THE ERGODICITY OF SERIES QUEUES WITH GENERAL PRIORITIES!

By Bruce McK. Jounson
Northwestern University

1. Introduction. In this paper we study the structure of and obtain certain
limit theorems for a rather general and complex queue process. Specifically,
the model considered is the following: Let ¢;, 7 = 1, - - -, denote arrival epochs
and set 7; = ¢; — ;1. The {r,} are assumed independent and identically dis-
tributed with finite expectation. At each arrival epoch the item type
(¢ =1, ---,r) of the current arrival is determined by a multinomial experiment.
That is, a;, 7 = 1, - -+, r, is the probability that an arriving item is of type 4.
Each arriving item is to be serviced first by a facility 1, secondly by a facility
2, -+ -, and finally by a facility ¢ (¢ queues in series). The service time of type ¢
items at facility k, S, are assumed nonnegative and independent and iden-
tically distributed with finite expectation. The service times of the jth arrival,
Sy, - -+, 8, are taken to be independent. Also, all service times and interarrival
times, the 7, are assumed independent.

The physical operation of the system is restricted as follows. No item is allowed
to wait in a queue if the corresponding facility is idle. Also, after the servicing of
an item is started it may not be displaced at the facility by another item. At
those epochs when a facility becomes idle (completion epochs) a priority struc-
ture is employed to make a decision as to which of the items waiting in the cor-
responding queue, if any, is to be serviced next. The admissible priority struc-
tures (APS) are general in that they may depend on the state of the system at
the time of such a decision. Although there are other possibilities, the APS are
assumed to depend on: the elapsed time since the last arrival (V), the composi-
tion of the queues ((Ly, ---, L,), where L; = (Ly;, -+, L,;) and L, is
the number of type 7 items waiting in queue j and being serviced by facility 7), the
types of items being serviced at the ¢ queues (K, ---, K,), and the elapsed
service time of the items being serviced (U, -- -, U,). For simplicity we assume
that items of the same type waiting in the same queue are not distinguishable
to the priority structure. Thus, the decision made at a completion epoch is the
type of item to be processed next. The order of servicing items of the same type
at a facility is taken to be the order in which they joined the queue. Finally, we
assume that the decision made at facility 7, 7 = 1, - - - , g, is a measurable func-
tion of the above variables with range, in 1, --- | 7.

Models of this generality have not evidently been studied. Sacks [10] (see also
Loynes [9]) gives necessary and sufficient conditions for the existence of a bona
fide limit distribution of the total time an item waits in g series queues. However,
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this analysis does not generalize to accommodate priority structures. In the
case of a single queue, priority structures have been investigated by several
workers. The model generally considered differs from the above for ¢ = 1 in that
the 7 are assumed exponentially distributed and the priority structure is a con-
stant ordering of item types. For this model, Kesten and Runnenburg [7] estab-
lish necessary and sufficient conditions for the existence of bona fide limit dis-
tributions of the waiting time of each item type and the queue composition at
completion epochs.

The general method of analysis we employ consists of exhibiting a regenera-
tive structure for the processes of interest and appealing to certain renewal limit
theorems. In Section 3 a single queue is considered. Although the results ob-
tained are superficial and likely known, they have not evidently been stated. In
Section 4 the general case of ¢ queues in series is studied. In all cases sufficient
(also necessary for a single queue) conditions are given for the existence of bona
fide limit distributions of queue composition, for both the continuous time and
imbedded (on arrival epochs) processes. These conditions are also sufficient for
the existence of bona fide limit distributions of the total waiting time for each
item type. For ¢ > 1 more is required than the usual condition

(1) Er > Z ;=1aiESi,k, k=1, - , q.

However, if 7 is unbounded or S;x = S¢, ¢ =1, -, rand k = 1, --- , ¢,
these conditions reduce to (1). In Section 5 a few extensions of the model for
which the present analysis remains valid are considered.

2. Preliminaries. Let @ be the space of elements w which are sequences of the
form {(7n, 4, 8", ©++, 8")} where 4, = 1, --+ ,rand 7., 8", +--, 5, > O.
(Although not entirely necessary, this is the simplest way to avoid ambiguity
in the random times ¢; .) The entries in the nth term of w are interpreted as the
values taken on at w by 7, , the type of the nth arrival, and the S;" respectively.
The measure space {Q, ®, P}, where ® is the Borel field generated by the above
variables and P is the corresponding measure, will be denoted simply by .
We shall investigate the @ measurable Markov processes {Z; = [V X (L, K, , U,)
X - X (Lg, Ky, Uy, 0 =t < o} (with some obvious conventions the
paths Z,(w) may be taken to be right continuous) and {Z,, = [(L, K, U)
X -+ X (L, K, U)l;;, 1 =j < =} taking values respectively in & =
{lo x (L, ki, w) x oo x (lg, kg, up)l} and X' = {{(h, koyw) x --ox
(lly kl; ul)]}y where lJ' = (ll,]'y T lr.i) al}d li'i = 07 L., k]' =0, 1. s Ty
and v, w; = 0. The definitions of the Z, and Z,; processes entail an APS which
remains fixed throughout the discussion. Let @[@'] be the class of left semi-closed
intervals in &[x] and ®(@)[®(Q")] the generated Borel field. Let & (@) be the
field of finite disjoint unions of @ sets.

It will be seen that there is a regenerative event R, Q@ measurable, with the
properties to be enumerated below.

(i) R occurs wp 1. Let X,[M;] be the time [number of arrivals] between the
Jth and j — 1st occurrences of R and n(t)[n’(5)] the number of occurrences of
R in (0, ¢] [the first 7 arrivals].
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(ii) The {X;} and {M;} are sequences of independent and, for ;7 > 1, iden-
tically distributed random variables with EX and EM finite. Let T, = X; + ---
+ X,and N, = My + -+ + M,.Let H(t) = En(t) and H'(j) = En/(j).

(iii) There exist ¢(-, ¢) and 6(-, j), completely additive on ®(@) and ®(Q")
for fixed ¢ and j, for which

(2) o(A,t —2) =Pr{Z,eA|n(t) = 1, Tun = z} a.e. [H],
(3) 8(A',j — 1) = Pr{Z,eA |n'(j) 2 1, Nu = i} ae. [H],

when 4 e®(@) and A’ ¢ ®(@"). Then it is well known (Bene§ [1] and Smith
[12], [13]) that

(4) P{Z,cA} = Pr{Z.e A, n(t) = 0}
+ [0 (A, t — 2)[1 — Fx(t — )] dH ().

and
(5) P{Zy,eA'} =Pr{Z,eA,n'(j) =0}
+ 2604”5 — DI — Fu(j — DIH'(G) — H'( — 1)]

are valid representations. In (4) and (5), as well as below, Fy is the df of Y.
The following versions of the so called Key renewal theorem (Bene§ [2] and
Smith [11], [14]) will be employed in the study of the limit behavior of (4) and
(5).
TreoreM A. If R is certain, X is not a lattice variable, ¥ s continuous a.e.
[Lebesgue measure], and Iy Sup;1<ici [W(8)| < o, then

lime.. [o¢(t — 2) dH(z) = (EX)™" [§ ¥(2) da.
TreoreEM B. If R is certain and M has period 1, then
limyw 2ima ¥(j — DH'G) — H'(i — 1)] = (EM):7 259(9),

whenever the sum on the right is convergent.
If EX or EM is infinite the corresponding limit is zero.

3. A single priority queue. In the case of a single queue the regenerative
structure is easily identified (Kendall [6] and Smith [12]). Let R be the event
“gn arriving item finds the facility idle.” In view of the general independence of
the model and the fact that the APS depend only on the state of the system at
the time a decision is affected, it is evident that there exist ¢ and 6 with the
stipulated properties. Also, it is clear that the {X,} and {M;} are independent
and identically distributed, if they exist. To simplify statements the uninterest-
ing case of degenerate = and S; with Pr {r = S;} = 1,for7s =1, ---, r, is ex-
cluded.

Lemma 1. If © > Er = 2= a:ES:, then R s certain. (1) 1s mecessary
and sufficient for EX and EM to be finite.

Proor. We observe that the distributions of X and M are invariant with
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respect to the APS. This follows from the fact that the APS can only achieve
reorderings of the queue. Then we may, and do, assume that the df of the service
time of each arrival is D7~ aiF's, . The lemma is thus reduced to an assertion
for an ordinary queue: the proof of which is essentially contained in the result
and discussion of Lindley [8].

The discrete parameter process {Z, , 1 < j < o} will be considered first.
Let W, ; be the waiting time of the jth arrival conditional on its being a type ¢
item. It follows from the nature of the APS that W; ; is conditionally independent
of the history of the process prior to ¢; given Z,;;. Let Fy (-: 1, k, u) be the
corresponding wide sense conditional df: a Baire function of [, k, and u.The Fy,
determined by different j are equal wp 1 due to the assumptions on 7, S, and
the APS.

TueoreM 1-d. If (1) is satisfied, then for A" e ®(@') and 1 < i < r,

(6) limj.e P{Zy; e A’} = (EM)™ 22541 0(4", p)[1 — Fu(p)],
and
(7) limj_,,, Pr {Wi,, < 'U)} = Zk Zl f:)o F(w:l; k, u) duo'(ly k) u)’

where o s the limit (6). If (1) is not satisfied and A’ is bounded in all I; , the limit
(6) 1is zero.

Proor. The first assertion is an immediate consequence of Lemma 1 and
Theorem B. Let A" = {I, k, [0, »)}. Then if the system is initially empty, and by
Lemma 1 we may as well make this assumption,

(8) Pr{W.;<w} = D% 2ufo Fa,(wil, kyu)duPr{Z, e A'}.

If the measure in (8) is rewritten as S 0(A 7 — n)l — Fu(G — n)]-
[H'(n+) — H'(n—)], the assertion follows with the interchange of the limit
and integration operations. This, being routinely justified in view of the non-
negativity, (6), and H'(n) — H'(n — 1) — (EM)™" < . To prove the final
assertion it will suffice to consider the boundry case Er = 2= a:ES; . Suppose
that for some A’, bounded in the I, lim supj.. P{Z,, ¢ A’} > 0. Then as there
is clearly an n for which Pr {R occurs at t;., | Z ,’.A'} > 0 for every 7, it follows
that lim sup;.. Pr {R occurs at ¢} > 0. This however contradicts Feller’s re-
newal theorem [5] as EM = o by Lemma 1. In this regard, (1) is not necessary
for (7) to exist as a bona fide probability distribution for some ¢ (e.g. Kesten and
Runnenburg [7])r In general, this question depends intimately on the details of
the APS. '

In considering the continuous parameter process {Z,, 0 < t < «} two cases
are identified depending on whether 7, and hence X, is or is not a lattice variable.
The result in an obvious notation is

TurEoREM 1-c. If (1) s satisfied, and if X is not a lattice variable,

(9) limpw P{Z, e A} = (EX)7 [5 ¢(A,2)[1 — Fx(x)]dz, for AeF(Q),
if X has period Nand 0 < £ < \
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(10) limjw P{Zpsr e A} = NEX)™ 27 6(4, i + £)[1 — Fx(a\ + £)],

for A € ®(R). If (1) is not satisfied and A s bounded in all I, , the appropriate limit
18 2ero.

Proor. The second assertion is an immediate consequence of Lemma 1 and an
obvious modification of Theorem B. The final assertion is proved in exactly the
manner the corresponding part of Theorem 1-d was proved, Blackwell’s theorem
[3] replacing Feller’s theorem.

To prove (9) we first note that as EX < = the hypothesis of Theorem A will
be satisfied once the continuity property of the kernel ¢/(-) = ¢(4, -)[1 — Fx(-)]
is established. Let 4 ¢ @. We employ Lemma 2 of Smith [14] to show the kernel is
of bounded total variation in each finite interval I = (¢,¢"],0 = ¢ <’ < .

Define
;a=0 for Z, and Zy.ecA
= —1 for ZygA and ZycA
=1 for ZveA and Zs2zA.

Then it is easily verified that Y; 4, = 2 [number of arrivals in I+ number of com-
pletions in I] 4 6; 4 satisfies Smith’s lemma. Thus, from the representation (4)
and Theorem A, (9) is valid for A ¢ @. The extension of (9) to F(@&) is immediate.
The validity of (9) for A € B(®) is evidently a more delicate matter. It ap-
pears that additional information is required. For example, if r is absolutely
continuous it may be seen from Theorem 1 of [14] that (9) is valid for B(@).

4. Priority queues in series. A crucial problem in the analysis of a finite num-
ber of queues in series is the identification of an appropriate regenerative event.
While we could take “‘an arriving item finds all ¢ facilities idle”’ as the regenera-
tive event, it would then be necessary to impose the strong requirement
Pr{r = D> {1 8:x} > 0 for at least one 4. Otherwise the event is not possible.
Although we do not find a regenerative structure without making some auxiliary
assumption on 7 and S;x , it is possible to do considerably better.

Let ¢ = (c1, -+, ¢) WithO = ¢, < s < -+ < ¢, < . Suppose that the
following are satisfied in [t, , t, + ¢,] at w:

(i) all preceding arrivals, 1, ---, n — 1, are completed by the kth facility
not later than ¢, 4+ ¢, k = 1, - -+, g, regardless of the order in which they are
serviced after ¢, if the nth and subsequent arrivals do not join the system,

(ii) the service times of the mth arrival satisfy D i1 S = cw1 for
k=1,---,¢9¢— 1, and

(iii) the order of service in the interval [¢, , ¢, 4 ¢,] of the nth and subsequent
arrivals is the order of arrival, independent of the servicing of arrivals 1, - - -,
n — 1.

Then we say that R, occurs at ¢, + ¢, . That the occurrences of R, will in fact
provide a regenerative structure is easily seen. The following statements are rela-
tive to {R. occurs at ¢, + ¢,}. First, it is evident that the nth and subsequent
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arrivals do not wait in any queue because one of the first n — 1 arrivals is being
serviced. Secondly, by (iii) there are no nontrivial decisions made relative to the
servicing of the nth and subsequent arrivals in [, , ¢, + ¢,] which might be in-
fluenced through the APS by the first n — 1 arrivals. Finally ,(i) insures that the
conditions imposed on the r;4; and Sy, - -+ | S,° 7 = n, by an occurrence of R, at
t. + ¢4 are independent of the history of the process up to ¢, . It follows that the
Z|Z ;] has a common law of evolution after each occurrence of R, . Let X,° be the
time between the jth and j — 1st occurrences of R, . If R, occurs for the jth and
j — 1st times at ¢,, + ¢, and ., + ¢, , then M;* = ny — n; . It is evident that the
{X} and {M/’} are independent and, for j > 1, identically distributed, if they
exist.

The determination of a necessary and sufficient condition on the r and S, for
R, to be possible for some ¢ and all APS is apparently difficult. An obvious
necessary condition is that there exist item types ¢" and ¢” and a ¢ for which
Pr {Zl;=lsi'.j —17=2a, k=1--,4¢ >0 and‘Pr{ZIJ;lSi”.i 2 Cit1,

=1, -+, ¢ — 1} > 0. That this condition is not also sufficient is easily seen by
examining the example: 7 = 10, 811 = 11, 812 = 8, Se1 = 5, S22 = 15, all wp 1,
and a; = %. Sufficient conditions are numerous, but tend to depend on the specific
properties of the APS under consideration. We shall be contént with the follow-
ing simple, yet reasonably general, condition:

(11) There exists an item type, say,
i* for which Pri{r > Sux} >0 for k=1, ---,q.

Before establishing the sufficiency of (11), we note that the condition is not
necessary. For example, R, is possible with ¢, = 0 and ¢, = 6 if » = 10,
Sl,l = 11, Sl,z = 5, Sz'l = 5, Sz'z = 11, all Wp 1, and a; = %

Letcy, ¢, - -+, ¢, be positive constants with ¢’ > ¢;, j = 1, ---, g, which
satisfy Pr {Sws = ¢’} > 0, Pr {Spx < &'} > 0,k=1,---,¢ andPr {r =
¢’} > 0. It may easily be seen that such ¢ exist by (11). We shall say that
an ¢* arrival oceurs at ¢, if 7, = ¢, the arriving item is of type ¥ and 8" £ ,
k=1,---,q Let ¢*(n', n") denote the event “arrivals n’ through n” are :*
arrivals.” Let Di(f) be the least upper bound, over all orders of servicing, of the
time required to complete all items in the system at timet— at facility k if arrivals
at t and later are not allowed to join the system. Let no be fixed and 0 < d,’ < « ,
k=1,---,q and define A(no, n) = {Di(tn,) < & k=1, -+, ¢q, i (no, n)}.
If arrivals no and no + 1 are ¢* arrivals, then D;( tror1) < max (0,d,° — (¢ — ¢1)).
Thus, there are finite n; and dy* for which Dy(¢,) = 0 and Dy(t,,) = dy' on
A(ng, my). If arrival n; + 1 is an ¢* arrival, then Di(tu,41) = 0 and Dy(tn, 1) <
max (0, d' — (¢’ — ¢’)) on A(no, m + 1){e;’ £ Dy(twyn) < di'} and
Dy(ty,+1) = 0 and Dy(t,, 1) < max (0, ¢ — (0 — &) on A(ny, ny + 1)-

{Dy(ts,) = cl'}. Thus, there are finite n, and dy such that D\(t.,) = 0,
Dy(tn,) < ¢ (the second of the two possibilities eventually holds), Dsy(tn,) < dy
=0

on A(ng, nz). Continuing this construction there is an n such that D;(¢,)
Di(t,) = 2 %1/ k=2,---,qon A(ng, n — 1). Finally, if (m — n)e, =

-
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Yiia and ; = ¢, arrival 7 is type i*, S’ = ¢ for j= n, ---, m and
k =1,---, g then R, occurs at t, + ¢, with¢; = 0 and ¢ = dktel,
k = 2---, q. As each of these sequences of arrivals has positive probability,
there follows

Lemma 2. If (11) s satisfied there exists a ¢ for which R, is possible for every
APS.

We next show that R, is certain and that EX° and EM° are finite under (1)
and (11). These conditions are not of course unrelated. If S;, = Sp,2=1, -+ ,r
and k = 1, -+, ¢, and (1) is satisfied, then (11) is satisfied. Also, if = is not
bounded and (1) is satisfied, then (11) is satisfied. However, the counterexample
to the necessity of (11) satisfies (1).

TueoreEM 2. If (1) and (11) are satisfied, then R, is certain. Condition (1) s
necessary, and under (11), sufficient for EX°® and EM° to be finite.

Proor. To fix ideas the case of ¢ = 2 will be considered first. Let R again be
defined as “an arriving item finds the first facility idle.” Let X, M, T, and N be
defined as above for this event. Let S, be the sum of the Sy’ for arrivals from the
n — 1st to the nth occurrence of R, exclusive of the arrival at the nth occurrence.
Then the S, are clearly independent and, for n > 1, identically distributed. As
N; =z jwp1land

D> ¥mr — 8 YN, — Er + 2 it B8
< SUPkzn | 251 (15 — 87 /k — Br 4+ X iey aiBSis| wp 1,
it follows by an application of the strong law of large numbers (SLLN) that

Z?’gl (r; — Szj_l)/Nn — Er — Z:=1 a.ES;2 wpl.

Also, N./n — EM < o« wpl. Then as D> j= (X, — 8;)/n = (N./n)-
D ¥ (r; — 8’ ™)/N,, it is concluded that

(12) ES < EX < .

A dominating process is now constructed for the second queue. We consider
an ordinary queue process with interarrival times X and service times S. The
only difference between this process and the one usually studied is that the X, and
8, are not independent (Lindley [8] assumes but does not use this independence).
Let D(T,) be the total uncompleted service time of the composite items waiting
and being serviced in the new system at time 7, , including the contribution of
the arrival at T,, S, . Then it is evidént that D(T,) =z Dy(T,) wp 1. First,
D,(T,) is, as the first facility is idle, the total uncompleted service time of the
items waiting in the second queue and being serviced by the second facility.
Then, as the arrivals to the dominating process through the epoch T, are com-
posed of precisely those items which arrive to the original process up to 7', , and
as no composite item arrives to the dominating process before any of the cor-
responding items reach the second queue, the inequality follows. It is next shown
that D(T,) = d < o for infinitely many values of n wp 1.
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It is evident that

(13) D(T,) = max8,, 81— X+ 8., -, & —Xo+ - — X, + 8.
Let € > 0 and such that E(§ — X) + ¢ < 0. Consider the following Q sets:
Ci={8 =d, 8 +8 —Xo =2dy -+, 2085 — X3) + 8oy = dJ,
C; = (maxigren Si/(n — k) < B(X — 8) — ¢},

and

Cs= {27 (Si— X,)/(n—k) SES—X)+e¢k=1--,m}.

In view of (12) the measure of C; can be made arbitrarily close to 1 by choosing
n — m and m sufficiently large. For then an application of the SLLN will suffice.
The measure of C, can also be made close to 1. For by independence

Pr {maxi<mSi/(n — k) < BE(X — 8) — ¢
(14) > Pr{supisnnSi/k < E(X — 8) — ¢
= [Imll — Pr{Si/k > E(X — 8) — ¢,

and as D rnm Pr{S > K(E(X —8) — ¢)} S ES(E(X —8) — ¢)™" < o, the
infinite product converges. That is, is close to 1 for m large. Finally, with m and n
as above, the measure of C; may be made close to 1 by choosing d sufficiently
large. It follows then that

(15) Pr{D(T,) =d} 2z P{CinC:nCs} >0

for n sufficiently large.

Let d be fixed. As the process {D(T,), 1 < n < o} has stationary tran-
sition probabilities, it makes sense to set h(d, d) = Pr {D(T,) > -d,
n > n'|D(T,) = d'}. From (13) if " = d’, then h(d, d") = h(d, d'). If
Pr {X = 8} = 1, it s easily seen that h(d, d’) = 0 for any d with Pr {$ < d} > 0.
Otherwise, if k(d, d") > 0 for some d’, then h(d, 0) > 0 as a transition from 0 to a
state larger than d’ has positive probability. Then Pr {D(T,) < d for at least m
values of n} < (1 — &(d, 0))™. Thus h(d, d') > 0 contradicts (15) and
D(T,) = dfor infinitely many values of n wp 1.

Accordingly, Dy(T,) = d for infinitely many values of n wp 1. After each oc-
currence of this event there is, by the construction of Lemma 2, a finite sequence
of ¢* arrivals, with probability, say, e > 0 and not depending on the value of Z,
which results in an occurrence of Ry, ., . Then wp 1 there are infinitely many
trials for R, c,) , each with probability of success at least e. R, ., is certain.

To prove the sufficiency part of the second assertion, it will suffice to consider
EM°. For the finiteness of EX° is then a consequence of the finiteness of EX and,
for example, an easy adaptation of a standard martingale result (Doob [3],
Theorem 2.2, pp. 302). Define n’(j) to be the number of occurrences of R, ., in
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th + ¢cq, -+, t; + cqand H'(j) = En'(j). By the construction of Lemma 2, if
dy, d2 < o there exist m, finite, and ¢ > 0 such that

Pri{n'(j+m) > n'(G)| Di(t;) S dp,k=1,2) Ze¢>0 forall j.
Then
(16)  ePr{Du(t) S di, k= 1,2} < Pr{n'(j + m) > n'(j)}
< H G +m) — H().
In view of Feller’s renewal theorem it will suffice to show that
(17) lim supj.e Pr {Di(t;) < di, kb = 1,2} > 0.

While (17) may be established directly rather easily, it will be convenient
below to introduce the process

(18) D(T.) = max (8,, d), 8 — X, + max (Suv, da), -+ -,
Sy — - — X, + max (S, d2), m=1.

It is evident that D dominates D wp 1. An argument like that used to establish
(15) results in the conclusion that lim inf,.., Pr {D(T,) < d} > Oforalld = d,.
The event D = d, is a regenerative event for this process. Then the expected
number of occurrences of R between successive occurrences of D = d, is finite,
Feller’s theorem. As EM < o it follows from the above mentioned martingale
result that the expected number of arrivals between successive events D = d, is
finite. A final application of Feller’s theorem yields

lim 8upj.e ket Pr {D(Ti) = dy, Ti = t;} > 0.

As D(T,) = D(T,) = Dy(T,) wp 1 (17) is established.

The proof that R, is certain and EX°® and EM° are finite under (1) and (11) is
by induction for ¢ > 2. We first suppose that the APS is such that a decision
made in the kth queue, £ = 1, ---, ¢, depends only on [V X (L., K, U,)
X -+ X (L, K, Up)]. Thus the evolution of the first k queues is not affected
by queues k + 1, - - -, ¢. We assume that Ry, ... o, IS a regenerative event for
the first k queues, is certain, and that EX“"""% and EM“® are finite. If
R, ,...,cn occurs for the jth and j — 1st times at t.,4c, and tn 4., respectively,
then X% = ¢, — t, and M“""* = n, — n;. Also, in this case define
T} = tn, - A dominating process may now be defined for queue k¥ + 1. Let
S; = Siy + -+ + Si1'. By the induction hypothesis the S, are independent
and, for j > 1, identically distributed. The arrival epochs for these composite
items are {T, 4 c}. Let D be defined for this process as above. Then
Dia(T*) < D(T} + ¢) + ¢, wp 1. For the arrivals to the dominating process
through T;* + ¢ include all arrivals to the original process up to T'f. Also, it is
clear that no arrival to the original process reaches the k£ 4+ 1st queue after the
composite item of which it is a component arrives. Finally, by the definition of
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R, .....cp all items in queues 2, - - - | k or being serviced by facilities 2, - -- | k at
T reach queue k + 1 not later than T,* + ¢ . From this point the proof for
g = 2 may be repeated.

When the APS does not have the special structure assumed above, the S; of
the dominating process may not be independent. However, it will be shown that
R¢,,....qy can be suitably redefined so as to preserve this independence. It was
observed that the occurrences of R, “an arriving item finds the first facility idle,”
are independent of the APS. Consider the process {D(T,), 1 < j < =} defined
above. As this process is defined in terms of X; = T; — Tj_, and S; = S,"7-!
+ -+ Ssz'l, the distributions of which are invariant with respect to the
APS, it follows that the evolution of the D process is the same for every APS.
Let T, be the time of the jth occurrence of D = d,. It was shown that
E(T, — T,.;) < . Suppose T; = t,. Then Di(t,) = 0 and Dy(t,) < d, for
each APS. By Lemma 2 there is a sequence of, say, n + m arrivals, with positive
probability, which results in an occurrence of R, at {p1n + ¢2 ; again, for all
APS. If only occurrences of R, which result from an occurrence of D=4d,
followed by such a sequence of arrivals are counted, then R, ., is a recurrent
event for the first two queues. It follows trivially that this event is certain and
that the expected number of arrivals between successive occurrences is finite. A
dominating process may now be constructed for the third queue. It is concluded
that

lim supy.. Pr {D(t,) < d:;,7=1,2, 3} > 0.

Also, a new D process results which gives rise to a regenerative event for the
first three queues. After ¢ — 1 such steps, a regenerative event with the asserted
properties is obtained for the ¢ queues. As the number of arrivals between its suc-
cessive occurrences clearly dominates the number of arrivals between successive
occurrences of R., as originally defined, the assertion is established for general
APS.

To prove the necessity of (1), suppose that there is equality in (1) for k = k'
Consider the single queue with arrival epochs {¢,} and service times {Si.}. Let
D’(t) be the uncompleted service time for this queue at time ¢, exclusive of any
arrival at ¢. Then wp 1 Dis(t;) = D'(t;). The necessity follows from E {first j with
D'(tuy;) £ & | D'(t,)} = o wp 1. At this point it is noted that Theorem 2 does
not assert that R, is certain if equality holds in (1) for some k. Evidently, a more
delicate analysis is required.

With the mechanism provided by Theorem 2 limit theorems corresponding to
1-d and 1-c are easily obtained. Let A" ¢ ®(@") and n(¢;) the number of occur-
rences of R, in (0, ¢;]. Set

0(A',j — i) =Pr{Z,eA | n(t;) = 1, Nugy = 4}

The existence of 8, and ¢ below, is a consequence of the common evolution of the
process after each occurrence of R, . The representation (5) takes the form
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P{Z;eA'} = Pr {Z,jeA', n(t;) = 0}
(19) + 2210(4', 5 — ) Pr{n(t;) — n(t: + cg)
= 0|R, occursat t; + c}[H (¢) — H'( — 1)].

Let W, ; denote the total waiting time in the g queues of the jth arrival conditional
on its being a type ¢ item. W, ; is clearly conditionally independent of the history
of the process prior to t; given Z;; . Let Fw (il , k1, w1, -+, ug) be the cor-
responding wide sense conditional df: a Baire function of the [, k, and .
TueorREM 3—d. If (1) and (11) are satisfied, then for A’ ¢ ®(@') and1 < 5 < r,

(20) limjw P{Zy e A} = (EM°)™ 2 3=10(A’, p) Pr{n(t,) — n(c,)
=0|R, occursat t= 0}
and
(21)  limju Pr{Wi; < w} = 2y 2otieeety Jo Fwa(wily, <o+, tg)
‘ oy, ey u,),

where o is the limat (20). If (1) 4s not satisfied and A’ is bounded in all l; . , the limit
(20) s zero.

Proov. The first term of (19) has limit zero as R, is certain. Also, it is evident
that R, has period 1. (20) follows from Theorem 2 and Theorem A once the sum
is shown to converge. However, if 8 is replaced by 1, the sum may be seen to equal
EM°. The proof of the remainder of the theorem is identical to the proof of the
corresponding parts of Theorem 1-d.

TueoREM 3—c. If (1) and (11) are satisfied, and if X° is not a lattice variable

(22) limg.. P{Z: e A} = (EX°)7 [T ¢(4, z)[l — Fx(x)]dz, for A e5(Q),
if X° has period Nand 0 < £ < A
(23) limj.w P{Zpsr e A} = NEX )™ 2200 6(4, N + £)[1 — Fx(ix + 8)],

for Ae®(Q). If (1) s not satisfied and A s bounded in all l; , the appropriate
limait is zero.
Proor. The proof is identical in all details to that given for Theorem 1-c.

b. Extensions of the model. The event R, remains a regenerative event and
the conclusions of Theorem 2 are valid for several modifications in the model.
Rather than make an attempt at being exhaustive, a few of the possibly more
interesting ones will be examined briefly.

A serious limitation of the model is the requirement that a facility not idle
when items are available for servicing. One would expect that in certain situ-
ations it would be desirable to allow a facility to idle when items are available in
anticipation of some item yet to join the queue. However, if the restriction that
the servicing of an item not be interrupted once started is relaxed, much of the
objection to this restriction would seem overcome. Suppose that interruptions in
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the kth queue can only occur at completion epochs of the k¥ — 1st facility, or at
arrival epochs if k¥ = 1, and that items of the same type do not interrupt each
other. In this case, it may be seen that the proof of Theorem 2 remains valid so
long as the interrupted item eventually resumes service where it was inter-
rupted.

A second possibility involves a more complex priority structure. For simplicity
suppose that r has period 1 and that the nth arrival is assigned a due date, time
by which it should be completed by the gth facility, of t, 4+ Y, , where YV, isa
positive integer valued random variable. Suppose that the Y are independent,
and for fixed item type identically distributed. If the nth arrival is a type ¢ item
and Y, takes the value y, we shall say that a type (¢, y) item arrived. At time
t, + 1 this item becomes a type (7, y — 1) item. Thus, we have a countable class
of item types. However, no modification in the proof of Theorem 2 is required
and with a minor amount of additional work limit theorems for such functionals
as the deviation of actual completion from due date are obtained.

The final extension to be considered here is relative to more general queue
systems. The most general case being when the specification of an item type
includes a subset of the facilities on which the item is to be serviced and the order
in which the facilities are to be visited. While our model will not support this
generality, it is easily seen that items may be allowed to skip facilities (and the
associated queues). Suppose that (11) is satisfied by some ¢* and that items of
type 7 are not to be serviced at facility k. For the purpose of establishing Theorem
2, it is clear that the dominating process may be constructed as though type 2
items are in fact serviced at the kth facility (S;x = 0 wp 1). Next, suppose that
there is no item type satisfying (11) which is serviced at each facility, but that
item types ¢’ and ¢ satisfy (11) for the facilities at which they are serviced
and that the union of these facilities is all ¢ facilities. In this case two events
R. and R, , corresponding to item types ¢’ and ¢", are defined. Suppose that the
facility k is the uth facility on which ¢’ items are serviced, 7' items are not serviced
on facility k + 1, and facility k¥ + 1 is the vth facility on which " items are
serviced. If a regenerative event R,-,...,» with the properties of Theorem 2 is
available for the first 4 queues, one constructs a dominating process for the
k + 1st queue as in the proof of Theorem 2. It then easily follows that a re-
generative event R,».... o,»y may be defined for the first £ 4+ 1 queues, which also
will have the properties of Theorem 2. Once it has been demonstrated that no
queue grows unboundedly large wp 1, either of R.- and R.- may be used as the
regenerative event in Theorems 3-d and 3—c.

6. Conclusions. We shall say that a system of ¢ series queues has capacity for
an imput (7ieu, - -+, Sip,2=1,---,rand k = 1, - - -, ¢) with aspecific APS
if lim sup¢. P{Z:c A} > 0 for some bounded A ¢ ®(@). It is of interest to know
what role the APS actually plays in the determination of the capacity of a system
of series queues. For inputs satisfying (1) and (11) the answer is none. However,
as the condition (11) is not necessary, this is only a partial answer. Whether or
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not there is an input satisfying (1) for which a given system of series queues has
sufficient capacity with one APS but not with some other APS is an open question.
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