ON THE EFFECT OF STRAGGLERS ON THE RISK OF SOME MEAN
ESTIMATORS IN SMALL SAMPLES!

By FRIEDRICH GEBHARDT
Deutsches Rechenzentrum, Darmstadt

1. Summary. In a previous paper [2], the risk (essentially, the variance) of
certain mean estimators that in some way allow for a possible occurrence of
stragglers (random variables with different mean or larger variance) have been
numerically computed when the respective variances of stragglers and non-
stragglers are given. This restriction is relaxed in the present paper; only the
ratio of these variances is assumed to be known. A variety of cases as explained in
detail in Sections 2 and 3 is being considered: The underlying distribution may
be a normal (Gaussian), a logistic, or a generalized Cauchy distribution; there
may be none, one, or two stragglers; the ratio of the standard deviations may be
3 or 6; finally, trimmed and Winsorized means and Bayes estimators are con-
sidered. The results are discussed in Section 5. They support the suggestion
(J. W. Tukey [3]) to trim the sample by all observations that deviate substan-
tially from the sample mean and to Winsorize those observations that deviate
moderately, but trimming off exactly two observations is almost without reserva-
tions a strategy superior to always Winsorizing two. A very satisfactory behavior
is exhibited by some estimators that formally are Bayes solutions for the Gaussian
distribution but that also have been used with the other ones. This suggests to
further pursue estimators with similar properties.

2. Examined distributions and definition of the risk. Let X;,---, X, be n
independent random variables with common unknown mean m and standard
deviations o1, - - -, on . Consider the following hypotheses on the variances (the
notation “A4 := B” or “B =: A” defines A as B):

Ho: 01 = **° =0, =10,
(2.1) Hy(%):0: = o1, 0j = ¢ for j # 4 (¢=1,---,n),
Hy(%,§):0¢i = 0 =01, o, = o for k#4,5 (1 S4¢<j=<n)

That is, one or two random variables may be stragglers with variances o’
while all others have variance ¢°. Here r is assumed to be known while ¢ is not.
The restriction to no more than two stragglers has been made to keep the in-
tended numerical computations within reasonable limits. If a straggler is a rather
rare event, our model can be expected to be a fairly good approximation to the
general case where more than two stragglers may occur and it seemed more
valuable to consider a larger variety of estimators and distributions instead.
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Three types of distributions will be investigated:
(a) the normal distribution;
(b) the logistic distribution with cdf (form = 0, = 1)

F(z) = 1/[1 + exp {—a/3%],
(¢) a generalized Cauchy distribution with density (again form = 0,0 = 1)
f@) = (@/m)(1 + )7

While for large x the logistic dens1ty converges to zero exponentially, the
generalized Cauchy densﬂ;y is of order z~* thus having moments only of order <3.

Let X := > Xi/n, 8 := X (X: — X)/(n— 1), T := (X; — X)/8,4 =
1, - -+, n. Furthermore, let X —aX,8, T, -, Ts) be any estimator for the
mean m. We shall replace in such expressions the sequence Ty, ,Tojustby T.
The joint density functions of X, S, Ty, - - , T'n—s under Hypotheses Ho , H:(1),
H(1, 2) will be denoted by f;(Z, s, t; m, 0, 7),j = 0, 1, 2 respectively. Any func-
tionof &y, - - - , {, is to be considered as a function of ¢, , - -+ , t»_s only by means
of Doyt = 0, Sratl=n — 1; ; using all n arguments better exhibits the
symmetry. Since the densities of X; are of the general form o f*((z: — m) /o),
it is easily verified that f; can be converted into f;(&, s, t;m, o, 7) = o g;((Z —
m) /e, s/o, t; ), the factor ¢ * arising from the Jacobian |8(21, - - - , #x)/8(Z, s,
by« ,t,,_z)l = n(n — 1)s" /|ty — ts—i| combined with the fa,ctor ¢ " stem-
ming from the product of the densities of X3, -+, Xs.

Now we introduce the quadratic loss

(22) L(HJ y @5 m) = (x - a(x) 8, t) - m)

if £ — a is the estimated, and m is the true mean. Then the risks of the estimator
X — a(X, 8, T) under hypotheses Ho , H1(1), Hz(1, 2) respectively are

R; = Ej(X — (X, 8, T) — m)%*
= [(&— a5, s, t) — m)’o fi(Z, s, t; m, o, T) dzdsdly -+ dins.

The risk under hypothesis H;(7) for i 5 1 is defined correspondingly; but as long
as a is symmetric int,, - - - , £, , it is equal to R; ; the same holds for H.(%, k).

In general, B; is a functlon not only of 7, but also of the unknown parameters m
and o. If however the estimator is of the form a(X, S, T) = Sb(T), a transforma-
tion w = (& — m)/o, v = s/o shows immediately that in this case R; does not
depend on m and o. The estimators that usually are employed are of this form;
we shall also investigate only such estimators. They have the special property
of reflecting some symmetries of the problem: A linear transformation
X. — aX: + B induces the same transformation of the estimator.

" One might argue about the justification of the denominator o’ in the definition
of the loss. Its purpose is to measure the deviation of the estimator from the
true value m in units of the standard deviation. As long as o is regarded as an
unknown but fixed constant, the denominator o* is just a multiplicative constant
and of no further importance since it does not change any relations between the

2 —2
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risks of different estimators; it becomes essential only in finding the Bayes solu-
tions if estimators of the general form X — a(X, S, T') are admitted since the
risk is to be minimized with respect to a prior distribution not only of the hy-
potheses H; but also of the dummy parameter o.

If the variances of all variables are known (that is, if one knows which variables
are stragglers) and if the variables are normally distributed, the minimum
variance, unbiased estimator is X — ao(X) = D, (X:/0’)/ D oi°. Especially,
ifo,= -+ =0; =07,0/4a = --- = ¢, = 0, then ay becomes

a=(1—71")(n—j+i 72 (Xi— X)
= (1 =7")(n—j+jr 7 XIL8T..
The risk of this estimator under the correct hypothesis is
(2.3) R/ =07/ 0 = 1/(n —j +jr).

For any probability distribution with existing var (X) other than the normal
distribution, (2.3) still gives the risk of X — a, although this may no longer be the
minimum variance unbiased estimator.

Merely for convenience, we introduce

(2.4) Tj(b) = R,(b) bt Rj,

and we now call this the risk of the estimator X — Sb(T'). Of course, this additive
constant ;" does not affect the comparison of different estimators or distribu-
tions with one another. The numerical values of R, as far as they concern us
here, are

n=26 =26 R’ =01667, R, = 0.1989, R, = 0.2466;
n=6, r=3: Ry =01667, R, = 0.1957, R, = 0.2368;
n =10, r=6: R/ = 01000, R, = 0.1108, R, = 0.1241;
n =10, r=3: R/ =0.1000, R, = 0.1098, R, = 0.1216.

I

3. Mean estimators. Next we shall describe the estimators investigated. The
symbols that will be introduced refer to those that are used in the Diagrams.

T. All variables X for which |T| > B are to be trimmed off ; that is, the mean
estimator is

X—8br= 2 X/ *1=X+82*T:/2 %1

where Y_* stands for the summation with respect to all values of 7 such that
|T:| < B. This estimator contains a parameter, 8; therefore its risk appears in
the diagrams as a line rather than a single point. If 8 = ((n — 1)/2)}, at most
one |T,| can exceed B8 and by is equal to br discussed below.

T1. If max |T: > B, then the corresponding X is to be trimmed off. If
B> (n — 1)n, no such variable can exist; if 8 < By := ((n — 1)/n)}, there is
always at least one T with |T.| > B.
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T2. The largest variable and the smallest one are always to be trimmed off
without regard to their sizes. In the diagrams, T2 is marked by a cross.

W1. If max |Ti| = |Tj] > B, then X is to be Winsorized, that is, it is to be
replaced by the nearest variable that is not Winsorized. The mean of these
altered n values is to be taken as an estimator for m. The curves W1 have definite
left ends that correspond to 8 = B ; i this case always exactly one observation
is Winsorized.

W2. The largest observation and the smallest one are to be Winsorized with-
out regard to their sizes. The risk of W2 is marked in the diagrams by a small
circle. ’

B1. If the variables X; are normally distributed, bz is the Bayes solution
to the prior probability ¢, of no straggler occurring and the prior probability
¢10f X; (4 = 1, - - , n) being the only one, ¢) + né, = 1. Thus, the occurrence
of more than one straggler has prior probability 0. The formula for bz, as well
as that for bs, are derived in Section 4. The same estimator has been used with
the other distributions, although it then is no longer a Bayesian estimator.

B2. For normally distributed variables X , this is again a Bayes estimator when
¢ = ¢’ is the prior probability that for any pair 4, j (¢ < j), X: and X; are the
only stragglers; ¢o + n¢1 + n(n — 1)¢/2 = 1. '

B1’, B2'. These estimators that have been used only with normal distributions
and n = 6, are the same as B1 and B2, but the wrong value of 7 has been inserted
(r = 3 when the true parameter value is 6 and vice versa).

As already noted in the Summary, the risks have been computed for r = 3
and r = 6, forn = 6 and n = 10. The method used was in part a Monte Carlo
integration, mostly a modification proposed by P. Davis and P. Rabinowitz
[1], see also [2], that proved slightly more accurate. Both methods utilized 6000
or 10000 samples for n = 10 and n = 6 respectively; the standard deviations
of Monte Carlo integrals seem to be 2 to 3 times those of the modified method.

4. Bayesian estimators. For a finite number of simple hypotheses H; with
prior probabilities ¢; , the Bayes estimator X — as(X, S, T') is by definition
that function that minimizes the weighted sum of risks
(4.1) 2 $:EL(H; , a)).

Since however our hypotheses are composite, ¢; has to be replaced by its product
with ¢;(m, o), the conditional prior probability density of m and o given H; ;
instead of (4.1) we now have to minimize

(4'2) Z.‘i f do- f dmd’f'l/i(m’ G)EJ[L(HJ y @3 M, 0')].

In order to simplify this expression, we shall impose the following restriction on
the estimators: Only estimators of the form X — Sb(7T') are admitted.

Then the expectation in (4.2) becomes
EJ[L(H‘ y Ay M, ‘7)] )

= fda':fdsfdt(a‘: — sb(t) — m)e 0 g;((F — m)/o, 8/o, t; T)
= [du [ dv [ dt(u — vb(2) Vgi(u, v, t; 7)
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with u:= (£ — m)/o, v := s/o. This expression is independent of m and o;
therefore (4.2) can be integrated with respect to m and ¢ resulting in the omis-
sion of [ i(m, ¢) dm do that is equal to one. Thus we have to find a function
bs(t) that minimizes

(4.3) 2o [ dufdo fdt(u — ob())gi(u, v, t; 7).

The integration with respect to » and v can be performed explicitly and then the
values of b minimizing the sum for fixed ¢ can be found by differentiation. The
final result is given below; it is a measurable function of i.

In analogy to results in [2] one might state the following conjecture: The
minimum risk of all estimators X — a(X, 8, T') with respect to uniform prior
density (in the limit) of m and log o will also be attained by an estimator
X — Sbs(T).

Of course, the expression “in the limit” needs some further specification ;
possibly some weak regularity conditions must be-added. It is hoped to give a
more general proof in a subsequent paper. .

If each hypothesis H1(7) stating that X is the only straggler (¢ = 1, --- , n)
has prior probability ¢; and each hypothesis H,(z, j) assuming X; and X; (1 < %
< j = n) to be stragglers has prior probability ¢, , then the solution of (4.3) is

$12, Tl — CTT 2 4 4,0,V

W D) = o G [T — Ao + GV

with
K=1—-7+% L=n—-1+4+77% M=n—2+42"2
Cy = nK/(n — 1)L, Cy = L**/Kn},
C; = L/K, Ci=L/tM,
Cs = L**/-KM*, Co= K/(n — 1),
C:=K/(n — 1)M,
Vi= 2 (Te+ T — (TF + T)Cs — (Ti + T;)Coy ™07,
Vo= 2uill = (T8 + T7)Cs — (T + T;)°Co "%

Note the similarity of numerator and denominator; characteristically the
terms of the denominator are multiplied by a linear expression in T to obtain
the corresponding term of the numerator (this even holds for the first term
#oC; : multiplying it analogously by J_ T yields 0).

From (4.4), b is obtained by letting ¢, = 0; then the last terms of numerator
and denominator vanish.

The prior probabilities must of course obey the equality ¢¢ + n¢i+
n(n — 1)¢g/2 = 1.
6. Discussion of the results. The risks of the estimators to be considered are

plotted in 12 diagrams. Note that r; has a smaller scale than r and r; . Diagrams
for different distributions but equal #» and r have the same scale. Due to the
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rather low accuracy of computation, some minor details in the diagrams may
not be correct.

In the following discussion, estimators will be referred to by the letters used in
the diagrams; e.g. we shall say 71 meaning X — Sbr(T). Statements like “T'2
is better than W2” are to be taken liberally; to state the exact meaning of words
like “better” in each case would only obscure the results while a glance at the
diagrams will explain the situation.

As might be expected, the relative merits of different estimators change with
sample size, type of distribution, and quotient of the variances. Nevertheless
some relations seem to hold rather generally.

The easiest comparison is that between 72 and W2. In all cases, T2 has

" smaller risks under hypotheses H; and H, (sometimes they are considerably
smaller) while under H, the risks of 72 and W2 are about equal. Since T2 in
most cases also compares rather favorably with all other estimators and is
very easily computed, it might justly be preferred in many situations.

The left ends of W1 correspond to the strategy of always Winsorizing one
observation. If the parameter 8 exceeds By (as introduced in Section 3) only
moderately, the risks remain almost unaffected. This is however not surprising
since W1(8) and W1(B,) themselves are almost equal in this case. For T'1, the
situation is different. The curves again have definite ends corresponding to
B = Bo.But if 8y < max |T;| < B, the largest (or smallest) observation is in one
case discarded; this causes a considerable difference in the risks of 71(B8) and
T1(Bo). r0(T1(Bo)) is rather large and falls outside the range of the diagrams
(except possibly for the generalized Cauchy distribution; the risks of 7'1 have not
been computed for 8 < 1.5). But also 71(7'1) increases for small values of 8 and,
it seems, so does r.(T1). Thus, while always Winsorizing one observation still
is a rather reasonable procedure, always trimming off one is not. If one decides
on trimming off at most one observation, recommended values of 8 are about
1.7 for n = 6 and 2.0 to 2.1 for n = 10.

Comparing W1 with T'1, it appears that W1 is to be preferred for r = 3, T'1
for 7 = 6. This supports Tukey’s proposal [3] to trim off observations that deviate
substantially from the sample mean and to Winsorize those that deviate mod-
erately.

Ifg>pB1=((n—1) /2)*, at most one observation can exceed 8. For 8 < 8,
there may be more, and 7'(8) is the strategy of trimming off all those. Obviously,
T(B) coincides with T'1(8) for 8 > B: . The risks of T' have been computed for
1.2 <8=14,ifn =6,andfor 1.1 = 8 < 1.7, if n = 10. It turns out that ro(T')
is rather large in comparison with other estimators while r,(T") is satisfactorily
small. The other features of T' vary substantially with the underlying distribu-
tion. Due to the large risk 7(7T') it should not be used unless a high straggler
rate is expected.

For normal distributions, the Bayes solution must of course be a reasonable
estimator since it minimizes by definition the weighted sum of risks. But it
came as a surprise to the author that this complicated, specialized estimator
also works very well for other distributions (where it is no longer the Bayes
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solution). While usually B1 has a somewhat smaller risk than B2 under hy-
potheses H, and H, , the difference is not large; for the generalized Cauchy dis-
tribution, ro(B2) is even smaller than ro(B1). Under Hypothesis H,, B2 has
always a considerably smaller risk than B1, especially for + = 6. Whenever the
tedious work of computing B1 or B2 is justified (generally this will imply using an
electronic computer), it is highly recommended to choose B2 with not too small
a value of ¢ (about .10 for n = 6 and about .05 for n = 10). This may be of
advantage even if one is sure that there are no stragglers but if the distribution
is non-normal. It may also be worthwhile to look for new estimators that are
simpler than B2 but show a similar behavior.

There is one drawback, however, with the Bayesian estimators. To employ
them, one must know r as has been assumed throughout this paper. All other
estimators considered here do not contain 7. Thus they can be used even if =
is not known as will mostly be the case; nevertheless one knows something about
their risks. To study the effect of a wrong choice of 7, the Bayes estimators have
been computed for underlying normal distribution and » = 6 using 7 = 3
in the formulae for bz; and bz, when the true parameter is 7 = 6 and vice versa.
The results are shown in the corresponding diagrams as broken curves (not to
be confused with the broken straight lines that in some cases connect correspond-
ing points in the upper and lower parts of a diagram). It seems that choosing
too small a value of 7 decreases r, and increases r, while too large a value of
7 increases r; and r; ; B2 is much more affected than B1. It is not known if these
results can be generalized to n = 10 or to other distributions.
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6. Diagrams. Risks 7o, 71, and 7. under hypotheses Hy, H;, and H:, resp.,
of several estimators introduced in Section 3. The hypotheses are defined in
(2.1), the risks, in (2.4). The risks of T2 and W2 are marked by a cross and a
circle, resp. Broken curves indicate risks of B1' and B2'. Broken straight lines
connect corresponding points in upper and lower parts of the diagrams.

The diagrams do not indicate which points of the curves correspond to which
values of the parameters ¢ and g respectively. Since the tables with the numerical
results are rather extensive, they are not published here but may be obtained

from the author on request.
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