ANOTHER CHARACTERISTIC PROPERTY OF THE
CAUCHY DISTRIBUTION

By M. V. MENON"

IBM Research Labs., San Jose, Calif.

1. Main result. The purpose of this paper is to prove the theorem and corollary
stated in this section. The corollary answers the question raised in Section 3 of
[4] to which we also refer the reader for further motivation.

THEOREM. Let X be a symmetricr.v.,and X;,7 = 1,2, --- | r.v.’s independ-
ently and identically distributed as X. The two conditions: (1) for any real number
¢, and positive integer n, there exist real numbers A = A(n, c¢) and B = B(n, ¢)
for which Y 1 1/(X: + c) is distributed as A/ (X + B), and (ii) for some ¢ % 0
the symmetricr.v. 1/(X, + ¢) + 1/(X, — ¢) s distributed as A(c)/X, for some
number A(c), are necessary and sufficient for X to have a Cauchy distribution.

COROLLARY. Let X;,7 = 1,2, --- be r.v.’s independently and identically dis-
tributed as a r.v. X. The necessary and sufficient condition that, for any real num-
bersa; # 0,b;,1 = 1,2, --- and any positive integer n, there exist real numbers

A and B for which Y ¢ 1/(a:;X: + b;) has the same distribution as A/(X + B),
s that X have the Cauchy distribution.

2. Notation. We set down some of the notation used which will conform to
that of [4] as far as possible. &, &, - -+, denote r.v.’s independently and iden-
tically distributed as any given r.v. £&. When two r.v.’s £ and 7 are set equal to
each other, ¢ = 7, we mean only that they have the same distribution, and not
that they are equal with probability one. The symbols —, and —,, stand for
convergence in probability and weak convergence respectively. Slightly modify-
ing the usual meaning of the symbol ~, we write f, ~ ¢, , if f,/g. converges to a
positive constant as n tends to infinity. The pdf (probability density function)
and ch.f. (characteristic function) of 1/X will be denoted by f(x) and ¢(%)
resp., and the pdf of X by g(x). (That the pdf’s mentioned exist will follow in
the course of the proof.) Finally, by £(£) is meant the law of any r.v. £.

N.B. Only non-degenerate r.v.’s are considered in this paper.

3. Proofs. We first prove that the conditions stated in the theorem are suffi-
cient. Therefore, let

(3.1) 20 1/(Xi +¢) = A(n, ©)/[X + B(n, ¢)]

where A (n, ¢) is assumed, without any loss of generality, to be positive, and
(3:2) 1/(Xy 4 ¢) + 1/(X, — ¢)'= A(c)/X

where ¢ # 0.
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LemwMa 1. 1/X is stable and has the ch.f. ¢(¢) = exp (—plt|*),u > 0,0 < a < 2.

Proor. Denote 1/X by Y. Since X and therefore Y is symmetric it follows
from (3.1) that > 7 Y: = a(n)Y, for some function a(n) of n.

Hence ([1], p. 162), Y is stable. Since it is also symmetric we have ([1], pp.
51, 164) ¢(t) = exp (—p|t|*), wherep > 0and 0 < a = 2.

LemMA 2. Given any real number ¢ and any posttive integer n, there exist num-
bers a(n, c), b(n, ¢) such that 1/(X + ¢) = S taln, ¢)/[X: + b(n, ¢)], and
hence, in particular, 1/(X + ¢) is infinitely divisible.

Proor. We have, as ¢ — ¢

D07 /(X + D =y 228 /(X + o7
Hence, from (3.1)
£{IX + B(n, H/A(n, )} —u &{[X + B(n, ¢)l/A(n, o)}

Therefore ([1], p. 42), A(n, ¢') — A(n, ¢) and B(n, ¢y — B(n, ¢). Thus, in
particular, B(n, ¢) is a continuous function of c.

Next, it will be shown that B(n, ¢) is an unbounded function of c.

For any fixed n, (¢/n) D1 1/(X; + ¢) —5 1, as ¢ — % «. Hence, from (3.1),

as ¢ — £,
£icA(n, ¢)/nlX + B(n, )]} —w e(z — 1),

where e(x — 1) is the distribution function of the r.v. which is equal to unity
with probability 1. Therefore [n/cA(n, ¢)][X + B(n, ¢)] —, 1, which implies
that n/cA(n, ¢) — 0 and nB(n, ¢)/cA(n, ¢c) — 1. Hence B(n, ¢) — =+ ac-
cording as ¢ — == . Since B(n, ¢) has already been shown to be continuous in c,
it follows that B(n, ¢) takes all real values as ¢ .varies over the real line, and the
lemma is established.

LeMMA 3. g(z) is continuous for every z if @ = 1, and for all x except x = 0 if
a<l.g@) ~|z[ asz— £ and g(z) ~ [z]* " asz —0,a < 2.

Proor. The proof follows from the facts that g(z) = 2z~ f(1/x), that f(x)
being the pdf of the stable r.v. 1/X (see Lemma 1), is continuous everywhere, and
that f(z) ~ |z[™*" as x — 2o ([5] or [4]), and f(0) # O.

By Lemma 2, we have for any ¢

(3.3) 1/(X + ¢) = 221 a(n, ¢)/[X: + b(n, 0)],
and since 1/(X + ¢) is infinitely divisible, the Lévy-Khinchin representation

(111, p. 76)
(3.4) log v(t) = iy(c)t + [ (€™ — 1 — itw/1 + w)(1 + w'/u’) do(u).

Let g.(x) be the pdf of a(n, ¢)/[X + b(n, ¢)]. Then

(3.5) ga(2) = a(n, c)gla(n, c)/z — bln, )]/z".
By ([1], p. 76 ff.) and (3.3) we have
(3.6) [ e (1/1 + 2*)g."(2) dz —0 0(u),

where ¢,%(z) = nz’g.(x).
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We proceed to consider the various limiting forms as n — o, of the expression
g.”* () that occurs in the integrand of (3.6), under different assumptions about
the limiting behaviour of a(n, ¢)/b(n, ¢). For convenience we shall write a,
and b, for a(n, ¢) and b(n, ¢). It will be understood that whenever an expression
such as a,/b, — k occurs, it is meant only that k is a limit point of {a,/b,}
and that the convergence indicated is for some appropriate sub-sequence. Fur-
ther, when we write for example (see (a) below) a,/b, — k, a, — k', |b.] — k”,
we mean only that there exists a sub-sequence {n.} of the positive integers, such
that @, /b, — k, @, = k', and [b,,| — k7, as ¢ — .

Let k£ # 0. From (3.5), taking into account Lemma 3, we see that the follow-
ing cases arise:

() an/bn — k, an — k', |b,] — k”, and g,*(z) ~ nk'g(k'/z — k"), where
K0,k #0,k=Fk/k".

(b) a2/bn— k, an — o, [bs| — =, and gn*(x) ~ nanlbn|—2|k/x - 1]_2

(¢) @n/bn =k, @y — 0, b, — 0, and g, *(2) ~ na,|b,|" "|k/z — 1]°7, &

(d) @n/by — 0, @&y — 0, b, — k', and g.*(z) ~ nau|bs|*", where k&’
a<2o0ork #0 0a=2

(e) @n/bn— 0, a,— 0, |b,] — o, and g,"(z) ~ na|b,|~

(f) an/bn - 0) an — OO’ lbnl - °°y a’nd gn*(.'l?) ~ nan!bnl_z

(g) bn/a,— 0, a,—0,b,—0,and g,*(2) ~ na,|z| a < 2.

(h) ba/tn — 0, @y — k', by — 0, and g¢,*(z) ~ nk'g(k’/z), where k' = 0.

(k) ba/@n — 0, @y — %, [bs] = %, and g.*(z) ~ na, [z **

(m) a, —0,b, > 0, = 2.

It is now clear from (3.6), using the lemma of Fatou, that since 8(«) is bounded
([1], p. 76), Cases (a) and (h) may be ignored and it may be assumed that
nay|b.| " in Cases (b), (e), and (f), na.|b.|* " in (c) and (d), na.”" in (k), and
na,” in (g), converge. Let us indicate (generically) this limit of convergence by
L. We list below the effect on () and hence on 1/(X + ¢) of the various cases
other than (a) and (h), holding.

We shall denote, for any u, v, u < v, the integrals f’; /(1 4+ 2Hg.*(z) de
and fi [1/(1 + 2°)] limpsw g (2) dz by I.(u, v) and I(u, v) respectively. e
will denote a positive number. ¢, will stand for a,/b, in Cases (b) to (f), and for
b./a, in the remaining cases. Since the proofs are easy, the lines of proof are
merely indicated. In them, use is made in an obvious manner of the following
facts:

(i) f(z) < Mlz|™", where M is a positive constant.
(ii) f(z) > Nlz[™*7, for all x sufficiently large, where N is a positive con-
stant, and a < 2.

(ii1) The pdf of 1/(X 4+ c¢) is either zero or infinite at * = 1/c.

(iv) g.*(z) can be written as na,|b,|*(c./x — 1)7*f(1/by)ca/x — 1)), where
Cn = @n/by , or as na, ' (1/x — ¢,) 7 f(1/a.(1/x — ¢,)), where ¢, = b,/a, .

(i) and (ii) are clear consequences of the fact, previously mentioned, that
f(x) ~ |z|™*7, and (iii) follows from Lemma (3).

Case (b). I.(— o,k — ¢) = I(—ow,k — ¢)and [,(k+ ¢ u)—I(k+¢u),

by the Lebesgue dominated convergence theorem. (Lebesgue).

<2
=z 0

’
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IfL#0,I(—w,k— ¢) — « as e — 0, which means that 6(u) is unbounded,
an inadmissible situation.

If L = 0, 6(u) is a step-function with the step at u = k. If the step-size is zero,
then 8(u) = 0 and hence 1/(X + ¢) is an improper r.v. If the step-size is non-
zero, then 1/(X + ¢) has a Poisson distribution, and this is clearly impossible.

Case (¢). If L 52 0 and a < 2, then I,(u, v) — I(u,v), by Lebesgue, for any
interval (u, v) for which v £ k =< v does not hold. By direct estimation, one
shows that I,,(k — ¢, k + ¢) — 0 as e — 0, uniformly with respect to n. Hence
0(u) = I(— oo, u).

Finally, L = 0, @ < 2 also leads to an inadmissible situation similar to that
in Case (b) above.

Case (d). If L # 0 and @ = 2, one shows that I,(— o, u) = I[(— o, u).

If L # 0, « < 2, then, just as in Case (¢), 0(u) = I(—«, u).

Next, L = 0 is inadmissible for the same reason as in Case (c).

Case (e). Letc, < 0, A > 1,and N\, = b,/ (bs + €), pn = ba/(bn — €). One
estimates the integrals I,(Ac. , ¢:\), In(Cahn , Cattn), and I,(Copn , 0) and finds
that they converge to zero as n — . On the other hand, 7,(0, u) — I(0, u),
by Lebesgue, and (L — €)(f(0) — e)fifo" 1/(1 + 28 de £ I.(—w», Ac,) <
(L + €)(f(0) + ¢)f22 1/(1 + 2°) da. Hence I,(— o, u) — I(— », u). This
conclusion holds, by a similar argument, if ¢, > 0.

Case (f). If L # 0, @ = 2, the conclusions are the same as in Case (d).

L #0a< 2 I,(Chhn, Cattn) — o, where \, and p, are defined in the
immediately preceding case.

If L = 0, since I,(— », —e) and I.(e, u) converge to zero, by Lebesgue,
we have the impermissible situation that 8(«) is identically zero or is a step-
function with a step (of finite or infinite size) at v = 0.

Case (g). Ifl1<a<2,thenl,(—,u)—I(— o, u), by Lebesgue. Suppose
a<1l.Incasec, < 0,let1/c, < A <0.Then I,(— o, A) »0as 4 — — o,
uniformly with respect to n, whereas I,,(4, u) — I(A, u), by Lebesgue. Should
¢, be positive, let 1/¢, > A > 0. Then I,,(4, ©») — 0 as A — «, uniformly with
respect to n, whereas I,(— «, A) — I(—x, A). We conclude that if L = 0
anda < 1, I,(— o, u) = I(—w,u).

Case (k). Let1/cn < A < B <0,ifc, <0and0 < 4 < B < 1/¢,,ifc. > 0.
Then, by Lebesgue, I,,(4, B) — I(4, B).

IfL#0,I(A,B)—> o,as 4 — — o (if ¢, < 0),0ras B— o« (if ¢, > 0).
This means that 8(«) has to be unbounded.

If L = 0,I(4, B) = 0. But I,(¢, ) — I(e, ©) if ¢, is negative, and
I.(— o, —¢) — I(— o, —¢) if ¢, is positive. Thus 6(u) is astep-function with a
step at zero. This is inadmissible.

Case (m). This case leads to a 6(u) which is either unbounded or is a step-
function with a single step.

It has thus been shown that the only cases that need further investigation
are (c¢) and (g), with & < 2, (f) with @« = 2, (d) and (e). In these cases, we
have

(3.7) o(w) = [2all/(1 + ) limpe gn” ()] de.
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But, if (3.7) holds in the Cases (d), (e), (f), and (g), 1/(X + ¢) becomes
(using (3.4) and [1], p. 168) stable, with one of its characteristic parameters 8
equal to zero ([1], p. 169). Suppose now, that the characteristic parameter
o of 1/X is not unity. Let ¢ 0. Then the pdf (1/2%)g(1/z — ¢) of 1/(X + ¢)
is either zero or infinite at x = 1/¢ (see (iii)). Hence, from the continuity of
stable laws, their unimodality ([2]) and the fact that they are not bounded to
the right or left unless |8] = 1 ([3], p. 105 ff., or [5]), we reach the conclusion
that the assumption « # 1, is untenable when the Cases (d), (e), (f), and (g)
hold.

Thus if @ # 1, the only case that can hold is (¢). Suppose that the situation
delineated in (¢) occurs. We have, from (3.7) and (c), with a = 2,

(38) o) = M) [% [1/(1 + a)][k(e)/a — 1 da,
where k has been replaced by k(c) to indicate explicitly the dependence on c.

Next, if ¢:(t), 2 = 1, 2, 3, are the ch.f.’s of the three r.v.’s in (3.2), we obtain
the equivalent relation

(3.9) Yi(t)e(t) = ‘/’:f(t)-
But, by Lemma 1, ¢3(¢) = exp (—u|d(c)t|*). Hence, ([1], p. 168)

log ¢s(t) = (e}t + n(e)f (€™ — 1 — atu/1 + w')u[~" du,

where 8(c) and 5(c) are some functions of c.
On the other hand, by (3.4) and (3.8),

log ¥1(t) = dv(e)t + A(e)[ (e — 1 — dtu/1 + u®)|u["*[k(c) — u|*" du,

and log ¥ (%) is obtained by replacing ¢ by —c¢ in the right hand side of the last

equation.
Hence, from (3.9), using the uniqueness of the Lévy-Khinchin representation

([1], p. 80), we have
n(c) = Ne)|k(e) — u[*™" + N—c)|k(—c) — ul*™,

an identity which is impossible unless & = 1. Thus, the assumption a = 1
that was made above is invalid, and the proof that Conditions (3.1) and (3.2)
are sufficient is complete. That these conditions are necessary is easy to es-
tablish. As for the corollary, it follows from the stated assumptions that there
exist ¢ and b such that ¢X -+ b is symmetric, and the conclusion follows from
that of the theorem.
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