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1. Introduction. Let {X.} be a sequence of independent random variables
with common distribution function F(¢), and let F,(¢, ») be the nth empirical
distribution function of the sequence. Then the Glivenko-Cantelli theorem
([3], p. 20), states that for almost all w, F,(t, w) converges to F(¢) uniformly in
t. In [4], Tucker has shown that even if {X,} is only strictly stationary F,(¢, ») is
still uniformly convergent for almost all w, the limit being F(¢, w | 9), the con-
ditional distribution function of X; given g, the invariant field of the sequence.
Another generalization of the Glivenko-Cantelli theorem was accomplished by
Fisz [2], who noted that for each fixed n, F.(t, w) could be looked upon as a
non-decreasing stochastic process and for each fixed ¢ the sequence of arithmetic
means derived from a sequence of independent random variables.

Looking at Tucker’s theorem in this light, we could rephrase it as follows. Let
X be a random variable, let X(¢) = Ix<y, and let T' be a measure preserving
set transformation. Choose Xi(t) = T*(X(t)) in such a way that for each k, X (t)
is non-decreasing and right continuous. Then for almost all w, ™Y iy Xi(t, w)
converges uniformly in ¢. It is our purpose in this paper to show that this result
remains true whenever X(¢) is any non-decreasing, right continuous process
with E(X(t)) bounded. The proof is based on a general criterion for uniform
convergence of a sequence of monotone processes and some results on conditional
expectations which may prove of interest in themselves.

2. Conditional expectations for non-decreasing right continuous processes.
Let X (¢, ») be a non-decreasing, right continuous process where ¢ ranges over
all real numbers. Let ¥ be an extended real valued function defined on our
probability space ©. We define

X(Y)(w) = X(Y(w), »).
For each real a, we define
Ya(w) = inf {£: X(t, w) = a}.

The following result is then easily seen.

THEOREM 1. For each real a and t, {Y, > t} = {X(t) < a} and {X(Y) <a}=
{Y < Y}

In view of Theorem 1 it is obvious that Y, is always F(X(f):— o <t < ®)-
measurable, and that X(Y) is always measurable whenever Y is measurable.
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Now, let g be a fixed Borel field of events. It is our purpose in this section to find a
workable representation of E(X(Y) |d) when Y is 9-measurable.

We shall call F(z, t, w|9) a conditional distribution function of the process
{X(t)} given g if for each fixed ¢ it is a left continuous conditional distribution
function of X (t) given g and for each fixed w and z a right continuous function
of t. We shall call E(t, | 9) a conditional expectation function of the process
{X(t)} if for each ¢, E(t, w | 9) = E(X(¢) | 9)(w) a.s., and for each fixed
w, E(t, w | 9) is a right continuous non-decreasing function of ¢. The existence of
such functions is a straightforward exercise.

LeEmMA. Let X and Y be extended real measurable functions with Y 9-measurable,
and let G(z, w|9) be a right continuous conditional distribution function of X
giwen 9. For each w in Q let p, be the measure on R with distribution function
G(z,w | 9) and for each M in R X Rlet M, = {x: (2, Y(w)) e M}. Then P((X,Y) €
M| 9)(w) = ue(M,) a.s. for each Borel set M in the finite plane.

Proor. We may clearly assume that M = K X 'L where K and L are one
dimensional Borel sets. Then {(X, Y) e M} = {X e K} n{Y ¢ L}. Thus

P((X,Y)eM|9)(0) = Iirens(0)P(X e K |9) (@) = Iivers(w) - po(K) = po(Ma).

TueoreM 2. If Y is an 9-measurable random variable, then E(o(X(Y)) | 9)(w)
= f<p(x) dF (z, Y(w), w | 9) a.s., whenever ¢ is a Borel function with ¢(X(Y))
integrable.

Proor. It is clearly sufficient to prove the result when ¢ = I(_w,q for a fixed
real a. We then have

E(e(X(Y)|9) = P(X(Y) <al|9g) =P(Y <Y,.|9)
=PU{Y < Yon{Y, # »}|9) + P(Y, = = |9).

Let F.(z, w|9) be a right continuous conditional distribution function of
Y, given . Then applying the lemma, withG = F,and M = {(z,y) ¢k X R:
y < z}, we see that

E(p(X(Y)) | 9)(w)

(Fn(°°7wlg) - FG(Y(‘O)’ng) + (1"— Fa(ooawlg))
1 — F(Y(w),w|9) foralow

I

in an a.s. event 4, .

Now, for each fixed t, 1 — Fo(t,w |9) = P(Ya> t|9)(w) =P(X(t) <al|9)=
F(a, t, w|9) a.s. Thus there exists an almost sure event A; such that if wisin
As,1 — Fu(t,w|9) = F(a,t, | 9) for all rational ¢, and so, both functions being
right continuous, for all real ¢. Thus, if w is in A; n Az, then

E(o(X(Y)|9)(w0) = F(a, Y(v), w|9)
= [o(z) dF (z, Y(w), @ | 9).

THEOREM 3. There exists an a.s. event A such that if w is in A then

fxdF(x, tLwld) = Eit w|9)
for all t.
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Proor. For each fixed ¢, [ dF(z, t, w|9) = E(t, w|9) as. Also, if & < t
and 7 is a non-negative integer then
[nzdF(z,ti,w|9) £ [naxdF(z, t,w|9) as.

For if a(z) = x-Iu,«(z) then, a being non-decreasing, a(X(t1)) =< a(X(t2))
and

E(a(X(t)) | 9)(w) = [ a(z) dF(z,t, 0| 9) as.

for each t¢. Applying a similar argument to integration from — o to —mn, it is
easily seen that there is an almost sure event A such that if w is in A, then

(1) [zdF(z,t,@|9) = E(t, w|9) for all rational ¢,

(2) [nxdF(z, ti,w]|9) £ [nxdF(z, t;, w|9) for all non-negative integers
n and all rational ¢ < ¢,

(3) [ZizxdF(z,ti,w|9) £ [ZexdF(z,t, w]|9) for all non-negative integers
n and all rational ¢ < & .

Let w be in 4, let ¢ be real and let {{.} be a decreasing sequence of rationals
converging to ¢. The proof will be complete if we can show

[zdF(z,t,0|9) =lim [ 2 dF(2, tn, w|9).
To see this let
on(%) = —n-lww() + - Linm + 1 Lo ().

Also let amn = [0 ¢u(z) dF(Z, tmw, w|9). Then [7 ¢u(z) dF(z, t, w|9) =
liMm—co Qmn , fOT, @5+ L1901 being bounded and continuous, the Helly Bray theorem
applies ([3], p. 180). Thus

[exdF(z,t, w|9) = liMpew liMpew G -
On the other hand
0 < [C2dF(x,tn,w|9) — [ ¢a(x) dF(Z, tn, w | 9)
= [n(x —n)dF (2, tn,w]|9)
< [n2dF(z,tn, w]|9)
< [RzdF(z,ti,w|9)  forallm.

It follows that a.. converges to f o * dF(Z, tm, w|9) uniformly in m. Also
lim,—« @m, is 8 non-increasing sequence, bounded from below by 0. Thus

[CxdF(z, t, |9) = liMmew liMucw G = liMpew [0 2 dF (T, tn, w]|9).
Now let b, = f 2w on() dF (2, tm, w | 9). By the same argument we see that
[lozdF(z,t, 0 |9) = liMuew liMmecw b -

Also
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[w () AF (2, tn, @ | 9) — [2u 2z dF (2, tn, w | 9)
— e (n 4+ z)dF (2, tm, w ]| 9)

— ez dF (2, tn, w| 9)

— iz dF(z,ty, w|9)

where { is a rational with ¢ < ¢. Thus bm.. converges to f"_w T AF (2, tm, w|9)
uniformly in m and lim,—e bm. 1S & non-increasing sequence bounded from below
by [ dF (=, ty, @|9). We then have

[lex dF(z,t, 0| 9) = liMpnew liMpee brn = liMpewo [2o0 2 dF (2t , 0 | 9)

=)
A IA

lIA

and the desired result follows.

THEOREM 4. Let Y be an 9-measurable random variable with X (Y') integrable.
Then E(X(Y))|9)(w) = E(Y(w), w|9) as. ]

Proor. This follows immediately from Theorem 2, with ¢(x) = =z, and
Theorem 3.

It can be shown that if E(X(¢)) is bounded from below then Theorem 4 re-
mains true when Y is any extended real valued d-measurable function which

never takes the value + .

3. A general theorem on uniform convergence. In this section we shall es-
tablish a criterion for the a.s. uniform on compacta convergence of a sequence
of monotone processes. In the case where the probability space contains just
one point a stronger form of our theorem is known from real variables: let
F and each F, be non-decreasing real functions defined on R. Suppose that
lim F,(¢) = F(¢) for all ¢ in some dense subset and that, when ¢ is a discon-
tinuity point of F, then lim F,(t) = F(¢), lim F.(t + 0) = F(t 4+ 0) and
lim F.(t — 0) = F(t — 0). Then lim F,(t) = F(t) uniformly on each compact
interval of R. (The author is indebted to the referee for suggesting the use of
this result, which greatly simplifies the proof of Theorem 5.) '

TuaeorEM 5. Let {X(t)} and each {X,(t)} be non-decreasing processes, and let
F be the Borel field determined by {X(t): —o < t < }. Then there exists an
a.s. A such that for all w in A, lim X, (¢, w) = X(t, ) uniformly on each compact
interval if and only if for each F-measurable random variable Y,

lim X,(Y) = X(Y) as.,,
lim X,(Y + 0) = X(Y 4+ 0) as,
and
lim X,(Y — 0) = X(Y — 0) as.

ProoF. The necessity is valid for any real function Y, since uniformity of
convergence allows the interchange of order in passing to the limit.

We now prove the sufficiency. For each real a, let ¥,(w) = inf {¢: X(t + 0, )
= a} and then set
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Yo = Yol -

By Theorem 1, Y, is measurable with respect to the field determined by
{X(t 4+ 0: —0 < ¢ < «} and is therefore F-measurable. Since constant func-
tions are F-measurable, it is clear that there exists an a.s. event A such that if
w is in A then

lim X,(t, w) = X(t, w) for all rational ¢,
lm Xa(Ya(), @) = X(Ya(w), 0),
lim X,(Ya(w) + 0, w) = X(Ya(w) + 0, w),
lim X,(Y,(w) — 0, w) = X(Yas(w) — 0,w) forall rational a.

Let w be in A. Suppose ¢ is a discontinuity point of X (¢, ). Pick a rational a,
with

X(to — O, w) <o < X(to + 0, w).
Then Yo(w) < to. If t < to, then
Xt+0w) £X(t—0,v) <a,

and so Yo(w) > t. Thus to = Ya(w) = Ya(w). If we now set Fo(t) = X,(t, )
and F(t) = X(t, w) then the conditions of the result mentioned at the beginning
of this section are satisfied and the proof is complete.

We note that in general X,(Y) may not be measurable and so it appears that
the theorem will not be useful unless the processes are either right or left con-
tinuous.

4. A uniform ergodic theorem. In this section we shall use the results and
notation of [1]. {X(¢)} will again be a non-decreasing right continuous process
and T a measure preserving set transformation defined on some Borel field con-
taining F(X(¢): — o < t < ). We shall denote by g the invariant field of 7.
It is easily seen that we may choose X *(¢) in such a way that X*(¢) = T(X(¢))
a.s. for all ¢ and the process { X *(¢)} is itself non-decreasing and right continuous.
Moreover, if Y is an g-measurable random variable, then X*(Y) = T(X(Y))
a.s. For let a be real. Let Y,*(w) = inf {t: X*(¢, ) = a}. Then

T(X(Y)<a)=T(Y <Y,

Uy < t)‘n T(Yqs > t):tis rational)
= U ({Y <t} nT(X(t) < a):tis rational)
U (Y <t} n{X*(t) < a}:¢is rational)
U Y <t)n{Y,* > t}):tis rational)
(Y < Y.*} = {(X*(Y) < a) as.

]

1
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Thus, if ¢ = Iwas, T(@(X(Y))) = (¢(X*(Y))) as. This clearly remains
true for all Borel functions ¢ and the desired result is obtained by taking ¢(x) = z.

Suppose now we use T' to generate a sequence of processes, i.e., let Xi(¢) =
T*(X (t)) for each k and ¢ and choose the representations in such a way that for
each k, {X;()} is a non-decreasing right continuous process. We will show that
if E(X(t)) is bounded then there is uniform convergence of X;(¢) in arithmetic
means.

TuEOREM 6. Let {X (1)} be a non-decreasing right continuous process with each
X (t) integrable. Let T be a measure preserving set transformation with invariant
field 9 and let E(t, »|9) be a conditional expectation function of {X(t)} given 4.
Pick Xi(t) = T*(X(t)) in such a way that for each k, {Xi(t)} is non-decreasing
and right continuous. Then for almost all w, lim n ‘ZH Xu(t, w) = E(t, w|9)
uniformly on each compact interval. If, moreover, E(X(t)) is bounded, then for
almost all w the convergence is uniform on R.

Proor. Let S,(t) = n ' i~ Xi(t). Let J be a fixed positive integer. To prove
the first part of our assertion it is sufficient to show that for almost all w we have
uniform convergence on the interval [—7, J]. In showing this there is clearly no
loss of generality in assuming that X (¢) = X(—=J) ift £ —J and X(¢) = X(J)
ift =J.

Let the random variable Y be measurable with respect to the field of the
process {E(t, w|9)}. Then Y is d-measurable. Moreover, X(Y) is 1ntegrable
for X(—=J) £ X(Y) £ X(J), and we have seen that X,(Y) = T*(X(Y)).
It therefore follows from the individual ergodic theorem that lim S.(Y) =
E(X(Y)] g) a.s. Thus, by Theorem 4, lim S,(Y(w), w) = E(Y(w), w|9) as.
Now set Xi*(t, w) = Xi(t — 0, w) and E*(t, w | 9) = E(t — 0, wlg) We may
then replace Xi(t, w), E(t, w|9) and ¥ by —Xi*(—t, w), —E*(—t, w|9)
and — Y respectively in the above argument. This yields lim S,(Y (w) — 0, w) =
E(Y(w) — 0, w|9) a.s. We have shown that the conditions of Theorem 5 are
satisfied and so the proof of the first half of the theorem is complete.

Now suppose E(X(t)) is bounded. Then X (4= ) are both a.s. finite and
integrable. Also Xi(w) = T(X(£w)) and E(X(xw)|9)(w) =
E(+», w|9) as. Thus lim S,(£®©, w) = E(x®, w|9d) and E(£x, «|9)
are finite for almost all w. If w is also a point at which lim S.(¢, w) = E(t, w | 9)
uniformly on each compact interval then, bearing in mind that the functions
involved are non-decreasing, it is clear that the convergence is uniform on E.

REFERENCES

[1] Doos, J. L. (1953). Stochastic Processes. Wiley, New York.

[2] Fisz, M. (1958). A limit theorem for non-decreasing random functions. Bull. Acad.
Polon. Sci. Ser. Sci. Math. Astronom. Phys. 6 485-497.

[3] Lo&ve, M. M. (1955). Probability Theory. Van Nostrand, Princeton.

[4] Tucker, Howarp G. (1959). A generalization of the Glivenko-Cantelli theorem. Ann.
Math. Statist. 30 828-830.



