ON MIXTURES OF DISTRIBUTIONS1

By W. Molenaar and W. R. van Zwet²

Mathematisch Centrum, Amsterdam, and University of Oregon

1. Introduction. Let F_{θ} , $\theta \in T \subseteq \mathbb{R}^1$, be a family of distribution functions on \mathbb{R}^1 , where F_{θ} is measurable in θ . For an arbitrary non-degenerate distribution function H that assigns probability 1 to T we consider the H-mixture of the family F_{θ} , i.e. the distribution function

$$F_H(x) = \int_T F_{\theta}(x) dH(\theta).$$

In 1943 W. Feller [1] proved that if F_{θ} is Poisson, then the variance of F_{H} is always larger than the variance of the Poisson distribution with the same expectation. This note is an attempt to generalize this and related results.

2. Convexity arguments. If g_1 and g_2 are integrable with respect to F_{θ} for all $\theta \in T$ and with respect to F_H we define for i = 1, 2

$$\chi_i(\theta) = \int g_i(x) dF_{\theta}(x)$$

$$\chi_i(H) = \int g_i(x) dF_H(x) = \int_T \chi_i(\theta) dH(\theta).$$

We note that the same symbols χ_i are used to denote both the functions $\chi_i(\theta)$ and the functionals $\chi_i(H)$.

We shall say that the function χ_2 is convex, concave, or linear with respect to χ_1 on T if there exists a convex, concave, or linear function φ on $\chi_1(T)$ such that

$$\chi_2(\theta) = \varphi(\chi_1(\theta))$$
 for all $\theta \in T$.

We note that this definition differs from the one usually given in that there is no monotonicity requirement for χ_1 involved.

The following version of Jensen's inequality will be needed in the sequel (cf. [2], p. 75).

LEMMA 1. Let K denote the class of distribution functions H on T having

$$\chi_1(H) = \chi_1(\theta_H)$$
 for some $\theta_H \varepsilon T$.

Then a necessary and sufficient condition for $\chi_2(H) \ge \chi_2(\theta_H)$ to hold for all $H \in \mathcal{H}$ is that χ_2 is convex with respect to χ_1 on T.

The inequality is strict for all $H \in \mathfrak{IC}$ for which χ_1 is not constant a.e. [H] on T, if and only if the convexity is everywhere strict; there is equality for all $H \in \mathfrak{IC}$ if and only if χ_2 is linear with respect to χ_1 on T. If in the above "convex" is replaced by "concave" the inequality is reversed.

Received 25 May 1965.

¹ Report SP 88, Statistische Afdeling, Mathematisch Centrum, Amsterdam.

² Now at the University of Leiden and Mathematisch Centrum, Amsterdam.

PROOF. If $\chi_2 = \varphi \chi_1$ and φ is convex we have $\chi_2(H) = \int_T \chi_2(\theta) dH(\theta) = \int_T \varphi(\chi_1(\theta)) dH(\theta) \ge \varphi(\int_T \chi_1(\theta) dH(\theta)) = \varphi(\chi_1(H)) = \varphi(\chi_1(\theta_H)) = \chi_2(\theta_H)$ by Jensen's inequality, which also yields the sufficiency of the conditions for strictness and equality. The converse follows by considering distributions H that concentrate at two points.

To apply Lemma 1 to a comparison of the variances of the distributions F_H and F_{θ_H} where F_H and F_{θ_H} have the same expectation, we set $g_1(x) = x$, $g_2(x) = x^2$ and define

$$\mu_{1}(\theta) = \int x \, dF_{\theta}(x),$$

$$\mu_{1}(H) = \int x \, dF_{H}(x),$$

$$\mu_{2}(\theta) = \int x^{2} \, dF_{\theta}(x),$$

$$\mu_{2}(H) = \int x^{2} \, dF_{H}(x),$$

$$\sigma^{2}(\theta) = \mu_{2}(\theta) - \mu_{1}^{2}(\theta),$$

$$\sigma^{2}(H) = \mu_{2}(H) - \mu_{1}^{2}(H).$$

and

COROLLARY 1. A necessary and sufficient condition for $\sigma^2(H) \geq \sigma^2(\theta_H)$ to hold for all H having $\mu_1(H) = \mu_1(\theta_H)$, $\theta_H \in T$, is that μ_2 is convex with respect to μ_1 on T. We note that if $\mu_1(\theta)$ is linear, the above condition reduces to convexity of $\mu_2(\theta)$ on T. The result is then a direct generalization of Feller's theorem.

3. Total positivity. It turns out that for most well-known families F_{θ} , μ_{2} (θ) is convex in $\mu_{1}(\theta)$ and hence mixing increases the variance. As will be seen the reason for this is that many of these families possess totally positive densities, a concept that was extensively investigated by S. Karlin et al. (cf. e.g. [3], [4], [5]).

Suppose that the family F_{θ} possesses densities $p(x, \theta)$ with respect to a σ -finite measure ν with spectrum $X \subseteq R^1$, i.e.

$$F_{\theta}(x) = \int_{-\infty}^{x} p(u, \theta) \, d\nu(u).$$

The density $p(x, \theta)$ (or the family F_{θ}) is called totally positive of order $k(TP_k)$, if for all $x_1 < x_2 < \cdots < x_m$ in $X, \theta_1 < \theta_2 < \cdots < \theta_m$ in T and all $1 \le m \le k$, the determinant

$$\begin{vmatrix} p(x_1, \theta_1) & p(x_1, \theta_2) & \cdots & p(x_1, \theta_m) \\ p(x_2, \theta_1) & p(x_2, \theta_2) & \cdots & p(x_2, \theta_m) \\ \vdots & & & \vdots \\ p(x_m, \theta_1) & p(x_m, \theta_2) & \cdots & p(x_m, \theta_m) \end{vmatrix} \ge 0.$$

Densities of this type possess the following variation diminishing property (cf. [5] for a statement of the general result as it is mentioned here; cf. [3] for a proof of a special case. The determinantal inequality on which this proof is based may also be used to provide a direct proof of the general result). Let V(g) denote the number of changes of sign of g. If χ is given by the absolutely convergent integral

$$\chi(\theta) = \int g(x)p(x,\theta) d\nu(x) = \int g(x) dF_{\theta}(x),$$

where $p(x, \theta)$ is TP_k and $V(g) \leq k - 1$ then $V(\chi) \leq V(g)$. If $V(\chi) = V(g)$ then g and χ change sign in the same order.

The following lemma may be obtained by exploiting this variation diminishing property. It is a slightly different formulation of a result obtained by Karlin in [4], p. 343.

LEMMA 2. If $p(x, \theta)$ is TP_3 , g_1 is monotone on X, and g_2 is convex with respect to g_1 on X, then χ_2 is convex with respect to χ_1 on T.

Karlin proved the lemma for the case where $g_1(x) = x$ and χ_1 is linear. He also showed (cf. [4], pp. 342–343) that if g_1 is non-decreasing (non-increasing) on X, then so is χ_1 on T. Since the property of total positivity is preserved under non-decreasing (non-increasing) transformations g_1 and χ_1 of the random variable and the parameter simultaneously, the lemma may be proved by reducing it to the special case considered by Karlin.

Combining Lemmata 1 and 2, we have

THEOREM 1. If F_{θ} is TP_3 , g_1 is monotone on X, g_2 is convex with respect to g_1 on X, and $\chi_1(H) = \chi_1(\theta_H)$ for some $\theta_H \in T$, then $\chi_2(H) \geq \chi_2(\theta_H)$.

Since $g_1(x) = x$ is monotone and $g_2(x) = x^2$ is convex, we have from Corollary 1 Corollary 2. If F_{θ} is TP_3 and $\mu_1(H) = \mu_1(\theta_H)$, $\theta_H \in T$, then $\sigma^2(H) \ge \sigma^2(\theta_H)$.

Finally we remark that the conclusions of Lemma 2, Theorem 1 and Corollary 2 are obviously independent of a particular parametrization of the family F_{θ} . It is therefore sufficient to require that there exists a parametrization such that the family is TP_3 .

REFERENCES

- FELLER, W. (1943). On a general class of contagious distributions. Ann. Math. Statist. 14 389–400.
- [2] HARDY, G. H., LITTLEWOOD, J. E., and PÓLYA, G. (1934). Inequalities. Cambridge Univ. Press.
- [3] Karlin, S. (1955). Decision theory for Pólya type distributions. Case of two actions, I. Proc. Third Berkeley Symp. Math. Statist. Prob. 1 115-128, Univ. of California, Berkeley.
- [4] KARLIN, S. (1963). Total positivity and convexity preserving transformations. Proc. Symp. Pure Math. 7 329-347, Amer. Math. Soc., Providence.
- [5] KARLIN, S., PROSCHAN, F., and BARLOW, R. E. (1961). Moment inequalities of Pólya frequency functions. Pacific J. Math. 11 1023-1033.