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0. Summary. This paper redefines the concept of sampling from a population
with a given parametric form, and thus leads up to some proposed alternatives
to the existing Bayesian and fiducial arguments for deriving posterior distri-

"butions. Section 2 spells out the basic assumptions of the suggested class of
sampling models, and Section 3 suggests a mode of inference appropriate to the
sampling models adopted. A novel property of these inferences is that they gen-
erally assign upper and lower probabilities to events concerning unknowns rather
than precise probabilities as given by Bayesian or fiducial arguments. Sections
4 and 5 present details of the new arguments for binomial sampling with a con-
tinuous parameter p and for general multinomial sampling with a finite number
of contemplated hypotheses. Among the concluding remarks, it is pointed out
that the methods of Section 5 include as limiting cases situations with discrete
or continuous observables and continuously ranging parameters.

1. Introduction. Consider an observable z, a parameter 6, and a specified
family of distributious F, over z-space. A conventional way of thinking about
sample observations x;, 3, - - - , &, from an unknown member of the family of
distributions F, is roughly as follows. First, a specific 6 is determined by a process
which need not be specified. Then, using this 6, the observations @y, 22, - -+ , x,
are drawn independently at random each with the distribution & . I believe that
this attitude is held almost universally, where the schools of Fisher and Neyman
usually think rather vaguely about 8 as “chosen by Nature,”” while the Bayesian
school specifies a prior distribution governing the random choice of 6. Some
Bayesians prefer to think of 8 as not fixed at all whilez; , z,, - -+ , x, are governed
by their joint marginal distribution. I do not see any operational importance in
this distinction, since I agssume that a parameter value may be fixed and still
legitimately be assigned a probability distribution, as long as the fixed value
remains unknown.

The inference methods of this paper rest on a weaker definition of sample than
that of the conventional model. The revised model gives up the idea that z; , z» ,

-, T, are independently distributed according to F, for fixed 8 while retaining
the feature that any observed sample z; , x2, - - - , &, shall appear consistent with
a distribution %, for some 6 regardless of the size n of the sample. Thus, a single
observed sample can never be used to distinguish between the more relaxed model
and the conventional model.
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A trivial example will serve here to illustrate the new approach, the general
theory being defined in Section 2. Suppose that « and 6 take values on the real
line. Suppose that F, is the normal distribution N (6, 1) with mean 6 and variance
unity. In contrast to the conventional approach of fixing 6 and drawing . , 2.,

-, x, independently from the corresponding fixed N (6, 1) distribution, an
example of the new model is provided by asserting that 2y — 6, z2 — 6, - - -,
z, — 0 are governed by the law of n independent N (0, 1) random variables, but
asserting no further laws whether deterministic or probabilistic about the variables
Xy, T2, -+, Tn, 6. Such an assumption no doubt appears artifical as stated
here, but the discussion of Section 2 will provide a general foundation for it.
The immediate purpose is to remark that, however one may think of determining
6, whether from a known process or from a black box, and whether dependent on
Z1,%2, -+ , &y OF NOL, the observed sample should in no way look unlike repeated
drawings from some normal distribution with variance unity. In the absence of
further empirical data involving repeated choices of 8, I do not see why the
conventional model should be preferred over the new model.

The new model was first introduced in Dempster (1963), but with a further
assumption. In the earlier paper it would have been assumed, for example, that
0, 1, X2, -+, T, were jointly distributed random variables, i.e., that there
existed a probability law simultaneously governing all of the variables 6, z;,
Zz2, -+, T, . This joint distribution would have been specified only to the extent
that ©; — 6, 2 — 6, ---, , — 0 were asserted to be independently N (0, 1)
distributed while the conditional distribution of 8 given z; — 6, 22 — 0, - - -,
z, — 60 was not specified in any way. I now find it more satisfying to avoid
extraneous complications due to assuming the existence of unknown laws. Accord-
ing to the present approach, it is correct to regard variables, such as parameters
or yet-to-be-observed sample variables, as having existing but unknown real-
world values. But it is seen as intellectually wasteful and possibly deceptive to
assume the existence of probability laws governing such variables, unless these
laws may be specified. This change has in turn suggested the more satisfying
methods of defining posterior probabilities given in this paper.

An underlying motivation for this work is to be found in the need to break
the serious deadlock between those statisticians who prefer Bayesian formula-
tions and those who prefer formulations relying on the repeated sampling as- -
pects of probability laws. These two traditions have a longer history of conflict
than is generally realized. Todhunter, writing circa 1865, traced what would now
be called a confidence or fiducial argument about binomial p to J. Bernoulli
circa 1700. In correspondence, Leibniz questioned Bernoulli’s method. Of more
interest here is the fact that Laplace circa 1813 used both the Bernoullian and
Bayesian approaches to estimate p and presented slightly discrepant normal
approximations without comment. Poisson in 1830 also used both methods But
achieved normal approximations which were in agreement. De Morgan in 1837
drew attention to the differences in logical processes used and queried Poisson’s
results. Todhunter himself believed Poisson to have been correct. Unfortunately,
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the question of the differences in Bernoullian and Bayesian approaches was
confounded with the question of accuracy of normal approximations and was
destined to remain obscure for around 100 years. See Todhunter (1865) pp. 57,
73, 554-558, for discussion and references.

At present, the Bayesian school is showing renewed vigor and is increasingly
in conflict with what I have called above the Bernoullian school. Within the
latter school there are disagreements between the many who generally follow
Neyman and the few who prefer R. A. Fisher. The following two statements
summarize a previously given (Dempster (1964)) attitude to the Neyman-Fisher
differences: (i) Neyman’s methods while often available and useful are not fully
satisfying, and (ii) Fisher, while extraordinarily inventive and mostly on the
right track, was unable to give coherence to his system and in particular failed
to perfect his fiducial argument.

I believe that the methods of this paper are close to Fisher’s viewpoint. The
arguments given here resemble the fiducial argument in that they produce pos-
terior probabilities using the sampling hypothesis and parametric hypotheses
but no prior distribution. I believe also that the basic reasoning principle de-
scribed in Section 3 is essentially what Fisher relied on in his fiducial argument.

At the same time the new methods of this paper can be viewed as belonging
under a common umbrella with the Bayesian methods. This umbrella is described
in a later paper (Dempster (1965)). There the logic underlying upper and lower
probability systems is given more generally. Rules are given for combining
independent sources of information. The methods of this paper implicitly apply
these rules to the combination of information from individual sample observa-
tions. If a prior distribution is available, it may be combined with the sample
information according to the same rules, and the result is the standard Bayesian
answer (Dempster (1965)).

2. Construction of the sampling model. Throughout the following discussion
measure-theoretic details are not supplied, mostly because they are obvious in
the range of examples of present interest.

The basic components of the theory are a pair of spaces @ and &. @ represents
the population being sampled, and each population individual ac@ has a
corresponding observable characteristic x ¢ X. The mapping a-— z thus as-
sumed to exist is regarded as unknown but subject to certain restrictions posed
below. The statement that a population individual @ comes under observation
as part of a sample is construed to mean that the = corresponding to a becomes
known to the observer. The observer is not allowed, however, to identify a.

A unique probability measure u over @ is assumed given. This plays the role
of the law governing the random sampling operation. A finite population of size
N is represented by a set of N elements, and the natural measure p governing
random sampling is the measure assigning probability 1/N to each of the N
elements. The reader may supply the obvious definitions of a random sample
ay, az, - - -, @, from @, sampling either with replacement or without replacement
as desired. When an infinite population is postulated, an appropriate choice of
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@ and p is less clear, and, to the extent that various choices may be transformed
into one another, the choice is more or less arbitrary. A convenient representa-
tion for the infinite population structures used in this paper takes @ to be a
simplex and p to be the uniform distribution over the simplex. A randomsample
4y, @z, -, a, from an infinite population @ is defined, as one would expect, to
be a drawing from the product measure u" over the product space G".

Besides @, & and p, the user of the theory must specify in each instance (i)
a class of contemplated mappings @ — z, and (ii) a family of probability measures
over X whose typical member may be denoted by F, where 6 ranges over a space
©. The family of measures Fo is used in the theory to define two postulates
restricting the class of contemplated mappings @ — z, namely

(P1) the probability measure over & induced by the measure u over @ under
any contemplated mapping a — z must be F, for some 8 £ ©, and

(P2) exactly one mapping in the class of contemplated mappings a — z
leads to the induced measure F over X for each 6 ¢ ©.

“ (P1) and (P2) together imply a one-one correspondence between the class
of contemplated mappings ¢ — x and the family of measures & . The two pos-
tulates are kept separate in the exposition because (P1) is easier to swallow than
(P2). A discussion of (P2) will be given shortly.

In any application of the theory, a random sample a;, az, -+, @, is drawn
from @ as specified above. The observer identifies the corresponding z;, z»,
-+« , &, under the true mapping a — x. He is then asked to draw inferences con-
cerning which member of the class of contemplated mappings is the true member
or, equivalently, concerning which 6 in ® is the true 4. The suggested mode of
inference is given in Section 3.

The N (6, 1) example of Section 1 may be used as a first illustration of the
theory. Take @ to be the whole real line and take u to be the N (0, 1) distribu-
tion over @. Take X to be the whole real line, and take F to be the N (6, 1)
distribution, where the range space ® of 6 is also the whole real line. Finally,
define the class of contemplated mappings @ — z to be

(21) a_)x=0+a,

where the dual interpretation of 8 as a parameter for the class of mappings and as
a parameter for the class of distributions &, defines the one-one correspondence
satisfying (P1) and (P2). The essential feature of this illustration is the preserva-
tion of the natural orderings on @ and & under the whole class of mappings from
@ to . The particular representation of @ and u is not essential, and any mono-
tone one-one transformation, for example carrying u on @ into a uniform distribu-
tion on (0, 1), could be used to obtain an alternative representation. This ex-
ample will be termed a structure of the first kind in the later discussion of this
section. Note that, as remarked in Section 1, the only probability law operating
is the law of n independent N (0, 1) random variables applied to a1, a2, - - , @ .

The sampling model proposed above differs from the conventional formula-
tion of mathematical statistics in that the population being sampled is explicitly
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represented by a mathematical space, namely the space @ of population in-
dividuals. The presence of this space makes it possible to ask certain questions
within the framework of the model which were only dimly conceivable under the
old formulation. Specifically, the old formulation provided a mathematical
representation of a population distribution such as &, for an observable charac-
teristic, but it did not describe how each population individual contributed to
the overall distribution. In real life, however, it is legitimate to ask at least what
each individual’s z might be under a contemplated hypothesis ¥ . In other words,
what mapping or mappings @ — z should be regarded as permissible for a given
6 within the limits specified by (P1)?

One answer to this question is to allow any set of mappings consistent with
(P1). This is tantamount to refusing to be interested in the question. Postulate
(P2) goes to the other end of the spectrum and requires that only one mapping
shall be allowed for each given 6. An underlying motivation for this directive is
the general principle that parsimony is a good thing in model-building. Of course,
(P2) goes only part way to answering the question, since it does not say which
mapping a — z shall be the only one allowed for a given 8. Two classes of specific
answers, hence specific instances of the theory, will shortly be given. (P2) itself
provides a guideline, adopted in a speculative spirit by this investigation in order
to examine the statistical methodology which follows naturally from it.

Another consequence of explicitly introducing the population space @ is the
insertion of the random sampling hypothesis into the model where it naturally
belongs. In the conventional formulation, a distinct law based on independent
and identically distributed random variables is assumed to govern z; , &z, -+ - , 2,
for each distinct 6. In the present formulation, the collection of distinet laws is re-
placed by a single law " which is overtly meant to describe the operation of
sampling from @. Note especially that in the new approach the &, are not regarded
as probability laws in the ordinary sense, i.e., a random variable « governed by
the law ¥, is nowhere postulated. The &, play the roles not of sampling dis-
tributions but rather of deterministic laws describing the contemplated popula-
tion distributions of z.

The remainder of this section describes two classes of completely specified
sampling models of the proposed kind. These will be called the class of structures
of the first kind and the class of structures of the second kind. The first class, which
has been illustrated above, assumes @ and X to be ordered. Unfortunately such an
ordering of & restricts consideration essentially to a univariate characteristic.
The second class is designed to remove this restriction so that either multivariate
or univariate 2 may be handled. To keep the discussion simple,  will be assumed
finite of size k where k¥ = 2. In other words the observable characteristic is multi-
nomial, assuming values in one of k categories which constitute . In this multi-
nomial context the use of a structure of the first kind presupposes that the &
categories possess a natural order, while the use of a structure of the second kind
poses no such restriction and treats all k categories symmetrically.

Motivation and definition will now be given for the class of structures of the
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Fic. 1. The interval (0, 1) of population individuals and their corresponding multinomial
categories for a given (p1, p2, *-* , p) in a structure of the first kind.

first kind. When the observable characteristic is assumed to classify the popula-
tion individuals into k ordered categories, it is not implausible to suppose that the
population individuals possess an ordering consistent with the partial ordering
induced by the mapping @ — z, with the same basic ordering of @ holding what-
ever mapping a — z is contemplated. It is then but a short step to suppose that
the population individuals are distributed over a real line and a further short step
to regard this distribution as being monotonely transformable and thence trans-
formed into a uniform distribution over the interval (0, 1). Such a uniform dis-
tribution over (0, 1) induces a given &, over & under a mapping ¢ — z such that

a on the intervals (0, p1), (P1, Pr+ p2), -+ -, (P1+ P2+ -+ + pr, 1) map
respectively into categories 1, 2, - - - , k of &, where p; defines the probability of
category ¢ under F for ¢ = 1, 2, - - - , k. This mapping is illustrated in Figure 1.

Except for its indeterminacy at a finite set of points of @, this is the only mapping
a — z which satisfies (P1) for a given ¥ and which preserves the ordering on @
and . Any resolution of the indeterminacy for each F yields a class of contem-
plated mappings in the desired one-one correspondence with the class of all dis-
tributions over X. To complete the definition of a structure of the first kind it re-
mains only to specify a family of distributions ¥, and this may be done arbi-
trarily.

Consider now the class of structures of the second kind. Here, the k& multi-
nomial categories are to be treated without regard to order. A natural means to
this end is to increase the dimension of the proposed @ so it may have the capa-
bility to reflect a multivariate observable characteristic. The following simple
scheme is proposed: Suppose that @ consists of the points of a (k — 1)-dimen-
sional simplex. Using barycentric coordinates, the general point of such a simplex
may be represented by a k-tuple of real numbers (a1, as, - - -, ax) where

(2.2) ;=0 for j=1,2,---,k and Do = 1.

The vertices I, I, ---, Iy of the simplex are represented by the k-tuples
(,0,.--,0),(0,1,---,0), ---,(0,0, ---, 1). Suppose that u is defined to be
the uniform probability measure over the simplex @. Specifying a mapping a *>
is equivalent to specifying a partition of @ into m,, w2, - - - , 7 where a € 7; maps
into category 7 ¢ &, for¢ = 1, 2, - - - , k. The mapping a — z corresponding to a
given ¥ under (P1) and (P2) must have an associated partition satisfying

(23) p(m:) = ps,
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Fig. 2. The triangle of population individuals associated with a structure of the second
kind when k& = 3.

where p; is the probability of category ¢z under &, ,forz = 1,2, - - - , k. Such a par-
tition is defined by considering the point P in @ with coordinates (p1 , p2, « -+, Px)
and defining =; for ¢ = 1,2, - - - , k to be the simplex with vertices P and I; for
1 =7 = k,j # 1. (Points on the common boundaries of the =; may be arbitrarily
assigned.) A set of mappings of this type, in one-one correspondence with a
specified family of distributions s , will be said to define a structure of the second
kind.

The case k = 3 is illustrated in Figure 2.

There are many other structures satisfying postulates (P1) and (P2). The two
special classes of structures proposed above were selected because of their mathe-
matical simplicity. I have been unable to find any others with comparably clean
properties. The idea behind the class of structures of the first kind, namely the
idea of monotonely transforming the distribution of an observable into a uni-
form distribution on (0, 1), is a familiar one in statistical theory, and some of the
resulting inferences resemble those coming from confidence and fiducial argu-
ments. The idea behind the class of structures of the second kind is unfamiliar,
but, I think, not drastically different from the idea behind the first class and
worth developing so that its potential may be understood.

8. Inference methods for the proposed sampling model. The first task here is
to define inferences about an unknown parameter 6, given an observed sample
Zy,%a, - ,Tn, when a model of the type defined in Section 2 is assumed. Later
in the section the discussion will be broadened to include inferences made jointly
about 8 and a future sample ¥1, y2, - -+ , Y from the same population.

As conceived here, the aim of inference is to assign a probability distribution
to 6. Any probability deduced from such a distribution is intended for interpreta-
tion in the usual prospective way as long as 6 remains unknown. For example, if
the statement Pr (6 > 5.1) = .035 should be made about a real parameter 6, this
statement would be intended to convey the same type of information as the state-
ment that the probability is .035 of drawing a white ball from an urn containing
35 white balls and 965 black balls.
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It turns out that the reasoning developed here leads in general not to precise
probability statements but to bounded probability statements about any event
determined by 6 and y1 , ¥z, - - - , ¥m . For example, in place of a statement such as
Pr (6 > 5.1) = .035, a statement such as .010 < Pr (6 > 5.1) < .063 might be
found. The aim of inference and the interpretation of probability remains as be-
fore. The difference is simply that the logical apparatus carried by the statistician
is able to produce only bounds for the desired posterior probabilities.

The central idea follows. Throughout this section an infinite population is
assumed, so that the sample is represented by a point drawn at random from the
space @" according to the measure p". That is, before the sample is drawn, prospec-
tive probability judgments concerning which sample a1, az, - - -, a, will appear
are governed by the measure p" over @". After the sample is drawn, this law is
generally not appropriate for prospective probability judgments because the
observations x; , 2z, - - -, %, typically rule out many of the points of @" as possible
samples. It is proposed here to consider the subspace of @" which doesrepresent
the range of samples still possible after 2, 2, - - - , . become known, to restrict
the measure p” to this subspace, and to use the restricted measure for prospective
probability judgments after x; , x., - - - , &, are known.

Accordingly, define R, to be the subspace of @" consisting of points
a1,02, ** , G, Such that

(3.1) UG T1, QLo , Oy —> Tn

under some mapping a — z in the class of contemplated mappings, i.e., R, con-
sists of the set of samples which could have produced the observed data
Z1,%2, *** , Z, . Define the measure », over R, from

(3.2) m(d) = u"(4)/u"(Bn)

for A C R, . This is just the familiar device of conditioning by R, . The restricted
measure », over R, is regarded here as appropriate for prospective probability
judgments about @, , as, - - - , a, after 1, 22, - -+ , 2, are known.

It is assumed in (3.2) that u"(R,) > 0. This assumption is essentially met by
the structures of the first and second kinds as defined in Section 2 when & is
finite. For these structures, either u"(R,) > 0 or an observation z; has fallen in a
category of & assigned zero measure by all Fy, and the latter possibility means
that the data contradict the model with certainty. The extension of the theory to
cover continuous observables is touched on in Section 6.

A sample a1, a;, - -+, a, will be called consistent with the data xy , 5, + - - ,
and with  in O if (3.1) holds for the mapping a — x corresponding to 6. After the
data are fixed, this consistency concept defines a mapping from R, to ©. If the
mapping should be one-one, then the measure », over R, induces a measure over
© which may be used for prospective probability judgments about the unknown
6. In general, however, this mapping from R, to © is one-many, with the conse-
quence that », induces a system of upper and lower prebability judgments about
6 rather than a single measure.
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This system of upper and lower probabilities is defined as follows. Given any
event = determined by 6, i.e., any subset Z of ® belonging to an appropriate class
of subsets, define B,(Z) to be the set of points of R, which are consistent with
the data for at least one  in ©, and define EB.(Z) to be the set of points of R,
which are consistent with the data for no 6 not in 2. Thence define the upper
probability P(Z) of = and the lower probability P(Z) of = to be

(3.3) P(Z) = va(Ba(Z)) and P(2) = m(Ra(2)).

The rationale behind the definitions (3.3) is that P(Z) includes “as much” of
the measure », as can be transferred from R, to ® under the various one-one
mappings consistent with the one-many consistency mapping from E, to ©
prescribed above. Similarly, P(Z) includes “as little” of the measure as can be
transferred under the same circumstances. Thus, prospective probability judg-
ments based on v, transfer naturally into a system of upper and lower probability
judgments applied to events = C @.

The calculus of these upper and lower probability judgments is developed more
fully in a later paper (Dempster (1965)), but a few obvious properties are in-
cluded here. '

Since R, D R.(Z) D R.(2) it follows that

(3.4) 0= P(Z)=sP>Z) =1

Also it is easily checked that R,(Z) and R.(® — Z) form a disjoint pair with
union R, so that

(3.5) P(Z)=1-P(® - 3).
Finally, since R, = RB.(0) = R.(0), it follows that
(3.6) P(®) = P(©) = 1.

For any real parameter ¢ determined by 6, upper and lower cumulative dis-
tribution functions may be defined as

(3.7) H(Z) = P(¢ = Z), and H(Z) = P(¢ = Z).
Corresponding upper and lower expectations of ¢ may then be defined as
(3.8) E(¢) = [2xZdH(Z) and E(¢) = [Z2.Z dH(Z).

The behavior of these operators under linear transformations is governed by
(3.9) E(a + b¢) = a + bE(4), if >0,

a + bE(¢), if b<O,

where a and b are real constants. The expectations (3.8) are suggested as guides

for betting or decision procedures whose loss functions are linear in ¢.
Inferences about further sample observations y1, ¥z, *** , Ym may be defined

using ideas very similar to those above. The observed sample a; , as, - - - , a, and
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a future sample by, bz, - - -, bn are governed prior to any sampling by the law
u™t™ over @™,

The observations are z;, 22, -+ -, Z, as before, but the unknowns are now
0, Y1,¥2, " , Ym in the space @ X X™. The space R, . of samples possible after
observation consists of those a1, a2, -+ , @, b1,ba, -+ , by satisfying

(3.10) al_>xl,a2'_)x2"",an'—)xﬂ7
b=y, o>y, ,bn— Ym

for some mapping ¢ — x in the class of contemplated mappings and for some 6,
Y1,%2, ", Ym . The initial measure u™*™ over @**™ leads to a measure v, . ap-
propriate for postsample judgments. Given any event =* determined by 6,
Yi,Y2, -+ ,Ymthe subsets Ry »(Z*) and Bn,m(Z*) of Ra,m are defined analogously
to R.(Z) and R.(Z) above, i.e., Rn m(Z*) is the set of points in R, . which could
have given rise to 2, , Zz, -+ , T for some 6, Y1, Y2, ** + , Ym in ¥ and Bn.m(Z*)
is the set of points in R,,, which could have given rise to ;, 22, - - - , @, for no
0,91,Yz, -, Ym DOt in =*. Thence

(3.11)  P(E*) = vam(Bam(Z*)) and P(E*) = vam(Bam(Z*)).

Any event determined by 0 alone has upper and lower probabilities derivable by
(3.11) or by (3.3). It is clear, however, that the two sets of inferences concur, as
would be desired.

The following two sections are intended to illustrate the foregoing definitions
in a pair of non-trivial situations. Section 4 deals with finite & of size ¥ = 2 (bi-
nomial sampling), the family F, consisting of all possible distributions over the
two categories of 9. A structure of the first kind is assumed, but this is also
trivially a structure of the second kind when k& = 2. The illustration of Section 5
assumes a structure of the second kind with general k& but finite ©.

4. Binomial sampling. Illustrative inferences are worked out here for the struc-
ture of the first kind defined by setting ¥ = 2 and allowing &, to range over all
distributions on the two categories of X. As is usually done with binomial sam-
pling, the parameter p on 0 < p =< 1 will be used for the distributions over <,
where p denotes the probability of category 1 and 1 — p denotes the probability
of category 2. The population individuals are supposed uniformly distributed on
the interval (0, 1) under this structure of the first kind. (The corresponding
structure of the second kind would differ only in the nonessential way that the
population individuals would be uniformly distributed over the line segment (one-
dimensional simplex) joining the points with coordinates (0, 1) and (1, 0).) The
mapping a — z corresponding to a given p is ambiguous at a = p. This ambiguity
does not affect the resulting inference, but for definiteness a = p will be assumed
to map into category 1.

The population individuals @y, @z, -+, @n, b1, bz, + -+ bn representing the
observed sample of size n and a future sample of size m are supposed drawn at
random according to a uniform distribution over @**™ which is here a unit cube in
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n -+ m dimensions. The sample data 2, , 22, - - - , ¥, marks each individual of the
observed sample as belonging to category 1 or category 2. The observation vector
Zy, %, -+, Zn Will be replaced here by the single quantity 7' defined to be the
total number of sample observations in category 1. To assume that only T is ob-
served, rather than the actual configuration z;, x;, - - - , . , has no effect on the
resulting inferences because the spaces R, and R, corresponding to each of the
(7) configurations with given 7' are disjoint and isomorphic. Consequently, the
only effect on (3.2) is to multiply both numerator and denominator of the right
side by (7). It is a theorem, not proved here, that the inferences based on multi-
nomial data, represented by either a structure of the first kind or a structure of
the second kind, are not affected if the individual sample observations
Xy,%s, -, T, are thrown away and only Ty, T, - - - , Tk retained, where T'; de-
notes the number of sample observations in category <.
Upper and lower probabilities will be computed for the events

(4.1) T={aspsp
and
(42), *=(r= 8=,

where S is the number of category 1 observations in a future sample of size m.
These upper and lower probabilities depend of course on the observed T.

Consider first (4.1). A point a,, a2, --- , a. in @" is consistent with the ob-
served 7" and the parameter value p if and only if

(4.3) arn = p < G4
where aq = @@ = -+ = am denote the ordered random variables ai,
az, -+, @, and where a = 0 and a4y = 1. It follows that R,(Z) is the subset

of @" such that the intersection of the intervals [a(r) , a(r4y) and [«, B] is non-
empty. R, is the special case of B,(Z) when « = 0 and 8 = 1 so that R, = @".
Since the measures 7, and u" coincide here, the definition (3.3), reduces to

(4.4) P(2) = p*(Ra(2)).
To calculate this it is convenient to write
(4.5) R.(2) = {a < ay = Bl ufam = a < awrn}
which is a union of disjoint sets. Thus
P(z) =T [ap™ @ —p)""dp
(4.6) + (Ma"(1 — @)™, if 1<T=n,
=(1-a)" if T=0.
An alternative to (4.5) is
(4.7) Ru(2) = {a < amyp = B} u fam = 8 < ey}
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which leads to an alternative to (4.6), namely
P(2) = (n = T)() Jap"(L — p)" " dp
(4.8) + ()BT(1 — )~ 7, if 0=T=n-1,
= 8", if T=n.
Another alternative may be found by replacing the beta integrals in (4.6) or
(4.8) by binomial sums, yielding
(49) P(2) = Tl (D'l — )" + Xlr (D1 — B — L

A similar variety of forms is possible for P(Z). R.(Z) is the event that the
interval [a(r) , G(r41y) 18 contained in the interval [a, 8]. Writing

(4.10) R.(Z) = {a = an = B} — {a S amn = B, a4y > B}
and
(4.11) {a = am = B,a@+y > B}
= {any = B < axm} — {am < @, a@ny > B},
it is seen that
(4.12) B(2) = T(7) [ap™ (1 — p)" "dp — (D" — «"I(1 = B)",

atleastif 1 = T < n — 1.Special interpretations are needed if ' = O and T’ = n,
and these may be handled by checking directly that

P(z) =0, if T=0, a>0,

(4.13) —1—(1—8)" if T=0, a=0,
=0, i T=mn 8<1,

=1-—a" if T=mn, B=1,

Just as (4.6) may be replaced by (4.8) and (4.9), (4.12) may be replaced by
(414) P(2) = (n—T)(3) [Zp"(1 —p) " dp
— (DL =) = (1= B",

or, replacing the integrals by sums,
(4.15) P(2) = LT (Dol = o) ,

+ (2a’(1 = A" + Dl (ML — 6" — 1.

Note that

(416) P(z) — P(2) = (Dle"(1 — )" "+ 7L = B)" " = a"(1 — 8)""].
Also, in the special case o = 8,
(4.17) P(p=a) =(1)a"(1 —a)"" and P(p = a) =0.
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Several general features of the above inferences are worthy of remark. The
small upper probability (4.17) assigned to any particular value p = « is propor-
tional to the conventional likelihood at p = a. This likelihood is the probability
content of the region R.(p = «) in @, and such regions sweep out the region
R, as a ranges over 0 < « < 1. If the regions R.(p = o) had not overlapped for
different «, then all upper and lower probabilities would have coincided and both
would have been derivable from a posterior density proportional to likelihood. It
will next be shown that the overlapping decreases as n increases in the sense that
the upper and lower probabilities tend towards agreement with a distribution
whose density is proportional to likelihood.

Large sample behavior may be studied by supposing that n — « and T'— <«
in such a way that T/n — p. By considering the limiting normal behavior of
binomial distributions, it becomes clear that

(4.18) P(z) — P(z) = 0(1/n})

uniformly in o and 8, and consequently that either P(Z) or P(Z) may be approxi-
mated by

(4.19) B(2) ~ P(2) ~2(8*) — &(a*)

where ® denotes the cdf of the N (0, 1) distribution,

(4.20) 8* = (8 — T/n)/In(T/n)(1 — T/n)}},
and ‘
(4.21) a* = (a — T/n)/In(T/n)(1 — T/n)}.

(The symbols ~ in' (4.19) mean that the ratios tend to unity as n — «.) The
normal approximation (4.19) extends to show that, if the arguments o* and g*
tend to constants as n — <, the posterior inferences may be computed from a
normal density function whose ratio to the likelihood tends to a constant. The
limiting posterior inference considered here is also that reached by a Bayesian
argument with any well-behaved prior density and the same limiting conditions.
That is, in a circumstance where the Bayesian would say that the choice of a prior
distribution does not matter, the present theory yields the same answer.

Consider next how to find P(2*) and P(Z*) where =* was defined in (4.2).
This requires consideration of the sample space @™ from which the pair of
samples is drawn. For =* to hold it is necessary and sufficient that

(4.22) by = p < by

where by =< bwy = :-- = bwm denote the ordered random variables
bi,bs, - , bm with the additional conventions that by = 0 and by = 1. On
the other hand, (4.3) must hold if p is to be consistent with the observation 7.
Thus R,..(Z*) is the subset of @™ such that the intervals [by), be41y) and
[@cr , @crsny) are not disjoint. Writing

(4.23) Rum(Z*) = {by £ am < buan} U fam < bey < aren},



368 A. P. DEMPSTER

it is seen that finding P(Z*) is reducible to a combinatorial problem concerning
the ("i™) equally likely relative orderings of the samples a;, az, -+, a, and
bi,be, b

For example, the event {a(ry < by < a(re1} may be expressed as the event that
b hasrank r 4 T in the combined samples. Under this event, the firstr + 7' — 1
members of the combined sample consist of T' of the a; and r — 1 of theb;, and
thelast m 4+ n — r — T members of the combined sample consist of n — T of
the a; and m — r of the b; . Thus

(4.24) B am £ bey < ayy) = () (G VIO

This and subsequent formulas apply generally when0 S r <t < mand0 < T < n
provided that (3) ts regarded as zero when x < y.
By reasoning similar to that producing (4.24), one finds from (4.23) that

(425) 15(2*) = :_’ (€+z'—l)(m+:l:::—7')/(m1—n) + (r+;—1)(m+::;—1')/(m:n)'
Similarly Rnm(Z*) may be expressed as the event that the interval

[acy , acryn) is contained in the interval [bey , bey), so that B, .(Z*) may be
written '

(4.26) {boy = am < ben} — by = am < by < Gy}
while the second event on the right side of (4.26) may be written
(4.27) {amn < bun < am} — {am < by, besn < ain).
-From (4.26) and (4.27) one has
(428) P(z%) = 2, (FITH(aZE /(MM
— (") — (FEHICTRIETY /(.
From (4.25) and (4.28) it follows that
(429) P(Z%) — PEY) = [(FH(ET

+ (t-}-r) (m+::;—t—l) _ (r+;—1) m+::;—t—1)]/(m;l‘-n .

There is an obvious analogy between the set of formulas (4.1), (4.5), (4.6),
(4.10), (4.11), (4.12), (4.16) and (4.2), (4.23), (4.25), (4.26), (4.27), (4.28),
(4.29), respectively. This analogy has an important statistical consequence. As
m— o, r— o and { — o in such a way that r/m — « and t/m — B, one might
conjecture that P(=*) - P(2) and P(Z*) — P(2), i.e., that inferences about D
should be the same as inferences about the proportion of category 1 observations
in a subsequent infinite sample. The validity of these limiting properties is evi-
dent from the fact that by and (.41 converge in probability to « and 8 together
with the fact that the events governing P(Z) and P(Z) depend on the interval
(a, B) in precisely the same way that the events governing P(=*) and P(Z*) de-
pend on the interval (bey , beetn). Thus P(Z*) and P(Z*) actually cover P(Z)
and P(Z) as limiting cases.
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Finally, to present a simple result, suppose that P; and P; denote upper and
lower probabilities that the next sample individual will be observed in category 1
given that T of the first n sample individuals were observed in category 1. From
(4.25) and (4.26) withm = land r =t =1,

(4.30) Pi=(T+1)/(n+1) and Py = T/(n+1).

5. Structures of the second kind with finite ©. Let & be a set of &k observable
categories. Let

(5.1) ®={1727“'7q}'

index a set of ¢ specified distributions over &, say F1, Fa, - - , F4. Let = be any
subset of ©®. The aim here is to develop formulas for P(Z) and P(Z) based on
sample observations ; , 22, - -+ , £, where the sampling model is a structure of
the second kind as defined in Section 2.

According to these definitions, @ is represented by a (k¥ — 1)-dimensional
simplex with vertices I, Iy, -+, I} and p is the uniform probability measure
over @. Each distribution & determines a point
(5.2) P: = (pa, Piz, *** , Dit)
of @ where, fori = 1,2, .-+ ,gandj = 1,2, -« - , k, the probability of category j
under ¥; is denoted by p:; . Each P; determines a partition of @ into simplexes
i1, Mz, * 5 T Where m;; denotes the simplex with the same vertices as @ except
that I; is replaced by P;. The mapping a — x corresponding to § = ¢ is the

mapping which sends a ¢ m;; into category j (with some rule to make the mapping
specific on the boundaries of the ;). In accordance with the postulate (P1)

(5.3) u(ms;) = pij,

fori=1,2,---,qandj=1,2, ---,k (cf., (2.3)).

Consider first inferences based on a sample of size n = 1 when the sample ob-
servation x; falls in category j of . The regions R, , R1(Z) and R:(Z) whose meas-
ures determine P(Z) and P(Z) are given by

(54) R, = Uiem,

(5.5) R\(Z) = Uiz my,

and

(5.6) Ri(Z) = By — Ry(© — 2).

It turns out to be simpler to characterize intersections of the ; for given j rather
than unions. The intersections are also important for understanding the passage
from n = 1 to general n. The approach therefore will be to express the proba-
bilities of the unions (5.4) and (5.5) in terms of the probabilities of intersections.

A simplex with the same vertices as @ except that the vertex I; of @ is replaced
by a general point of @ will be called for short a simplex of type j. The vertex
which replaces I; will be called the free vertex. For convenience, the simplex of
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type j with free vertex P will be denoted by =;(P). For example, r,; above may
also be denoted by =;(P;).

Using obvious vector space operations of addition and multiplication by a
scalar, a general point @ of the simplex =;(P) may be characterized as

(5.7) Q = 1P+ 21yl

wherer; 2 Oforl = 1,2, --- ,kand ) ;7 = 1. The following two lemmas will
be deduced from (5.7).

Lemma 5.1. If Q les in m;(P) then 7;(Q) C =;j(P), and conversely.

Lemma 5.2. Suppose that P = Y tpd; and Q = D % g, where p; = 0 and
@z 0forl=1,2,--- ,kand 2 ip; = 2% q1 = 1. Then Qlies in m;(P) if and
only if

(5.8) : /9 Z pi/p;

forl=1,2, --- k.

The converse part of Lemma 5.1 is immediate and the direct part requires only
a simple application of the definitions of 7;(Q) and r;(P), and so is omitted.

To prove Lemma 5.2, note that the comparison of (5.7) with Q@ = > % ¢l
yields

(5.9) g; = rp;, and ¢ = r + rppy for 1 5 j.
If Q lies in x;(P) then (5.9) holds with ~; = 0 and r; = g;/p;, so that (5.8)
follows. Conversely, starting from (5.8) and defining 1, 75, -+ , 7 from (5.9)
it follows that r; 2. 0forl = 1,2, --- , k and )
Yharm =1+ 2 (@ — rim)

(5.10) =1+ 2t (@ — rp)

=r+1—-1r;-1

=1,
as required.

The basic result about intersections, which is stated in Theorem 5.1, asserts
that the intersection of a finite set of simplexes of type j is again a simplex of
type j.

TarEoREM 5.1. Suppose that P; is defined by (5.2) for i in a subset T of the
integers 1,2, « - - , . Suppose that Q = Y % qil; is defined by

(5.11) @ = MaXus {Pa/Dij}/ D_um1 MaXis {Peu/Dis}
forl =1,2, --- k. Then
(5.12) 75(Q) = Nz 7i(Ps).

To prove Theorem 5.1, consider finding a point @ lying in the desired intersec-
tion and having maximum coordinate ¢; . From (5.8) it follows that

(5.13) /¢ Z pa/pii
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for 7 in 2 and hence that

(5.14) ¢/ Z maxXiz {pa/pis}
forl = 1,2, ---, k. Summing and using D _+ ¢; = 1 gives
(5.15) ¢ = [ X1 maxes (pa/pi}l

Moreover, if (5.15) is changed to an equality, it is easily seen that @ defined by
(5.11) is the only point consistent with (5.14) and D _f ¢; = 1, i.e., Q is the unique
point in the desired intersection with maximum coordinate ¢;. This explains
where (5.11) came from.

That
(5.16) Ti(Q) C Nz mi(Ps)
follows from Lemma 5.1. That
(5.17) Ti(Q) D Nz mi(Ps)

follows by applying Lemma 5.2 to a general point in the intersection and show-
ing that it satisfies the requirement of the converse application of Lemma 5.2
to mj(Q). Thus Theorem 5.1 is proved.

Returning now to inference from a sample of size n = 1 with z, in category j,
and reverting to the notation m;, in place x;(P;), the important consequence
of Theorem 5.1 is that

(5.18) Ca(Nie 7)) = [ maxes {pa/pi}]

This follows from (2.3), which shows that u(7;(Q)) = g¢;, and from (5.11)
with I = j. Note that the numerator of (5.11) is unity when ! = j.

Since R1(Z) is a union of simplexes of type 7 as in (5.5), u(R1(Z)) may be
expressed in terms of the quantities defined by (5.18) applied to all subsets of
2. Specifically, suppose that Z;, for ¢ = 1, 2, - - - denote the single element sub-
sets of Z, that Zg for b = 1, 2, --- denote the two-element subsets of =, that
s forc = 1,2, - - - denote the three-element subsets of Z, and so on. Then

(5.19) w(Ri(Z)) = Do u(iezia T5) — Db w( M sezap T57)
+ 200 m(Miazg, 7i) — -o -

Formula (5.19) may also be applied when Z is replaced successively by ©® and
by ® — 2 to determine u(R;) and u(R:1(0 — Z)) = u(R1) — u(Ri(Z)). These
along with u(R1(Z)) determine P(Z) and P(2).

Consideration of the simplest case ¢ = 2 may help to illuminate the foregoing.
Here O consists of two elements and there are two non-trivial subsets namely
Z, consisting of ¢ = 1 and 2. consisting of ¢ = 2. Thus only three numbers are
required to determine all upper and lower probabilities, namely

w(Bi(Z1) = py;
(5.20) - w(Bu(Z0) = py;
ﬂ(R(El) n R(zz)) = [Zﬁ-l max {Plu/pl:i ’ p2u/p2i}]_l-
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Denoting u(R(Z:) n R(Z;)) by pu; for short, it follows that

(5.21) u(R1) = pij + D2 — Py
and hence that
(5.22) P(Z1) = puy/(py + pej — p12j),  and

P(Z1) = (p1 — pui)/(p1i + p2i — Pr2j)-
For samples of general size n, consideration must be directed to regions in the

product space @". If the observations z;, #3, -+, , fall in categories ¢, ¢,
.-+, Ca , respectively, and if Z; C O is the subset consisting of ¢ only, then
(5.23) Ba(Z) = iy X ieg X =+ + X Tiey s

fori = 1,2, ---, q. For general =, unions of regions like (5.23) are needed. As
already mentioned it is easier to first find intersections. In fact, for general =,

(5.24) NizBa(Z:) = (N2 mier) X (Miszmics) X o+ X (Niex Ticy)
and thence .
(5.25) B (Nez Ba(20)) = IIn v( N 7).

Each term in the product on the right side of (5.25) is of the form (5.18) for
different j. Formula (5.19) must be generalized by replacing the terms on the
right side by products of # terms as in (5.25). Then the computation of upper
and lower probabilities proceeds as before.

The task of determining inferences for a sample of size n may therefore be
summarized as follows. For the mth sample individual with observation .,
in category cm , compute the vector of 2 — 1 quantities (5.18) with j = cn
and 2 ranging over the 2 — 1 non-empty subsets of {1, 2, - - - , ¢}. Having such
a vector for each sample individual, combine these n vectors into a single vector
by multiplying the corresponding elements as indieated by (5.25). From this
sample vector compute u(R.(2)) for any = as in the generalization of (5.19)
and thence determine upper and lower probabilities as required.

_Again the case ¢ = 2 is especially simple because the vector of 2 — 1 quan-
tities required for each individual reduces to three quantities as in (5.20).
Thus for each sample individual s there is a triple (pije) 5 P2ics) » Pr2icey) for s =
1,2, -- -, n where j(s) denotes the observational category into which individual
s falls. The inferences (5.22) are modified by replacing (pi;, pej, Puj) Wwith

(5.26) (IT pricor » TTo=1 iy » 1101 Prsjear)-

6. Concluding remarks. The following discussion of qualitative aspects of
the proposed inference methods may help the reader to evaluate these methods.
Unlike the fiducial argument which Fisher limited to continuous observables
only, the present methods have been developed above in detail only for finite .
Interestingly enough, the extension to continuous observables poses greater
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difficulty in the case of structures of the first kind than in the case of structures:
of the second kind.

Pick up again the N (6, 1) example of Section 2 which illustrates a structure
of the first kind extended in the obvious way to cover real z. If the procedures
of Section 3 are applied to the N (6, 1) example, it is found forn = 1 that B, = @
and that » is the N(0, 1) distribution over @& which, from (2.1), induces a
N(z,, 1) distribution for 6. In other words, Fisher’s fiducial argument is re-
produced in this simple case. For general sample sizes, R, becomes the line in
n-space consisting of samples a;, as, -, a, satisfying z; = a; + 0 for 7 =
1, 2, ---, n. Unfortunately u"(R,) is now zero and (3.2) cannot be used. This
breakdown is not fatal because the observable z may be approximated by a
multinomial observable specifying which of a large set of k¥ mutually exclusive
and exhaustive intervals contains z. In this way R, is approximated by a cylinder
with u"(R,) > 0. As k — « in an appropriate way, the cross-section of the
cylinder shrinks to the vanishing point and the posterior distribution induced
on 6'approaches the N (&, 1/n) distribution. This answer is the same as that given
by the fiducial argument, but the reasoning is quite different: the present method
conditions by R, while the fiducial srgument uses sufficiency to reduce con-
sideration to Z.

It thus appears that multinomial approximation may be used to extend the
reasoning of Section 3 to continuous observables. At this point a snag arises in
connection with structures of the first kind but not, remarkably enough, in
connection with structures of the second kind. The snag is that different mul-
tinomial approximations may lead in the limit to different inferences. This does
not happen for location parameter situations, such as the N(6, 1) example, but
a little analysis shows that it does happen for general families F, with sampling
represented by a structure of the first kind. On the other hand, for structures of
the second kind, the fundamental quantity (5.18) does approach a common
limit under a wide range of approximating conditions, i.e.,

(6.1) (2%t maxies {piu/pis}] ™ — [f maxiz {f:(z)/fi(21)} da]™

where (pi, piz, **+, pi) approximates a continuous distribution with density
fi(z). This remarkable property means that the structures of the second kind
extend in an unambiguous way to yield inferences for general univariate or
multivariate observables. For example, inferences about all the parameters
of a multivariate normal distribution from a sample of any size are uniquely
defined using a structure of the second kind.

This uniqueness property together with the ability to handle multivariate
observables make the inferences based on the structures of the second kind
appear very attractive to the author. These inferences have the property that
upper and lower probabilities differ even with continuous observables, which
is also plausible in small samples .

The new methods pay for the absence of a prior distribution by being able to
specify only upper and lower posterior probabilities. If two hypotheses Z; and
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Z, are ‘“‘close” in the sense that E,.(21) and R.(Z:) overlap considerably, then
it becomes difficult to decide between such hypotheses because both P(Z;)
and P(Z,) are close to P(2; u 2;) and there is no unambiguous division of
posterior probability between them. Considér an extreme case where Z; =
{61}, 2, = {6} and Fy, = Fo, . Here the hypotheses might fairly be judged in-
distinguishable, and the present methods react by finding P(Z;u Z,) = P (Z) =

P(2,) and P(Z;) = P(2:) = 0. (The Bayesian would, of course, distinguish be-
tween such 2, and Z, on the basis of his prior distribution' alone.) As illustrated
in Section 4, it typically happens that the overlapping of E,(Z:) and R,(Z,)
becomes less serious as n increases, i.e., large samples have high resolving power.

As in other theories of inference, the concept of likelihood plays a prominent
role, but the interpretation of likelihood is radically changed. Here, the standard
likelihood function L(6) is proportional to u"(R.({6})) or to ».(R.({0})) =
P({6}). While L(8) for each 6 is the measure of a set, the sets corresponding to
different 6 overlap in an important way which is not defined by the function L(8)
itself. Thus, all the relevant information is not contained in L(6). In large sam-
ples however, ‘“nearly” all the relevant m.formatlon resides in L(0), as illustrated
in Section 4.

Noting that the sampling model specifies a measure u over @ in addition to a
family of distributions &, , a reader might jump to the conclusion that u is
playing a role analogous to the prior distribution adopted by a Bayesian. Such
an analogy would be specious. The measure u simply idealizes the assertion that
all samples are equally likely. As such it belongs to the category of assumption
which is usually regarded as objective, in contrast to the Bayesian prior dis-
tribution which is often frankly subjective. It is not the assumption of x which
gives the present methods their distinctiveness, but rather the postulate (P2),
or, more precisely, the classes of structures of the first and second kind which
translate (P2) into precise models.
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