DISTINGUISHING A SEQUENCE OF RANDOM VARIABLES FROM A
TRANSLATE OF ITSELF

By L. A. SuEPP

Bell Telephone Laboratories, Murray Hill, New Jersey

1. Introduction. Suppose X ={X1, Xa, ---} is a sequence of independent and
identically distributed random variables and @ = {a:, a2, -} is a numerical
sequence, a, representing the error in centering X, . When are the sample paths
of X and X + a distinguishable?

We can distinguish X and X + a with probability one if a is so big that
> a. = w.If D, a’ < ® and X has finite information (see Equation (1))
then we cannot distinguish. Conversely if we cannot distinguish for all a with
> an < o then X has finite information. For X with finiteinformation we can
distinguish if and only if D a.” = . The latter statement becomes false for
any wider class than the finite information class.

Here X is said to have finite information (I < ) if the common distribution
F has a positive (a.e.) and (locally) absolutely continuous density ¢ and

1) T (¢)/0 < .

Fisher [2] called the quantity in (1) the information, or intrinsic accuracy. It
is denoted by I = I(F).

We briefly mention an application to a quantization problem. Following J.
Feldman [1] one can produce examples of quasi-invariant (qi) distributions in
Iy : Construet a product measure A on sequence space whose translates A, for
a ¢y are all equivalent measures. Such a predistribution A\ gives rise to a qi
distribution on Iy [1]. Theorem 1 gives, in particular, the exact class of such \
having identical one-dimensional marginals—namely those with finite informa-
tion. Part of this result was obtained by Feldman who was concerned with more
general situations. J. R. Klauder and J. McKenna have recently obtained very
general classes of qi distributions in their work on continuous representations
of I [4].

Returning to the statistical setting, we say we can distinguish X and X + a
if there is a set E of sequences for which

Pi@— E|X} = PlE|X +a} =0,

where Q is the set of all sequences. This means that the measures p and p* induced
by X and X + a respectively,

w(4) = P{A|X}, w'(4)=PA|X +a},
are singular (u L u®).
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The measure u is the product measure

2) g = [T Fidea}
where F is the common distribution of X;, X, , --- . The measure u® is also a
product measure
(3) w = 17 Fld(z. — an)}.

The measures p and u* are equivalent (u ~ u®) if they have the same null sets,
(4) u(4) =0 ifandonlyif u*(4A) =0 forall 4.

We call X and X + a totally indistinguishable if (4) holds. This is stronger than
merely being indistinguishable (nonsingular) and, roughly stated, means that
for every observed sequence there is doubt as to whether it came from X or X + a.

Our results may now be formulated:

TrroreM 1. Suppose F = F{dz} is a probability distribution on B (real num-
bers), and p and p* are the product measures defined in (2) and (3) above:

(1) If X a. = o then u L u* (distinguishable).

(i) Assume I < oo: then p ~ u* (totally indistinguishable) if D a,° < o,
andp L p®if D a) = oo.

Moreover a converse to (i) holds:

(iii) If p ~ p® for all a with Y_ a,’ < o thenI < .

(ii) was previously known for Gaussian F and shows that the Gaussian situation
continues to hold for any F with finite information. It was unexpected that the
Fisher information plays such a central role and it might be interesting to de-
termine the class of F for which u ~ p® for a e 1, for values of p # 2. The proof
of Theorem 1 leans heavily on an important result of S. Kakutani on equivalence
of infinite product measures and on the machinery of the Hilbert space L, of
square-integrable functions.

2. Singularity and equivalence of product measures. S. Kakutani [3] gave
useful criteria for determining singularity or equivalence of infinite product
measures. Suppose py, g2, -, ¥1, ¥2, -+ are probability measures and

(5) p= ITnpn, v=JInzva

are their product measures. Let H denote the Hellinger integral (9).
TuareorEM 2. (Kakutani). If u and v are given by (5), then

(6) H(u,») = ][5t H(pin, vn).
Moreover,
) ply fandonlyif H(u,v) = 0.

If uyn ~va,m=1,2 -+ then
(8) p~v fandonlyif H(u,v) > 0.
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We recall that for any probability measures u and » the Hellinger integral
H (u, v) is defined by choosing any measure m for which du/d,,,, dv/d, are defined
(for example m = u + ») and setting

(9) H(p,») = [ (du/dm-dv/dm)? dm.

It is easy to check that H(u, ») does not depend on m and 0 < H(u,») £ 1
by Schwarz’s inequality. Equation (6) allows us to calculate H(u, ») from the
component measures.

3. A separating sequence. To prove (i) we need to show that for every F, X
and X + a are distinguishable if ) a,” = «. We shall choose a sequence of
numbers 6, , 62, - - - which, in a sense, separates X and X + a. This will entail
making |F(0,) — F(6. — a.)| large, where F is now used to denote the common
distribution function.

Lemma 1. Suppose F is any distribution function and D a," = «. There is a
sequence 0y , 0y , - -+ for which

(10) 20 (F(6n) — F(6, — @) = oo,

Assuming the lemma for a moment let us define new sequences X' and
(X 4+ a)’. Given any sequence Y set

Y., =0 if Yo < s
=1 ifY,=0,.
Suppose a, (resp. B,) is the measure induced on the two point space @ = {0, 1}
by X. (resp. (X + a).’),
(11) aq(0) = F(6.) an(l) = 1 — F(6,)
Br(0) = F(6n — an),  Ba(l) =1 — F(6n — an).
We have
H(an, Bn) = [0a(0)8a(0)1F + [aa(1)8a(1)T.
Using the elementary inequality
@+l -—2)0—-pfsh—-G@-y 0=sz=10
withz = ,(0), y = B.(0) we obtain using (10) and (11) that
I H e, B2) = II2- (1 = (F(6a) — F(6n — an)") = 0.

It follows that HLI o, and HZ’_I B. are singular and so X' and (X + a)’ are
distinguishable. It is clear that the original process X and X + a must also be
distinguishable. The proof of Lemma 1 rests on a second lemma.

Lemma 2. Suppose F is any distribution function. Define

6= info<a,<1 SUP—w<b<0 [F(O) - F(0 - a)]/a.

IIA
I\
[y

4

Then & > 0.



1110 L. A. SHEPP

Suppose the lemma false so § = 0. Then for eachn > 0 thereisana,0 < a < 1,
for which

(12) F(0) — F(6 — a) < any for all 4.
Choose numbers b and ¢ with F(¢) — F(b) > 0 and define the integer r by
(13) bt+ragce<b+(r+1a

where a is such that (12) holds withn = (F(c) — F(b))/(c — b + 1). We have
(14) F(e) — F(b) = F(b + (r + 1)a) — F(b)

= 20 F(r + (k + 1)a) — F(r + ka).
Using (12) in (14) we get
(15) F(e) — F(b) < (r + Van.

Now by (13), (r 4+ 1)an = ran + an < (¢ — b + 1)y = F(¢) — F(b), con-
tradicting (15). This proves Lemma 2.

Now Lemma 1 is trivial if a, does not tend to zero. Suppose then that a, — 0.
This means that |a.| < 1 eventually and Lemma 2 then shows that numbers 6,
exist so that |F(0,) — F(6. — a.)] = (8/2)|a.|, for n sufficiently large. Since
Y. a,’ = o we see that the 6, satisfy (10). This completes the proof of both
Lemma 1 and (i) in Theorem 1. .

4. The Fisher information. The information I can be written simply as
(16) I=4f (W), h=4¢. '

Now ¢ is a density and so,h/e L. Let h(u) = (21r)_*f ¢ h(z) dz denote the
transform of k. The formal transform of 4’ is tuh(u) and by Plancherel’s theorem
(17) J(WY? = [dlh(u)] du.

The correspondence between ' and wh(w) is made precise by the following well-
known lemma ([5], p. 92].

Lemma 3. Suppose h e Ly . If B’ € Ly then wh(u) € Ly . If uh(u) € Ly then h is
(almost everywhere) an absolutely continuous function and k' & Ly . Moreover in

this case (17) holds.
Now suppose that I < «. By definition F then has a positive density and so

the measures
paide} = Fidz},  va{dz} = F{d(z — a.)}
are equivalent. We have
dpa/dz = o(z), dva/dz = o(x — a,)
and applying (9) with m = Lebesgue measure dz we obtain

(18) H(pn, ) = [ lo(2)o(z — an)] da.
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Parseval’s identity gives
Jle@)e(z — an)l de = [ cos amulh(w)[* du
and from(6) we obtain
(19) H(p, p*) = J[Tn (1 — [ (1 — cos anu)|h(u)|® du).
Using the inequality 1 — cos ¢t < 1* we obtain from (16) and (17)
J (1 = cos aau)|h(u) du = 3a.’[ W|h(u)| du = 3a.I.

It follows immediately that H(u, u*) > 0if > a,’ < « and I < . Using
(8) this proves (ii). Feldman has already obtained this ([1], pp. 348-349).
Next we prove (iii). We are given that u ~ u® for all a £ I, . In the next section
we will show that F has a positive density. Assuming this, we have that u, ~ v, ,
n=12 --- . Using (8) we must have H(u, u*) > 0foralla ¢ I, . Now (19) gives

met [ (1 — cos au)|h(u)Pdu < o, forallack.
Now 1 — cost = 1f for |t| =1 and so
200 Tt 02 et () < o
We next show uh(u) € Ly. Suppose this were false. Then
T(a) = [ju gy wh(u)] du

increases to infinity as a tends to zero.

Lemma 4. If T is a function such that T(a) increases to infinity as a decreases to
zero then there is a sequence a € ly for which D, a,°T(a,) = .

Choose numbers ¢, such that 0 < t, = (3)", T'(t.) =2 2",n = 1,2, --- . Now
choose a so that there are exactly 7, values of k for which a;, = ¢, where r, is the
unique integer satisfying

(21) 2 <1 £ (r, + 1)27t,%

We then obtain Y a,’ = D>, rat. < 2,2 = 1s0aely. However, ) a.’T(an)
= > (ra+ 1)t2" — D t.2" = oo. This proves Lemma 4. Using a sequence a
with the properties of the lemma we obtain a contradiction to (20). Thus
uh(u) € Ly . Using Lemma 3 we see that h = ¢! is absolutely continuous. It then
follows, although the proof is not completely trivial, that ¢ itself is absolutely
continuous. Using (16) and (17), I < .

6. Translates of a linear measure. We are given that u ~ u° for a ¢ I; and we
will show here that this means that F has a positive density. We must have
F{dz} ~ F{d(z — a)} for all a because marginals of equivalent product measures
are necessarily equivalent. That is, F is equivalent to its translates. The fact that
F has a positive density is already a consequence of this as the following lemma
shows.

Lemma 5. If F is a probability measure on the reals (R) which is equivalent to
its translates then F has a positive density.
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For any set E, Fubini’s theorem gives
faeR (fzeR XE(x - a)F{dx}) da = f:eR (J.aeR XE(x - a) da)F{dx}

where xz is the indicator of E, xs(u) = 1 or 0 according as u ¢ E or not. This is
exactly

(22) feer F{E + a} da = [..x \(E}F{dz} = ME}F{R}.

Now if F{E} = 0 then AM{E} = 0 because F{E 4+ a} = 0 for all a. Conversely,
if ME} = 0, F{E 4+ a} = 0 for almost every a by (22). It follows that
F{E + a} = 0 for every a, since F is equivalent to its translates. In particular
F{E + a} = 0 for a = 0. We have proved that F is equivalent to Lebesgue
measure. This means that F has a positive density ¢ and the lemma is proved.

We have already seen that ¢ is absolutely continuous and that (1) holds. This
proves (iii) and finishes the proof of Theorem 1.
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