NOTES

ON A PROBLEM IN NON-LINEAR PREDICTION THEORY

By James B. Robertson

Cornell University

In [2] Masani and Wiener proved that the best least squares non-linear predictor $E(f_n \mid B_0)$ can, in theory, be calculated from the time series $\{f_n, n \leq 0\}$ if one is given that $\{f_n, -\infty < n < \infty\}$ is a bounded, ergodic, strictly stationary stochastic process such that the spectrum of the joint distributions F_{n_1,\ldots,n_k} for distinct n_1, \dots, n_k has positive (k-dimensional) Lebesgue measure. In this note we prove that $E(f_n \mid B_0)$ is determined by the time series $\{f_n, n \leq 0\}$ (and is free of the possibly unknown probability measure) if one is only given that $\{f_n, -\infty < n < \infty\}$ is an integrable strictly stationary stochastic process.

Our result is not really a generalization of the result of Masani and Wiener. They actually give a procedure, albeit impractical, for calculating $E(f_n \mid B_0)$, whereas our method is nonconstructive.

We shall use the following definitions from [2]:

R = real numbers;

Z = integers;

 $\Omega = R^{\mathbf{z}}$ = the set of all functions from Z to R;

 $f_n: \Omega \to R$ defined by $f_n(g) = g(n)$ for all g in Ω ;

 $B_n =$ "present and past of f_n " = the σ -field generated by $\{f_k, k \leq n\}$;

 $B_{-\infty} =$ "remote past of $\{f_n\}_{-\infty}^{\infty}$ " = $\bigcap_n B_n$; $B_{\infty} =$ "space spanned by $\{f_n\}_{-\infty}^{\infty}$ " = the σ -field generated by $\bigcup_n B_n$;

 $T:\Omega \to \Omega$ defined by T(g)(n) = g(n+1) for all g in Ω and for all n in Z.

Suppose $\{\tilde{f}_n(\omega)\}_{-\infty}^{\infty}$ is a time series where $\{\tilde{f}_n\}_{-\infty}^{\infty}$ is a strictly stationary stochastic process on a probability space $(\tilde{\Omega}, \tilde{B}, P)$. Then by considering the mapping $\varphi \colon \omega \to \{\tilde{f}_n(\omega)\}_{-\infty}^{\infty} \text{ from } \tilde{\Omega} \text{ to } \Omega, \text{ we can assume that the time series } \{\tilde{f}_n(\omega)\}_{-\infty}^{\infty}$ came from the process $\{f_n\}_{-\infty}^{\infty}$ on $(\Omega, B_{\infty}, \pi)$ where $\pi = P \circ \varphi^{-1}$ is an invariant probability measure for T (i.e. $\pi(A) = \pi(T(A))$ for all A in B_{∞}). Thus we shall assume that the strictly stationary stochastic process is $\{f_n\}_{-\infty}^{\infty}$ defined on $(\Omega, B_{\infty}, \pi)$ for some π in the set S of all probability measures on B_{∞} which are invariant under T and for which f_0 is integrable.

Consider those π in S for which f_n is square integrable. A main problem in non-linear prediction theory is for fixed n to calculate the B_0 -measurable function \hat{f}_n for which $\int_{\Omega} |f_n - \hat{f}_n|^2 d\pi = \min \{ \int_{\Omega} |f_n - g|^2 d\pi, g \text{ in } L_2(\Omega, B_0, \pi) \}.$ It is well known that $\hat{f}_n = E_{\pi}(f_n \mid B_0)$ a.e. $[\pi]$ where $E_{\pi}(f_n \mid B_0)$ is the π conditional expectation of f_n given B_0 . Since π is the only unknown quantity, n order for $E_{\pi}(f_n \mid B_0)$ to be determined by $\{f_n, n \leq 0\}$ there must exist a B_0 -measurable

Received 15 January 1965.

The Annals of Mathematical Statistics.

www.jstor.org

function \hat{f}_n , independent of π , such that $\hat{f}_n = E_{\pi}(f_n \mid B_0)$ a.e. $[\pi]$ for all π in S. This will follow if B_0 is a sufficient subfield for (Ω, B_n, S) .

THEOREM. B_n is a sufficient subfield for $(\Omega, B_{\infty}, S), -\infty \leq n \leq \infty$.

PROOF. Let $I = \{A \text{ in } B_{\infty} : T(A) = A\}$. We shall first show that $I \cap B_{-\infty}$ is a sufficient subfield for (Ω, B_{∞}, S) . Let A be in B_m , m finite, and let 1_A be its indicator function. Define

$$g_A = \lim_{n\to\infty} n^{-1} \sum_{k=1}^n 1_A \circ T^{-k}$$
 whenever the limit exists = 0 otherwise.

Then g_A is I-measurable and by the ergodic theorem $g_A = E_{\pi}(1_A \mid I)$ a.e. $[\pi]$ for all π in S. Since g_A is B_m -measurable and $g_A = g_A \circ T^{-k}$, g_A is $I \cap B_{m-k}$ -measurable for all k. Hence g_A is $I \cap B_{-\infty}$ -measurable and

(1)
$$g_A = E_\pi(1_A \mid I \cap B_{-\infty}) \text{ a.e. } [\pi] \text{ for all } \pi \text{ in } S.$$

Let M be the set of all A in B_{∞} for which there exists a $I \cap B_{-\infty}$ -measurable function g_A satisfying (1). It follows that if $A \subseteq B$, then $g_A \leq g_B$ a.e. $[\pi]$ for all π in S. Hence, by the monotone convergence theorem, M is a monotone class. We have shown that M contains the field $U_n B_n$, and therefore $M = B_{\infty}$. Thus $I \cap B_{-\infty}$ is a sufficient subfield for (Ω, B_{∞}, S) .

 B_n , for n finite, is a separable σ -field since it is generated by a countable number of real valued functions, f_k , $k \leq n$. Therefore, since B_n contains the sufficient subfield $I \cap B_{-\infty}$, B_n is itself a sufficient subfield for (Ω, B_{∞}, S) , cf. Burkholder ([1], Theorem 5). Since $B_{-\infty} = \bigcap_n B_n$ and $B_n \subseteq B_{n+1}$ for all n, $B_{-\infty}$ is also a sufficient subfield for (Ω, B_{∞}, S) , cf. Burkholder ([1], Theorem 3 (i)). Q.E.D.

Let $g(\cdots, f_{-1}, f_0) = E_{\pi}(f_n B_0)$ a.e. $[\pi]$ for all π in S. It should be remarked that g is independent of π and must agree with various known results. Thus if $\{f_n, -\infty < n < \infty\}$ is bounded and ergodic, $g(\cdots, f_{-1}, f_0)$ must agree almost surely with the procedure given by Masani and Wiener in [2]. If $\{f_n, -\infty < n < \infty$ is normally distributed with zero mean, then $g(\cdots, f_{-1}, f_0)$ must agree almost surely with the value given by linear prediction. Finally if $\{f_n, -\infty < n < \infty\}$ is independent identically distributed, then $g(\cdots, f_{-1}, f_0) = \lim_{n \to \infty} n^{-1} \sum_{k=0}^{n-1} f_{-k}$ almost surely!

REFERENCES

- [1] Burkholder, D. L. (1961). Sufficiency in the undominated case. Ann. Math. Statist. 32 1191-1200.
- [2] MASANI, P. and WIENER, N. (1959). Non-linear prediction. Probability and Statistics The Harald Cramér Volume, Wiley, New York. 190-212.