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Summary. T is the sequential probability ratio test (SPRT) based on the
sequence {X,} whose family of distributions {Ps, 6 ¢ ®} satisfies certain suffi-
ciency, monotone likelihood ratio, and consistency assumptions. Sufficiency re-
duces the criterion of 7' t0 go,n/gs,n , Where gon is the density of X, , 6, and 6, are
the values of 6 specified by the hypothesis and alternative respectively, and
6; < 6. It is assumed that ge.(z) has the asymptotic form: go. () ~ fou(z) =
K(®)C(8, z)e™®? as n — . The Simplified SPRT T* is proposed where 7*
uses the criterion ™2 /g™ The following conditions are relevant: Con-
dition C states that h(6, z) has a unique maximum at z = 6 and h(6, 9) is free of
6; Condition D(i) requires Ag.(z) = qon() /fon(2) to be bounded for all 9, z, and
n; and Condition D(ii) states that for each 8, Ag,(z) — 1 uniformly in z for z in
a neighborhood of z = 6. Let N and N™* be the sample sizes of T and 7™ respec-
tively, and let 6, be the solution of k(8 , ) = h(6:, z). It is shown in Section 3
that Conditions C and D imply: Ps(N* > n) < 76”/n*, where0 <6 <1,y < o
and 0 £ 6, . The same is true for N. Thus, the moment generating functions of N
and N* exist, and inequalities for the expected values of N and N* are readily
obtained with respect to any Py, 8 5~ 6, . The following monotonicity properties
of E,N and E;N™ are established under an additional condition in Section 4: the
expected values increase for 6 less than a certain interval containing 6, and de-
crease for  greater than this interval. Several examples are discussed in Section 5,
and the conditions are checked in Section 6.

0. Introduction. {X, ,n = n} is a sequence of random variables defined on the
probability space (2, @, ®), where ® = {Py, 0 ¢ ©} is a family of distributions
and 0 is real; @, is the Borel field generated by {X; ,j < n}; and Ps, is the density
of P, on @, with respect to some o-finite measure. It is desired to test the hy-
pothesis H; : 0 = 6, against the alternative Hy : 0 = 6y, where 6, < 6,. Let
R, = Py,n/Ps,» and let T denote the sequential probability ratio test (SPRT)
([71, [4]) based on {X,} with B and A as stopping bounds, where 0 < B < 1 <
A < . Finally, let g, (z) be the density of Py on the Borel field generated
by X, . '

We say that {X,} is of the S-MLR case whenever the following assumptions
hold: (i) X, is sufficient (S) for ® on @, for each n; (ii) @ is a monotone likeli-
hood ratio family (MLR) on @, for each n; (iii) X, — 6 a.e. Py (consistency) for
each 0 £ ©; (iv) ge.(z) > 0if and only if z £ ©; and (v) O is an interval.
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Several aspects of the S-MLR case were treated by Wirjosudirdjo [9], the
author [3], Berk [2] and Wijsman (8). The assumptions given above are as stated
in [3]. The results of this paper resemble the corresponding well-known results
about the ITD case, where the X are identically and independently distributed.

We remark that the S-M LR case covers many examples of the IID case (e.g.,
when the distribution of the latter belongs to the exponential family). An interest-
ing example, where the converse holds, is given in Subsection 5.1. This result was
found by C. Stein and M. A. Girshick [2] independently of each other as remarked
in [7], p. 133.

1. Conditions. Throughout this paper limits are taken as n — «, and a, ~ b,
means that a./b, — 1. The first four of the following conditions are as stated
in [3].

ConvorrioN B. (i) There exist functions K, C > 0 and h such that gs,(x) ~ fon(x)
= K(n)C(0, z)e™® for each 6, x&©, and, thus, n ' Inr,(z) — g(x) =
h(6y,x) — h(61,z); (ii) g(z) is strictly increasing and continuous for any 6, < 6, .

CONDITION A, . For each fixed x, h(0, ) has a unique mazimum at 6 = x.

CoNDITION A; . If g(80) = 0, then r,.(60 + (¢/n)) — ae® for some o, 8 and all
¢ # 0.

ConprTioN Ay . (1) If g(60) = O, then n%(X,. — 0o) has under Py, a limiting dis-
tribution (not necessarily a probability distribution) Q, say, which is continuous at
the origin; (i1) 0 < Q(J0, »)) < 1.

ConprrioN C. For each fixed 6, h(0, ) has a unique maximum at z = 0; and
h(8, 8) is a constant free of 8. In view of Condition B, it may be assumed without loss
of generality that h(8,0) = 0 for all 6 ¢ ©.

Let Ao (z) = qon(x)/fon(x). By Condition B, Ag,(z) — 1forallf,zc © .

ConvorrioN D. (i) There exist constants k and k' such that k < Ae(z) =< k' for
allg, z e @ andalln (k" = 1 necessarily); (ii) for each 6 ¢ ©, there exists a neighbor-
hood U(8) < O, such that Ae,(x) — 1 unzformly in z for x £ U(0).

ConorrioN E. For each x € ©, there exist ¢ and e = 0 such that the go.(x) are
increasing or decreasing in 0, for all n, according asd =z — eorx =2 + e .

2. The Simplified SPRT. The sufficiency assumption implies that R, = r,(X,),
where 7, = Qogn/Qo1n -

ConcLusioN 2.1. Let {X,} be of the S-MLR case and let b, and a. be the solutions
of r.(z) = B and r.(z) = A respectively. Then, at the nth stage, T' rejects Hy if
X, = an, accepts Hyif X» < bn, and resumes sampling if b, < X, < an . More-
over, by , an — 0y if Condition B holds.

Proor. The first statement is immediate from the MLR property. By Con-
dition B, if ¢ > 0 then 7,(6 == €¢) — ==« and, hence, the second statement.

DeFintTION 2.1. Let {X,} be of the S-MLR case and let Condition B hold. Let
R.* = 1% (Xa), where r,*(+) = ™7 /g™ 01) = O The test T* 4s called: the
Simplified SPRT based on {X,} if T* uses the criterion R.*: at the nth stage T*
rejects Hy if Xn = an", accepts Hy if X, < b, and resumes sampling if
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b* < Xu < 0., where b,* = g (n " InB) < 6 < g'(n ' In4) = a,* and
(therefore) by, an™ — 6, .

Since Lemma 2.1 of [3] requires only the monotonicity of r.(x) we conclude
that the limiting behavior of R,* is identical to that of R, and is governed by
g(#) under the hypothesis of Theorem 2.3 of [3]: R, — 0 or « a.e. Py according as
g(8) < or > 0, whereas lim inf B, = 0 and limsup B, = « a.e. Py, where
g(8) = 0. Thus, the above-mentioned hypotheses (essentially Conditions B, A;
and A4) imply that T*, like T, terminates almost surely with respect to any P .

3. The distribution of the sample sizes. We assume in this section that densi-
ties are taken with respect to Lebesgue measure.

Lemwma 3.1. Let {X.,.} be of the S-MLR case and let Conditions B, C and D hold.
Assume that C(6, z) s a continuous and h(6, x)-is a twice continuously differentiable
function of x. Let A = lim K(n) /n}. Then, Condition As implies that 0 < A < .

Proor. By Conditions B and D(ii), given e and y > 0, there exists m such that

(3.1) (1 — )gm(z) = K(n)C(8, )™ < (1 4 €)gon()
forall zel, = (6, 6 + y/n*) and n = .m. Let ¥, = n}(X, — 6). Since

f 1, @on(z) dz = P(0 < Y, < y), Condition C, the hypothesis, and (3.1) imply
(3:2) (1 — &)Ps(0 < Yo < y) = (K(n)/n')yC(6, 1),
(33)  (K(n)/n)e™ ™™ y0(e, yp) < (1 + )Po(0 < Yu < )

for some ¥, ¥ in I,. In view of Condition A, y can be chosen such that
0 < Q([0, ¥)) < 1. By applying Taylor’s theorem to h(6, 6 + y/n'), using
Condition C in (38.3), and letting n — o in (3.2) and (3.3), we conclude the
proof.

COROLLARY 3. Let the assumptions of Lemma 3.1 hold, and let 0. () denote
the density of Yu = n}(X. — 0). Then, gon(y) — NC(6, )& PV Thys, 4f
lim q:f,.(y) is a density, then it is necessarily the density of a normal (0, ¢°(8))
variable, where o>(8) = —1/h" (8, 8). Moreover, C(8,0) = [—h" (8, 01/ [(2n)E ).

Proor. Notice that gr(y) = (1/n})gm(0 + y/n*). We start with

(34) (1 — On o0+ y/n') < ¢8a(y) £ (1 + O (6 + y/nt)

for all z between 6 and 6 + y/n*. The steps of the preceding proof give the con-
clusion when y # 0. The case y = 0 is treated by continuity.

LeEmMA 3.2. Let {X,} be of the S-MLR case and let Conditions B, C, D, and
A, hold. Assume that C(6, z) is a continuous and h(6, x) is a continuously dif-
ferentiable function of x. Let t, and t, be any two real numbers with t; < t, . Then,
for any 0 = 6, , there exists v > 0 such that

(3.5) Py(ty/n < g(Xa) < t/n) = [(t — t) /nlye"

where 0 < & = 0% < 1,
Proor. Since y = g(z) is a strictly increasing differentiable function (Condi-
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tion B and the hypothesis), the same is true of its inverse x = u(y). Let Ga
and m, denote the event in question and its probability. By Condition D(i),

™ < K'K(n) [q, C(6, )™ dx
(3.6) = K'K(n) [ C(6, u(y))e™ "W (y) dy
K (& — t)(K(n)/n)C(6, u(ya))e™ " " u’ (ya)

for some ya , ti/n < Ya < to/n, and each n. Let t = max (|¢1], |2]). Since u(0) = 6o,
the mean value theorem implies

(3.7) nh(6, u(yn)) = nh(6, 60) + nyau'(Fn)h' (6, w(7a))
< nh(6, 66) + tu'(§a)R (0, u(in))

where —t/n < §. < t/n, and k' = 0h/dz. Notice that the continuity of the
following functions enables us to bound them: C(6, u(¥a)), %' (Yn), % (Fa),
B'(6, u(7a)). The constant k' in (3.6) may be replaced by max As(u(y)),
where the maximum is taken as y ranges over (#/n, t/n). Thus, by (3.6), (3.7),
and the preceding comments

(3.8) T = (K(n)/n) (6 — t)v' 0

for some v, 0 < v' < ».Lemma 3.1 and (3.8) imply (3.5).

TuEoREM 3.1. Let { X, , n = no} be of the S-MLR case and let T and T* be the
SPRT and Simplified SPRT based on {X,} with B and A as stopping bounds.
Assume that Conditions B, C, D and A4 hold. Assume further that for each 0 € O,
ge. () and C(6, x) are continuous while h(0, x) is twice continuously differentiable
Sfunctions of x. Then, for 6 = 0, , there exists v > 0 such that

(3.9) Py(N > n) < (1/n}) In (A/B)~5"

where 0 < & = &% < 1 andn = no . The same holds for N*.
Proor. Lemma 3.2 gives the result for N *. T continues sampling at the nth
stage if X, is observed to be z and if

(310) n'InB <0 In {[Asn(2)/A0yn(2)]-[C(62, 2)/C(61, )]} + g(2)
“In A.

Let V.(z) stand for the expression between brackets in (3. 10) Concluswn 2.1
and the contmulty of V (z) guarantee the ex1stence of V!, V.), V. and V"
suchthat 0 < V' SV, S Vu(z) SV SV < forallxs(b,.,a,,) More-
over, V.|, V" — C(6,, 60)/C(6:1, 6) = V(). Thus, N > n implies

(3.11) n (B/V") < g(Xa) < 0 (A/V).

Notice that V' and V” in (3.11) may be replaced by quantities which are ar-
bitrarily close to V(6,). Absorbing the effect of the replacement in the v of
Lemma 3.2, we arrive at the result for N.

COROLLARY 3.2. Under the assumptions of Theorem 3.1, Ese™ and Eee'™" < oo
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fort < —h(0, ) and 6 5~ 6, . Thus, N and N* possess moments of all orders with
respect to Py, 0 £ 6, .
Proor. From (8.9), we conclude that for some J > 0, Epe™ < J Y, (8¢)" < o
fort < In&' = —h(6, 6,) and 6 5= 6, (k(8, o) < h(6,6) = 0 by Condition C).
CoroLLARY 3.3. Under the assumptions of Theorem 3.1, there exists v > 0
such that

(3.12) EN < 1+ (n?) In (4/B)v6™/(1 — 3).

The same holds for N*.
Proo¥. EoN = 1 4 D, Po(N > n).

4. Monotonicity properties of the ASN function of T and T*. The following
lemma, describes a property of any MLR family of distributions.

LemMA 4.1. Let {X,} be a sequence of random variables whose densities {gon(x)}
constitute a MLR family. Let c,(61 , 62) be the solution of qs,n(x) = o), 61 < 5.
Then, Py,(b < X < a) < or > Py, (b < X, < a) according asb < a < ¢,
oren <b<a. '

Proor. If b < a < ¢,, then go,n(z) < @s,a(z) for all z & (b, a). Thus, the
first part of the conclusion. The second part'is similar.

Usually, Condition E is intuitively clear and may be checked directly or by
means of the following lemma.

Lemma 4.2. Let {X,} be a sequence of random variables whose densities satisfy
Conditions B and As . Assume that for each x £ ©, h(0, z), C(0, x) and the A ()
are continuously differentiable functions of 0 at 0 = z, while gs.(z) has a unique
maximum at 0 = M,(z), say. Then, M,(z) — z, and Condition E holds with
z — ¢ = inf, M.(z) and z + & = sup, M.(z).

Proor. Notice that n* In ge.(z) has a unique maximum at 8 = M,.(z),
and that n7'(9/80) In g.(x) — (8/30)h(x, ) = 0. Thus, M,(z) — z. The last
statement of the lemma is obvious.

TarEoREM 4.1. Let {X, ,n = no} be of the S-MLR case and let T and T * be the
SPRT and Simplified SPRT based on {X,} with B and A as stopping bounds.
Assume that Conditions B and E hold. Then, there exist v, and 12 = 0 such that
Py(N > n) is increasing or decreasing according as 0 < 6y — m or = 6 + n2,
for all n. The same holds for N*.

Proor. We prove the conclusion for N. Let ¢ = sup. (a.(61, 62))
and b = inf,(b.(6:, 6;)), where the a, and b, are as defined in Conclusion 2.1.
By Conclusion 2.1, @, b & ©, and b =< 6, < a. In Condition E, take z = a and b
respectively. Define 5, and %, through 6y + 7. = @ + e(a) and 6 — 9 = b —
a(b).If 0 + n. < 6’ < 6", then gowa(a) < gon(a) for all n and thus, by the MLR
property, a.(0;, 62) < a < ca(6', 6”), where the last quantity is defined in
Lemma 4.1. Using the sufficiency of X, for ® on @. , we obtain

Py(N > n) = Py(bi(6:1,0:) < X; < aj(01,0),5 =mg, -+, n)
(41) = .rp"”(xno y " xﬂ) d“(xno y T xn)

= fqan(xn)u(xno y T xﬂ) d”'<xﬂo ] xﬂ)
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where the integrals are taken over the obvious region, and v is free of 8. Accord-
ing to Lemma 4.1, gprn(2) < qon(x) for ba(0:, 02) < z < an(6:, 62) and all U.
By (4.1), Ps(N > n) > Pe(N > n) for all n. The conclusion for 0 <6 <
6y — n: is similar.

COROLLARY 4.1. Under the assumptions of Theorem 4.1, there exist m1 and
n2 = 0 such that E4N 1s increasing or decreasing according as 0 < 6p — m1 0r = 6
+ no. The same holds for N*.

5. Examples. Most of the conditions of the preceding sections were checked
in [3] for the examples given below. Conditions C, D, and E are discussed in
Section 6. In each example, {X,, n = no} is obtained through reduction by
invariance under some group of transformations; gs.(z) is the density of X,
and fo.(z) = K(n)C(6, )™ is its asymptotic equivalent. The C (6, x) will
not always be exhibited but are obtainable from Section 3 of [3]. B and A are
the stopping bounds. The (6, z) given here may differ from those given in [3]
by constants. This is done to satisfy Condition C (k(6, 6) = 0).

5.1. The sequential central x’-test. The Z; are IID Normal (¢, 6) and X, =
Sty (Zi — Zn)/(n — 1) forn = 2.

(5.1.1) 0n(@) = fin(z) = K(n)a 6020,
(5.1.2) h(0, ) = 3—(z/0) + In (z/0) + 1].
Thus, T continues sampling at the nth stage if
(5.1.3) [6165/(6: — 61)][In (6:/6;) + 2 In B/(n — 1)]
< X, < [0:05/(6: — 61)][In (62/6,) +2In A/(n — 1)

which is in agreement with [7] (p. 133). Upon replacing (n — 1) by n in (5.1.3)
we obtain the corresponding result for 7.

5.2 The sequential t-test. The Z; are IID Normal ({, ¢); 0 = ¢/o; and
X, = Z./Sn, where Z, and S, are the sample mean and standard deviation
respectively; and n = 2. We conclude from [3] that

(521) h(6,2) = 3o’ (#) + Ino’(#) — ¢ +In (1 — £) — 1],

(522) E=a(l+a),  a() =+ (@ + 82

Thus, T* continues sampling at the nth stage if X./(1 + X.*)! = £ and

(5.2. 3) (6> — 6°) + (2/n) In B < exp [2 sinh™ ( £0,/2)] + 2 sinh™ ( £6,/2)
— exp [2 sinh™( £0,/2] — 2 sinh™( £,/2) < (6. — 6:°) + (2/n) In A.

5.3. The sequential x ®_test. The Z; are IID where Z; = (Zj, -+, Zid); the
Z;; are independently Normal (¢:, 1); 0 = 9.6l and X, Z,_l
It follows from [3] that

(5.3.1) fou(z) = K(n)z 7 (2/0) ™" exp [— (n/2)(z} — 6*)7].
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Thus, T continues sampling at the nth stage if
(532) (6! +6.)/2 + 276} — 6)) " In B < X,.}
< (6 + 6)/2 + w76 — 0.)) ™ In A.

5.4. The sequential F-test. The Z; are IID where Z; = (Z,i , *, Zj); the
Z;; are mdependently Normal (¢:,0°) and ¢o41 = - (k = 0 for some s < k;
0 = > 2,¢2/ke” for some g, 1 < ¢ < s [4]. For n = 2 = nZ:"_IZ2
S 7 i(Zs — Z.0) + D eenZl). Tt follows from [3] that kh(6, z) is the
same as h of (5.2.1) evaluated at (6%, z'). Thus, 7™ continues sampling at the
nth stage if £ = x,/(1 + z.):

(54.1) (6:— 6:) + (2/kn) In B < exp [2 sinh™ (( £,)*/2)] + 2 sinh™ ( £6,)*
— exp [2sinh™ (( £61)}/2)] — 2 sinh™( £6,) < (6, — 6;) + (2/kn) In A.

5.5 The sequentwl ordinary correlation coeﬁiczent test. The Z; are IID where
Z; = (U;, V;) is bivariate Normal (u, ;¢*, 7°; 8); and X, = 2.1 (U — U,)-
(Vi — Va)/1 Zl (U; — U2t V: — V) ]* We conclude from [3] (after
some obvious transformation) that T continues sampling at the nth stage if

(551)  [(1—=6%/(1—Q@NHIB" < (1 — 6.X.)/(1 — 6,X,)
<1 —6")/(1 — 6")PaM",

The sequential multiple correlation coefficient test is similar to Example 5.5;
the sequential T?-test is similar to Example 5.4; and the sequential Model IT
analysis of variance test is similar to Example 5.1 in the sense that their A
functions are related [3].

6. Establishing some conditions. Condition C can be easily checked directly,
and in most of the examples of Section 5 it is equivalent to Condition A, due to
the symmetry of & in its two arguments. In Example 5.1, Condition D is trivially
true while Condition E.is actually equivalent to Condition A, and holds with
6 = ¢ = 0forallz > 0.

(1) Condition D in Example 5.3. It follows from [3] and (5.3.1) that

Awm(z) = 1 + ¢ 20} forqg =1

(6.1) =1 — et forg = 3
= (o)1 "2 (g — 1)/2) [aly(2 — y)IT"
1 + exp (—2n(62) (1 — y))] exp (—n(62)Yy) dy,

otherwise.

Condition D is immediate for ¢ = 1 or 3. Otherwise, let I(\) = fﬁ‘ 2T gy
(the Incomplete Gamma function of (¢ — 1)/2). By (6.1)

(6.2) < Am(z) £ 2IMn(62)}/T((¢ — 1)/2) £ 2, if¢g> 3,
(6.3) 0 < Am(z) < 2(2)} if g =2
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for all 0, z£[0, ) and all n = 2. Thus, D(i) is established. Condition D(ii)
holds trivially when 6 = 0. Otherw1se, let U(O) (0 — ¢ ), where 0 < ¢ < 6.
Let 0 < & < 1, write the integral in (6.1) as fo + [}, and notice that fo < An()
< f o + f 3 Boundmg the proper parts of the integrand, we obtain
(1 = 5/2)CP[((q — 1)/DT(1 + ¢ (n(62)%)

(64) < Am(2) < [T((g — /2T + ™M) I(n(62)'s)

+ 2(1 — 8)(1 — 8/2) T (n(6z)}) VMY,
Since the continuity of the limit function of a monotone sequence guarantees
the uniformity of convergence (Dini’s theorem); and since the sequences in (6.4)

are monotone for all n, except (n(6z)}) %" which is monotone for
nz (¢g— 1)/26(006 — e))*, we conclude that

(6.5) (1 —8/2) %1 — 38) < Awm(z) < (14 8) + (1 — §/2) (1 — 8)s

for all z & U(#) and large enough n. Since § is arbitrary, Condition D(ii) is
established. The argument for ¢ = 2 is similar and requires slightly different
bounds in (6.4).

(2) Condition D in Example 5.2. It follows from (5.2.1), and [3] that

(6.6) Am(z) = (n/20) (=" (1))} [T (v0/v) exp BV’ — w)]
-exp {n[y(v) — ¥(v)]} dv,

where
(6.7) () = —3(1 + ") + 6w — 36" + In,
(6.8) v = a(£0)/(1 + 2%)},

and o(-) and £are as given in (5.2.2). Notice that v, is the point where ¢ achieves
its;maximum. Let 0 < & < v, and consider the interval I, = (2% — 8, v + 9).
Also let I, be the interval (6 — ¢, 6 + €) for ¢ > 0. Taylor’s theorem implies
that gb(v) — Y(n) = 5'[/'(1)0 + t&)(v — )%, where —1 < t < 1. By (6.7), we
have ¢"(v) = —(1 + 2°) — v". The continuity of ¢’ (v) in (v, z), and the
continuity of vy in 2 imply that for somes > 0 (n — 0asd, e— 0)

(6.9) (W (%) — m)(v — v)’ < Y(v) — Y(v) < FP (00) + n)(v — w)’
and all ve I, and z ¢ I, . Similarly,

(6.10) 1—n < (n/v) exp 3 —n)’ ] <1+19

for all v e I, and z ¢ I.. We choose § small enough to guarantee that the right
hand side of (6.9) is negative. Splitting the integral in (6.6) into [r, + [1,,
it is easy to see (proof of Theorem 3.1 in [3]) that for each 6, a:, there exist Lg(z),
po(z) > 0 such that [z, < niLo(z) exp [—npo(z)]. Let y = n }(v — ) and con-

clude from (6.6)—(6.10)
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(1 — 0) (=9 ()/2m)} [250s exp [B(¥" (%) — n)y"] dy
(6.11) < Am(z) < (L4 7)(—y¢"(v)/2r)} v exp [ (v0)+ n)vldy
+Lo(z)n? exp [—npo(z)].

The integrals in (6.11) converge to 1 uniformly in z for z ¢ I, (Dini’s theorem).
Since Ag,(x) — 1 for all 2 £ ©, there exist Ly and p such that Ly(z) < Ly < o
and pe(z) = ps > O for all z & I, . Thus, the extreme right term of (6.11) con-
verges to 0 uniformly in z for z ¢ I, . Since 5 is arbitrary, we have Condition
D(ii) and also D(i).

(3) Note on Condition D. We remark that the preceding proof can be easily
generalized to establish Condition D for densities which admit (apart from a
constant K(n)) the integral representation of Theorem 3.2 of [3]. This is the
case in the examples of Section 5 (other than 5.1), where ¥ possesses a unique
maximum at 2°(9, z); and (after a translation to z° and possibly a reflection of
some of the axes) Condition (b) of [3] holds. Referring to Theorem 3.2 of [3]
we claim that Condition D obtains provided: (i) the ¥:'(z°) < 0,4 = r + 1,

o1 Wi (@), 4,7 = 1, - -+, rois negative definite; f and ¢ are continuous in
the pair (z, z) for each fixed 0; (ii) the k.(z; 0, z) — k(z; 6, ) asn — « uni-
formly in (z, ) for (2, x) in a neighborhood of (z°, 8) and each fixed 6. We re-
mark that most of the preceding additional restrictions were already checked for
our examples in the form of what was called Condition (c) in [3]. It is interesting
to notice that the power of # in As(z), (as furnished by Theorem 3.2 of [3]) en-
ables one to give a proof which combines the multidimensional analogues of (1)

and (2).
(4) Condition E in Ezxample 5.2. For some K(n),
(6.12) () = K(n) [2 07" %" dy

where ¥ is given in (6.7). Differentiating under the integral sign we have
(6.13)  dgon(x)/d8 = ngon(z)[z{ [ & %" dv/ [7 v e dv} — 6].
It follows from Theorem 3.2 of [3] and (6.8) that

(6.14) 7' d In go(z)/d0 — za( 80)/(1 + 2°) — 6.

The right hand side vanishes at § = z. In view of Lemma 4.2, Condition E is

established.
(5) Condition E in Example 5.3. From (5.3.1) and (6.1), Condition E is easy
to establish for ¢ = 1 or 3. Otherwise, Theorem 3.2 of [3] gives

(6.15) 7 d In goa(2)/d0 — [(z/6)} — 1)/2.

By Lemma 4.2 and the fact that the right hand side of (6.15) vanishes at 6 = z,
we establish Condition E.
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