppose L is a random
distribution with second moments for which

E(LN) = [l du

for any fe&®. Then, clearly, L extends uniquely to a continuous rlf on H =
L*(RF, u). In any case, L has a Minlos measure P on ®'(R"). I want to show that
if L is Gaussian, P is concentrated in the set of Schwartz derivatives

a*f/ot, -+ o = DY

where f is a function belonging to the space @, to be defined below.

Ifu= (wm, - ,w)eR’ wesay s — u “in an octant” if for each j, s; — u,
and either s; < u; or s; > u;.

DeriniTioN. Given a Borel measure p on R, finite on compact sets, Q, is
the set of complex-valued functions f on R* with the following properties:

(1) for each u ¢ R®, f(s) approaches a limit as s — u in any octant;

(2) the limit as s; T w; for all 7 is f(u);

(3) given u and j, the limit is independent of whether s; T wu; or s; | u;
unless the hyperplane ¢; = u; has positive u-measure;

(4) if u has finite total mass, f is defined on the product of extended real lines
[— e, o] with the same continuity properties.

Now if f £ @, , f is continuous except on at most countably many hyperplanes.
Also f is bounded on each bounded set, since if it is unbounded in every neigh-
borhood of a point  this will remain true in some octant. f is clearly Lebesgue
measurable. If u gives all hyperplanes parallel to the axes measure zero, Q, is
simply the set of all continuous complex-valued functions on R".

Tor any ¢ & R*, let A, be the indicator function of the block B(t) of all s such
that

0 0,
tj§8j<0 if t]-§0

IIA

8]'<l‘]‘ if fj

v

forj =1, ---, k. If L is a (Gaussian) rlf on a space containing the functions
A, we define a (Gaussian) process z( ) on R* by

2(t) = (=1)™*L(4),
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where neg () is the number of negative ¢; . Of course, z(¢) = 0 if any t; is zero
since then B(¢) is the null set. We call z( ) the indefinite integral of L.

First we show that if z( ) is not too discontinuous, then L = o x/aty -+ O
(Theorem 4.1). Then we show that for E(LWNOP) £ [IfI® du, x(t) is sufficiently
continuous (Theorem 4.2).

Let ® be the class of functions on R* which are continuous almost everywhere
with respect to Lebesgue measure and bounded on bounded sets. Let D' =
8*/dt, -+ ot . Then D" as a Schwartz derivative maps ® C 9’ into . The
result of applying a distribution T to a function f will be written [T'(f).

TrrorEM 4.1. Suppose L is an 11f on a space of complex-valued functions on R*
which includes © and all functions A, and that if fn all vanish outside a fixed com-
pact set and f, — f uniformly, then L(f,) — L(f) in probability, on the probability
space (2, 8, P1) of L. Also suppose that the Kolmogorov measure P, for the process
z(t) = (—1)"*“L(A,) gives ® outer measure 1. Let Q. be P, confined to &. Then
there is a map &: w — £,( ) of @ into ® such that for each f & D,

L(f)(w) = [D"&](f)
with Py-probability one. Thus the Minlos measure P of L restricted to D s equal to
Q. o (D*)™" on all sets where P is defined.
Proor. Let E be the set of k-tuples of dyadic rational numbers /2", r, m
integers. Let 7,(t) = x(t)(w), t ¢ E. For t g E, let
m.,(t) = 1inls—>t,seE "ho(s)

if the limit exists, and 7,(¢) = 0 otherwise. By our assumption on Pz, 7, € ® with
probability one. Let & = n. for 7, € ®, otherwise & = 0.
P is defined on the o-field generated by the ring of all sets

(Ted :(T(f), -, T(fa)) e B}

for fi, - -+, f» ¢ ® and B a Borel set in complex n-space. The inverse image of
such a set under D” is clearly Q.-measurable in ®.
Given f e D, let

fn(tly ) tk) = f((zrl + 1)/2n+lr Ty (2770 + 1)/2n+1)
for 7/2" £ t; < (r: +1)/27,

wherer,, - - - , 7 are any integers,n = 1,2, --- . Forany é > 0 and any complex-
valued function g on R” let

(Dakg)(il, Tty tn) = Zsi =41 (ng=1 si)g(tl + &0, -, b + Ska)'

For each n, the distribution DYf, is a complex-valued measure concentrated in
finitely many points of the form

q = (7'1/2", e ’rk/2n>y

and assigning such a point the measure (Ds*f) (q) where § = 1/
It is easy to verify that

2n+1
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(DS, oo b)) = J053 [55 (D) (o, o ) dive o i
Hence Hs = Ds"f/(26)* — D*f — 0 as 8 — 0. Since f ¢ D, there is a K > 0 such
that

(D) (s) — (D)()] = K |s — |
for all s, { ¢ R*. Thus H; is bounded uniformly in 6 > 0. Hence for some A7 > 0,

[(Ds"f) (1) = M&*

for all t and 6 > 0. Now if R is the diameter of the support of f, the total variation
of D, is at most M[(R + 2)2"]*/2*"*"  which is bounded uniformly in n.

Since f, — fin D', D', = D*f in ©’. Since D is dense in the continuous func-
tions on a neighborhood of the support of f with the supremum norm,

[ g d(D*,) — [ gD'f dt

for every continuous function g on R*, and thus for every ¢ bounded and con-
tinuous almost everywhere with respect to |D*f| dt (Prokhorov [18], Theorem
1.8), hence for every g ¢ ®.

We call a product of left closed, right open intervals, a block. The A, are indi-
cator functions of blocks with a vertex at the origin. By definition of z( ),

Ja(s) d(D*4)(s) = (=1 ™ %(t) = (=1)"L(4.),

since z(t) = 0if ¢; = O for some j.

Any indicator function h of a block is a finite linear combination of functions
A, s0 f z(s) d(D*h)(s) = (—1)*L(h) with probability 1. This also holds if A
is a finite linear combination of indicators of blocks, e.g. h = f, . By definition of
¢, , we have with probability one

[ &) d(D')(t) = [ 2(t)(w) d(D"f) (1),
and as n — «, L(f,) — L(f) in probability. Thus

L(f) = (=1)* [ & d(DY) = [DkSN(f)

with probability one for any f & ®. Clearly P, ot ' =Q,,50 P = Q.0 (D)7,
q.e.d.

Tueorem 4.2. If u is a Borel ineasure on R*, finite on bounded sets, and L is a
Gaussian rlf on H = L*(R*, 1) such that

EIL(NHP = [ Iff du
then Q, has outer measure 1 for the Kolmogorov measure of x( ), the indefinite

integral of L.
Proor. It suffices to show that, given 4/ > 0, the desired monotone continuity

conditions hold on the cube C:0 £ t; < M,7 =1, -, k, since z(t) = 0if any
t; is zero.
We spread u on C into a continuous measure, as follows: for j = 1, -+, k,

0< a < M, let f;(a) be the sum of the u-measures of all those (k¥ — 1)-dimen-
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sional cubes, {te C:t; = b}, which have positive u-measure and b < a. Clearly
each f; is a bounded function. Let F;(s) = s + fi(s),j = 1, ---, k, and let
F(t) = (Fi(t1), - - -, Fi(t) ). Then F takes C 1-1 into a larger rectangular solid
D, taking hyperplanes ¢; = constant into hyperplanes of the same form. We define
a continuous map G = (G, ---, G&) of D onto C as the inverse of F' where it is
defined, with

Gi(s1, -+, &) =1 for Fi(t;) < s < Fi(t;h).

We define a measure » on D by the following construction. Let J be any subset
of {1, - -+, k}, say of cardinality n. Let N, be the set of n-tuples {r;, j eJ} such
that f; is discontinuous at ; for each jeJ. Then Ny = [];s Nij . Now for
a e Nylet u(J; «) be urestricted to the set of ¢ € C where {¢;,7eJ} = a and f;is
continuous at t; for j £ J. Then for j £J, no measure u(J; @) gives positive mass
to any hyperplane ¢t; = constant.

Let Py(t) = {t;, jeJ} and let »(J; ) be the product measure,
(J; ) o F o P, X N(J; @), where \(J; @) is Lebesgue measure, normalized
to total mass 1, in the rectangular solid, F;(G;(e;)) < 85 < Fi(Gi(a)™),jed in
an n-dimensional space. Of course u(J; a) o F~' o P, 7" is a measure on a ( k— n)-
dimensional space, and F and P; commute. Let

y = ZV(J;OL)

where the sum is over all setsJ C {1, - - - , k} and @ ¢ N,; . Then v is a measure on
D. It gives measure zero to any hyperplane s; = constant since each »(J; &) does.
ForeachJ and a ¢ N,

v(J;a) o @ = u(J;a) o Pyt X 8 = u(J; )

where 8, is the unit mass at « in n-space. u restricted to C, or pc , is the sum of the
w(J; @) over all J and « e N, since Zam, w(J; @) is pc restricted to the set
where f; is continuous precisely for j £J, and these sets are disjoint with union C.
r.[‘hllSVOG_1 = Mdc .
Now let M be the rlf on L*(D, ») defined by

M(f) = L(f~ @).

Then E |M(f)|* = f Ifi* dv for all f e L*(D, »). Letting y be the indefinite in-
tegral of M, we have

y(s) = 2(G(s)), seD.

Forj=1,---,klet Hi(b) = b+ v{éeD: s; < b}. Then H; is continuous and

strictly increasing for 0 < b < f;(M). Letting z(Hy(s1), ---, Hi(sx)) =

y(s1, -+ 8), we obtain a Gaussian process z on a rectangular solid with
Elz(u) — 2(0)] < K Ju — v,

so that z is almost surely continuous by Theorem 2.1 and hence so is y. Since F
has the desired continuity properties on C, so does x.
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If u has finite total mass, we can let M = + « and apply the same argument,
essentially. The proof is complete.

6. Processes on spaces of polyhedra. A set which is the convex hull of some
k + 1 points of R* will be called a (k + 1)-set. (If it has non-empty interior, it is
a simplex in the usual sense.)

A sequence C,, of (k + 1)-sets will be called convergent to another such set Cj if
for some choice and ordering of (kK + 1) points Cy,1, -+, Cur+1 Whose convex
hull is C, for each n, C, ; — Cy,; for each j. The set of (k + 1)-tuples of points of
R*is a k(k + 1)-dimensional linear space W. The set S of all (k + 1)-sets in
R* is the factor space of W by an equivalence relation, but rather than trying to
take advantage of this I shall simply treat functions on S; as functions on W.

Now suppose given a Gaussian rlf L on some linear space of real- or complex-
valued functions on R* which contains all indicator functions of (k + 1)-sets.
Then Theorem 2.1 on W implies almost sure continuity of L on Sj if the following
holds:

If K is any bounded subset of W, thereisa C > 0 and an a > 1 such
that if  and y are any two points of K and f and ¢ are the indicator
(%) functions of the corresponding simplices,

E|L(f) = L(g)[ = C/log |x — ylI".

To obtain (*) in some cases we have

THEOREM 5.1. Suppose L is a random distribution on R* such that if v is Lebesgue
measure on R* and M is any bounded subset of R, there is a C; > 0 and a > 1
such that

E(IL(OI) = Cy/llog »(U)[*

whenever f ¢ D vanishes outside the open set U C M and |f| < 1. Then for each M,
L extends by continuity to an xlf on L*(M, v) for which (x) holds.

Proor. The extension to an rlf on L*(M, »), for which we may assume M open,
is immediate, and we then have the inequality in the hypothesis for any
feL*(M, v). It then suffices to show that there is an m > 0 such that whenever
z, y, € M and E, F are the corresponding simplices,

v(BEAF) < m |z — yl,
where EAF is the symmetric difference
(E~TF)u (F~E).

Let N be the supremum of the (k — 1)-dimensional ‘“‘surface areas’ of (k 4 1)-
sets defined by points of M. Then clearly we can take m = 2N, and the proof is
complete.

The hypothesis of Theorem 5.1 is satisfied if L is a noise or centered noise
process whose spectral measure p is absolutely continuous with respect to
Lebesgue measure » and satisfies the rather mild additional condition that
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w(B) = Cy/[log»(B)[*

where C; > 0 and a > 1 depend only on the choice of a bounded set including
the Borel (or open) set B.

The method of reparametrization is unavailable here since only linear trans-
formations will preserve (k -+ 1)-sets. Thus the full force of Theorem 2.1 seems
to be used.

Continuity on (k + 1)-sets implies continuity on polyhedra with any fixed
nuinber of vertices. It is not only considerably stronger than continuity on rec-
tangular solids parallel to a given set of axes, but invariant under linear trans-
formations. It would be desirable to conclude from continuity on (kK + 1)-sets
that f — L(f) is almost surely continuous on some function space larger than
what we have from Section 4+ (say 9"f/dt, - - - 9t is integrable and f has compact
support). However, I have no such result at present.

6. Noise processes and stationary Gaussian processes. Let u be a nonnega-
tive, o-finite measure on a space X, and H the separable complex Hilbert space
L*(X, ). We assume H is infinite-dimensional, i.e., that u is not concentrated in
finitely many atoms.

Let L be the normal rlf on H. Then L has “independent values,” in the sense
that if f and ¢ in H have disjoint supports (fg = 0), then L(f) and L(g) are inde-
pendent. If X is a Euclidean space and u is Lebesgue measure, L is called the
“white noise” rlf. In general, we say L is the noise rlf with spectral measure p.

Now suppose v is a Borel measure on R*, finite on bounded sets. Then L re-
stricted to D is a random distribution with independent values, as defined by
Gelfand and Vilenkin ([7], Chapter 111, Section 4).

I shall now describe how noise rlf’s arise as the Fourier transforms of stationary
Gaussian rlf’s. If f is a function on R* and z, y ¢ R, let f,(z) = f(z — y). A
random distribution L on R* is called stationary if for any f&, -, f e,
y ¢ R, the joint probability laws of L(f®), - -+, L(f®) and L(f,*, - -+ £,*) are
the same (see Ito [12]).

Suppose L has values in a finite-dimensional complex linear space V, and has
second moments. Then, as mentioned in Section 4, for any two linear functionals
pand o on V there is a distribution B,, on R* such that

E(p(L(f))o(L(g))) = Buw(f ® 7).
Now stationarity implies that for any z ¢ R, the transformation
@y)—>@+zay+z), zyck,
of R™ into itself leaves B,, invariant. Hence there is a distribution C,, on R* such
that for any k & D(R™),
Buy(h) = [Cooli| [ h(z + y, z) da]

where dz is a Lebesgue measure in R* (see Schwartz [19], tome I, Chapter II,
Section 5, formula 10, p. 57); apply the formula k times).
Now for p = o we have for any f ¢ D(R"),
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Il

0 = E(|lo(L(NH*) = Boo(f ® J)
= Corwl [ f(zx + y)f(z) da).

Thus C,, is of positive type, and according to the generalized Bochner theorem
(Schwartz [19], tome II, Chapter VII, Section 9, Theorem XVIII, p. 132) C,, is
the Fourier transform of a non-negative tempered measure u., so that for any
f, 9 ¢ D(RY),

B(o(L(1))o(L(g))) = [ ([ f(x + 9)§(2) dz)~(\) dusoo(N)
where for any Lebesgue integrable function F on R*, F(\) = [a e ™ * P F(y) dy,
Ae R and (A, y) = Z'j -1 N5 . Now letting

(®+1)(y) = [m®(y — 2)¥(z) dz and ¥(z) = ¥(—2)
for any ®, ¥ ¢ D, we have

Boo(f ® ) = [ (x(5)*)~(\) dpor(N)
= [TOV@) ™) duae(N).
It is easy to check that for any p and o,
4B, = Boropto — Bogpo + iBoriopric — 1Bpmig pmis -
Thus for any p and ¢ there is a complex-valued measure u,, with
Bo(f ® §) = [ F(§)” dupe(N).
We have for any f ¢ D and linear functional ¢ on V,
E(o(L(f)) = o(v) [wf(z) dz

for some fixed v e V. Letting M = L — v we obtain a stationary random dis-
tribution with second moments and E(o(M(f))) = 0 for any fe D and linear
functional ¢ on V.

Now if V is one-dimensional, let o(t) = ¢; then for some measure u on R,
finite on bounded sets,

EM(NMg)) = [](G)” du
and E(M(f)) = 0forallf, g ¢ D. Thus we can say that the Fourier transform of

M is the noise process with spectral measure u.
For & = 1 and V one-dimensional the representation

E(L(HL()) = [J(§) du

for the covariance of a random distribution when it is translation-invariant was
first proved by K. Ito [12]; for k > 1 and V multidimensional the representation
of B, in the stationary case was found by Ito [13] and Yaglom [24], and has been
used by Urbanik [23] and probably others.

Now, for any tempered nonnegative measure u on R* there is a stationary
Gaussian random distribuion L with
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E(L(f)) = 0,
E(L(H)L(g) = [J(§) du

for all f, g ¢ ©. Let N be the noise rlf with spectral measure u. Then my result
[4] implies that the Minlos measure for N is concentrated in the set of distribu-
tions D*g where ¢ is measurable and [ 5 lg|? dx is finite for any bounded set B
and 0 = p < . Theorems 4.1 and 4.2 yield a better result in this case, namely
that g can be taken in @, , so that it is bounded on bounded sets.

7. Centered noise processes. Another class of examples, closely related to
noise rlf’s, is as follows:

DerintTioN. If (X, 8, u) is a probability space, the centered noise rlf L on
H = I}(X, 8, u) is a real Gaussian rlf L such that for any f,ge H, E(L(f)) =0
and

E(L(NL(g) = [ (f — m(f))(g — m(g)) dy,

where m(h) = f h du (defined for any h ¢ H since u is a probability measure).

To show that such an L exists, we take an orthonormal basis {f,} of H where
/1 is the constant function 1, and let L(f;) = 0,while for n > 1, L(f,) are inde-
pendent, normalized Gaussian random variables; then we extend by linearity and
continuity. It is clear that, roughly speaking, a centered noise rlf is obtained from
the (complex) noise rlf with the same u by taking real parts, multiplying by
2! and imposing the restriction L(1) = 0.

If X is R* for some & and § is the Borel field, a centered noise rlf can be treated,
like noise rlf’s in the preceding section, as a random distribution, i.e. restricted to
D < H. Then by Theorems 4.1 and 4.2 the Minlos measure for L is concentrated
in the set of distributions of the form 8f/dt; - - - at; , where f ¢ Q, . I don’t know
whether this representation can be improved using Theorem 5.1 under suitable
assumptions on .

Centered noise rlf’s arise in connection with “empirical measures” as follows:
let 1, 22, -+ -, be independent X-valued random variables with distribution ,
i.e. we construct a countably infinite product @ of spaces isomorphic to (X, 8, u)
with z; as coordinate functions; let the product measure be Pr. Now if f is an
integrable function on X, the f(x,) are independent, integrable random variables
with the same distribution, so by Kolmogorov’s strong law of large numbers
(Lodve [16], p. 239) (f(z1) + - - + f(x))/n — ffdu converges to0asn — o
with product probability one.

For any z ¢ X, let 8, be the probability measure concentrated at z, and let

Mn = (6:01 + e + 617,)/”7

where the §;; are regarded as measures on the same space X, i.e. we have a map-
ping of € into probability measures on X for each n. The u, will be called “em-
pirical measures” associated with u. Clearly f fd(u, — p) converges to zero
with probability one for f integrable on X. If X has a topology for which con-
tinuous real-valued functions are $-measurable, this implies that g, — u in the
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weak™ topology of the dual of the Banach space of bounded continuous real
functions on X, with supremum norm.

Now, if fi, -+, fm € H the multidimensional central limit theorem implies
that if

Vn = n%(/in - /‘),

the joint distribution of [ fidv,, -+, [ fm dv, will approach that of L(f), - - -,
L(f,) where L is the centered noise rlf for u.

If X is the real line, the manner of convergence of the distribution of », to
that of L has been intensively studied by several authors, particularly when u is
a continuous measure; all continuous measures are equivalent for this purpose. I
have extended some results to X = R*, k > 1, and will publish the extensions
separately [5].

8. Special examples. In this section we consider various generalizations of the
one-dimensional Brownian motion process.

One is Lévy’s Brownian motion, a Gaussian process G on R* which satisfies,
for any s, t ¢ R,

B[G(s) — GO = |s — ¢, B(G(s)) = 0,

where (say) G(0) has a given Gaussian distribution. For definiteness we let
G(0) be identically zero.
Theorem 2.1 easily implies almost sure continuity of G. As noted at the end of
Section 2, Lévy’s original proof is somewhat simpler in this case (Lévy [15]).
Here it is unnatural to consider 8*G/dt; - - - 9t . Instead, we use the gradient

(0G/dty, - - -, 3G/ ot.),
i.e. we consider the rlf from D(R*) to R* defined by

L(f) = —(J (af/ot))G(t) dt, - - -, [ (3f/ot)G(t) dt).

It is easy to see that L is stationary. The Minlos measure for L is concentrated
in the set of vector-valued distributions (dx/dt;, - - -, dx/t;) where z( ) are
continuous functions.

As in Section 4, the distribution defined by a function or partial derivative 4
will be written [A]. Ito [13] proved that there is a ¢; > 0 such that for any 7 and j
and f e D,

E([0G/8t1(N)[0G/at1(g)7) = e fre NN/ INFTFN(G)7(N) dN

(see Section 6 for the notation). ‘
It follows easily (see Yaglom [24]) that for any % & D whose integral over R* is
zero,

BIGIR) = 4rec [ ROV dv/INF
Let 47°c; = by and
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dur(N) = b dN/ N
To evaluate ¢ , let h, € D have integral zero and be such that as n — o,
[ ghudt — g(1,0, -+, 0) = g(~=1,0,---,0)

for any bounded continuous function g on R, with all h,(¢) vanishing for |¢| = 2.
Then

2 = limy.e E|[G] ()]
limpoe [ |fnl” diss

= b [ sin® (2r\) AN/ N,

by the dominated convergence theorem, since for some K > 0, |2.(\)|* € K |A\[*
for all » and \.

Now for k = 1, this yields 2x°b, = 2, b, = 1/x°. For k = 2, let S, be the total
surface measure of a sphere of radius 1 in R*, and let » = (A + -+ + M)},
w = 1/r*. Then

2 = 4bSiy [Z.sin® (2N) AN [ IV dr

= 4buSiy [Zasin® (2nh) dh [T (1 + wh')TE dw/2
[4buSi—s/ (K — 1)] [2. [sin® (20N1) /N7 Ay
= [4bSk—/(k — 1)]-27".

Thus b = [41_rZSk_1/ (k — 1] = (47°V._1) " where V; is the volume of a ball of
radius 1 in R’.
Now to complete the description of the covariance distribution of G, let ¢ ¢ D

have

[e()dt = as=0.
Take g, ¢ © with f guh dt — h(0) for all bounded continuous h on R*, with g, = 0
for |¢{| = 1 for all n. Then
limy e El[(;](gn)’2 =0,
and for any f & ® with integral zero,

E([Gl(ag. — ®)GI()) = [ (agn — &)(])™ dus -

Letting n — « we get

E([GU)GIN) = [ (6 — (0))())” du .
Now
E([G)(¢)[GI(agn — ¢)) = [ (6 — #(0))(afin — &) dpss .

Again letting n — «, we have E|[G](¢)° = [|¢ — #(0)* dw . Thus for any
figeD,
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E(GINGI) = [ (7 = 7(0))(§ — §(0)) dum,

so that the covariance distribution of [G] is completely determined.

Another generalization of Brownian motion is the indefinite integral z(¢) of
the “white noise” rlf L with E(|L(f)|*) = [ |f(¢)]" dt. (¢) is almost surely con-
tinuous by Theorem 4.2. For & = 1 this is classical, and for k = 2 it was proved by
J. Yeh [25].

Still another generalization is the “multiple Wiener integral” introduced by
Ito ([10], [11]), where we let

Li(f) = [f(t, -, 4) do(t) -+ - daw(te)

and z;, - -+, 2 are independent real or complex Brownian motion processes on
one real parameter. The rlf L; is clearly defined at least on ®, and satisfies
E(L:(f)) = 0,

E(L:(L:(9)) = [fadt

for any f, g € D. Thus L; can be extended to a continuous rlf on L*(R*, dt), and
its means and covariances are precisely those of white noise.

However, for & > 1 L; is not Gaussian. For example, if f is the indicator func-
tion of a rectangular solid parallel to the axes, L;(f) is a product of independent
Gaussian random variables and hence is not Gaussian. Also, L; does not have
independent values.
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