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A RANDOM SET PROCESS IN THE PLANE
WITH A MARKOVIAN PROPERTY!

By Paur Swirzer?

Harvard University

0. Introduction. In a recent paper concerning the pattern in a planar region
of one species of vegetation with respect to another, Pielou (1964) defined a
“random” pattern as one in which the alternation between species along any line
transect is Markovian. However, Bartlett (1964) pointed out that she did not
establish the existence of a two-state planar process having this Markovian
property. He also noted that the correlation between a pair of points of a two-
state Markov process must be ¢ **(k > 0) where v is the distance between the
points; by referring to Whittle (1954, p. 448) he claimed that in two dimensions
this correlation function does not correspond to any simple random hypothesis.
Whittle’s point seems to be based on the somewhat complicated nature of the
two-dimensional Fourier transform of an exponential function.

While there is a concensus about the non-elementary character of the ex-
ponential correlation function for processes in the plane, it has nevertheless been
used to smooth empirical correlograms and as a basis to compare sampling de-
signs; see Matérn (1960, p. 52 and p. 83). It is of course well-known that ¢™*°
does belong to the class of possible correlation functions. Especially, it is possible
for the class of two-state processes since it is convex downward in a neighborhood
of v = 0; this necessary condition was noted by Matérn (1960, p. 42) and is not
satisfied, for example, by the function chosen by Whittle (1954, p. 448) as the
“elementary”’ correlation function for general stationary and isotropic processes in
the plane.

This paper demonstrates the existence of a finite-state random process in the
plane with the property that the alternation among states along any straight line
is Markovian. The process is quite elementary, and can be regarded as a simple
hypothesis of randomness albeit in a somewhat special sense. Specializing to the
case of two states, it must follow of course that the correlation function of our

v

model has the form ¢™°.

1. Constructive description of the model. First, let the plane be partitioned
into “‘cells” by locating straight lines at random according to the following pro-
cedure: Suppose the family of all straight lines in the plane is given by
zcosf + ysinf® — p = 0 relative to a fixed Cartesian co-ordinate system, with
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1860 PAUL SWITZER

the (0, p) parameter space being the infinite strip 6 € [0, v), p € (— ©, © ). Then
lines are randomly chosen by choosing points in the parameter space according
to a planar Poisson point process with average density N per unit area. This
method of choosing straight lines at random is mentioned in Kendall and Moran
(1963), where some interesting properties of the method are explored.

[One can easily construct a realization of this random partition into cells for
any finite subregion, R, of the plane. For example, suppose R can be enclosed by
a circle of radius r; fix the origin of the plane at the center of this circle and pick
an arbitrary set of z- and y-axes through the origin. Now select n points inde-
pendently and at random in the rectangular set 6 £ [0, 7), p € (—r, ), where n
is a Poisson random variable with mean 2#rA. Then the n lines corresponding to
these points may intersect the finite subregion R, but it follows that lines cor-
responding to points outside of this rectangular parameter set will not inter-
sect R.]

Now that one has the partition of the plane into convex polygonal cells, each
of these cells is independently “colored”, the selection of colors being randomly
made from m available colors. The probability distribution on the colors remains
the same from cell to cell, and the colors correspond of course to the states of the
process.

2. The Markov property of linear transects. Let z;, 22, -, 2z, be a set of
ordered collinear points in the plane. Then the Markov property for linear
transects will be demonstrated if we can show that

(1) f(Ar]| Az, -+, An) = f(41] 42),

where A;, ¢ = 1,2, -+, n, is the color random variable at the point 2; and f is
the probability function.

First it is noted that the underlying random line process induces a random
partition of the sequence of 7 collinear points into subsequences defined as
follows—two points z;, 241 are in the same subsequence if and only if none of
the random lines crosses the segment z:z;,; . There are 2" possible partitions of
this kind; it will be convenient to divide these into two equal classes {C;} and

{€¢/},7=1,---,2" where C; and C; denote partitions which differ only in
that z; and 2, are in different subsequences under C; and in the same subsequence
under C;'.

For a given set of values of the state random variables {4}, we will say that
{A.} is compatible with a given partition if, for any ¢, A; = A.;, whenever z; and
z;41 are in the same subsequence of the partition. Clearly, if {A;} is compatible
with C;’ then it is compatible with C; .

A given partition C; may be characterized by the increasing sequence
1=mn,n, - ,n =n(r=n)inthat at least one random line crosseseach of the
segments 2,,2,,41,%2 = 1, --- , r — 1, but otherwise no line crosses 23z, . ( The de-
pendence of 7 and the n; sequence on j is not indicated in this notation but should
be understood.) It is clear that the corresponding partition C, can be character-
ized in a similar way by the sequence ny, - -+ , n, = n.
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Lemma 1. Pr (C;)/Pr (C}) = ™' — 1, all j, where v; = |z; —zipa|, 5= 1, - - -
n — 1, are the lengths of the intervals between successive points.

According to the description of the random line process, let T be the subset in
(6, p) parameter space corresponding to the family of all lines x cos 6§ + y sin 8
— p = 0 which cross a given line segment S of length ». Then it can be shown
that the area of T is equal to 2v [see Kendall and Moran (1963, p. 58)]; hence the
number of lines of the process crossing S has a Poisson distribution with mean
20\, where X\ is the density of the Poisson point process in (8, p) space. In par-
ticular, the probability that none of the lines crosses S is just e~ 1 Furthermore,
if 8 and 8* are non-overlapping segments of the same line then th corresponding
subsets T and T*in (6, p) space are non-overlapping since the same random line
cannot cross both segments; hence, the number of lines crossing S is independent
of the number of lines crossing S*. Using these results and the definition of C;
given above, it follows that

(2) Pr(Cy) =exp {—2M iS5 vi— 2t en)} JTF1 11 — exp (—20a,)].
Similarly, for the corresponding partition C;, it follows that
(3) Pr (Ci,) = exp {—2)\( - 21—2 Vns)} H::; 1 —exp (—2)\7)”,‘)];

whence Pr (C;)/Pr (C;') = exp (2\,,) — 1 and the lemma is established since
n = 1.
LeEMMA 2. For all j,

(i) f(A1, A, -+, Al | C) = (A1, Az, -+, An| C3)/f(A))

whenever A, = A,

b

=0 whenever A; # A, .
(ii) f(Az, -, An|C) = f(As, -+, 44| Cy)
= f(Al’ A2’ ) An I CJ)/f(Al)

(i) We first remark that if a set of values of A;, -+, A, is not compatible
with a given partition then the conditional probability of the event (4, --- , 4,)
is zero. This obtains because incompatibility implies that there are two points
2; , 2ip1 falling in the same subsequence whose colors A;, A} are different. But
it is clear that two points are in the same subsequence if and only if they are in
the same basic “cell” generated by the random line process. Since the coloring
process assigns the same color to the entire area of a basic cell, the event
(A;, A1) conditional on'the partition is impossible, and in particular so is
(A1, A2, ---, A;). When A, # A, it is obvious that A,, A;, ---, A4, is not
compatlble w1th any partition in the class {C;}, hence f(4,, A, --- R

A, | C;) = Oforallj, asrequired. When A; = A, it follows that A, A,, -+, 4,
is compatlble with C; if and only if it is compatible with C;’ for any j. If it is com-
patible with neither C; and C;’ we get trivially that f(4, yAg, oo Al C) =
f(A1, Ay, - -+, An| C;)/f(A1) since both sides are zero. If it is compatible with
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both C; and C;’ the following argument applies: According to the definition of the
partition C; , the points 2a;41, 2as42, * -, 2a;,, all belong to the same subsequence
(¢=0,1, ---,7 — 1;m = 0) hence they are all in the same basic cell of the map
and must, therefore, all have the same color. So the joint event (An; 11, An42,

-y An;,,) 1s just equivalent to the event 4, +1» say. Furthermore, the points

Znyy %y, " ", 2o, = 2, are all in different subsequences hence in different cells.
Since the cells were colored independently of one another, the random variables
A, , Ag,, -+, A, must be mutually independent. From these considerations it
follows easily that
f(Al,A27 Ty A" ICJ) = H:—lf(Ani)’ and
(4) f(A1, Ay, -+, Aa| Cf) = TTi=f(4a)
= f(A1, Ay, -+, An | C;)/f(A1), sincen; = 1.

(ii) If Ay, As, ---, A, is not compatible with C; then clearly A,, ---, A,
is not compatible with either C; or C;'; in this case the statement of the lemma is
trivially true in that all three quantities are zero. If, however, A;, A,, -+, A,
is compatible with C; then clearly 4,, ---, A, is compatible with both C; and
C;’; in this case we reason as above and find that

J(4s, o, 4,1 C) = T f(4n) = f(4s, -+, 44| CY)
= f(A1, Az, - -+, 44| C5) /(A1) since my = 1.

The Markov property (1) for linear transects can now be easily established.
We have that

(5) f(A1S As, o+, As) = 225 {Pr (C)f(A1, As, -+, An|Cy)
+ Pr (C)f(A1, Az, -+, Aa| C)},
and by Lemma 1 and Lemma 2,
f(Az, -+, An) = 25 {Pr (C)f(4s, -+, An| Cy)
+ Pr (C)f(Asz, -+, Aa | C)}
= [1 — exp (=20 (A 22, Pr (Cf(Ar, 4s, -+, Aa | C)).

CasE 1. 4; # A.. In this case f(41, A2, --+, 4. | C;’) = 0 for all j by
Lemma 2, hence f(A1, Az, -+-, A,) = 2 ;Pr(C))f(A1, Az, -+, An | C5);
therefore,

(6) f(A1] Ay, -+, An) = f(A)[1 — exp (—2\w)].

Since this last expression is identical for all n > 2, the Markov property (1) is
established for the case 4, # A,.
CAsE 2. A; = A;. In this case

f(Ar, As, oo, An| Cf) = f(Ar, Az, -+, A | C1)/f(A1)
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for all 7 by Lemma 2. Using this result and Lemma 1, we get that
f(Ar, Az, -+, Aa) = {1 + [f(A)] [exp (2nn) — 1]7}
225 Pr (Cf(Ar, Ay -+, An| C),
therefore,
(7 f(Ar] Ay, -+, An) = exp (—=2M1) + f(AD)[1 — exp (—2Mw)].

This expression is also identical for all n = 2, hence the Markov property for
linear transects is established.

For the special case of two states (colors), let [0, 1] be the sample space for
each of the random variables A; and A,. Then the covariance function of the
process is defined as ¢(v,) = E(A14:) — E(A1)E(A,), where v, is the distance
between 2z, and z:, and the correlation function is defined as r(v1) = ¢(v1)/¢(0).
Using Formula (7) it follows easily that r(v;) = exp (—2\v), as was to be
expected.
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