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LINEAR COMBINATIONS OF MARKOV PROCESSES
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1. Introduction and summary. Let {X; :k = 0,1, 2, ---} bea Markov proc-
ess with state space (8, ®) and denote by f a real-valued ®-measurable function
on 8.

In [1] and [6] it was shown that for a Markov process with a single ergodic
class, if the transition probabilities P(z, A) = P[X;¢ A | X, = z] are stationary
and satisfy Doeblin’s condition ([2]), if the conditional moment generating
function of f, fs e’WP(x, dy), satisfies a certain boundedness condition in ¢
uniformly in  and if [¢f(y)n(dy) = O where = is the unique stationary prob-
ability measure for the process, then an exponential bound exists for the con-
vergence of S, = n '[f(Xy) + -+ + f(X,)] to zero which is independent of the
initial probability measure. That is, for every € > 0 there exist positive constants
A and p < 1 such that for all initial measures »,

P)|S.] = ] < Ap" for n=1,2,---.

The purpose of this paper is to study the extent to which such a result holds
when the Cesaro averages n '[f(X1) + --- + f(X.)] are replaced by a more
general class of averages D iy anif(Xx), n = 1, 2, ---, where the infinite
matrices {a,} satisfy the conditions

(8) Dret |@ni| £ 1 uniformly forn = 1,2, --- ;

(b) AM(n) = max; |as| > 0asn — «;

(¢) liMpaw D im1 Gup = 1.

Such matrices are called Toeplitz matrices (except that our Condition (b) is
somewhat stronger than the one usually imposed, see e.g. [8]), and our con-
cern will be with the rate at which the sequence of random variables S, =
D 1 @ if (Xi) tends to zero in probability as n — .

We will obtain theorems analogous to those of [1] and [6] through a series of
specializations of two basic theorems to be proved in Section 2. There, without
the assumption of stationary transition functions, conditions are given under
which for every ¢ > 0, there exist positive constants A and p < 1 such that for
all initial measures »,

(0) Pv“SnI = e] = APUMn); n = ]-s 2: .

Here S, is the Toeplitz average and A(n) is defined above in Condition (b).
In Section 3, processes with stationary transition probabilities are studied

and a condition on the conditional moment generating function of f is introduced

which is comparable to a condition introduced in [1] and which implies the first
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712 L. H. KOOPMANS

theorem of Section 2. In Section 4, Doeblin’s condition is introduced and addi-
tional restrictions on the process and the Toeplitz matrices sufficient to yield
(0) are considered.

This study is a sequel to work begun in [3] and continued in [4] and [5]. For
applications in which Toeplitz averages of stochastic processes are of interest
and for further orientation on the subject of convergence rates for Toeplitz
averages of random variables, the reader is referred to these papers.

2. General convergence rate theorems. The following notation will be used
throughout the paper: If A is a real-valued, B-measurable function of the random
variables X;, X,, - -+ then E,(h) denotes the expected value of k with respect
to the distribution of the process started with the .initial measure ». E. is
used in place of E,, , where », is the initial measure assigning probability 1 to
{z}. Similarly, P, will denote the probability distribution of the process relative
to ».

Let us(k) = Eaf(Xs).

AssuMpTION 1. There exists a positive constant K < o« such that for every
zeSandk =1,2, -+ ; |ua(k)| < K. Let vz(n) = D=1 Gnita(k), where {an i} is
a Toeplitz matrix which satisfies Conditions (a), (b) and (c). It follows easily
from Assumption 1 that, for each 7, the series defining v.(n) is absolutely sum-
mable uniformly in z and that |y.(n)| < KforallzeSandn = 1,2, --- .

Assumprion 2. For every 8 > 0 there exists Ts > 0 such that if |t| < T, then

E. exp [t 22w bif (Xi)] < exp [{t 2k bussa(R) + B 1] 20 [al}],

uniformly in z & 8 for all integers N and all sequences {bi} of real numbers for
which > ey |be] = 1.

TuEOREM 1. Let {X; :k = 0, 1, - - -} be a Markov process (not necessarily with
stationary transition probabilities) and let f be a real-valued ®-measurable function
on 8 for which Assumptions 1 and 2 hold. Let

Sn = Zl?—l an,lgf(Xk)~

Then S, exists as a limit-in-the-mean of order 2 and for every ¢ > 0, 8 > 0 and
every initial measure v,

PyfIS.| = ¢ < 2exp[(8 — e)|tl/Mn)] [ exp [If] [va(n)|/N(n)] dv,

Jor|t| = Ts.
Proor. The index n will be deleted in the proof. Let sy = > -1 axf(X:) and
let M < N. Then, for fixed 8 > 0, Assumptions 1 and 2 yield

E.exp [t(sy — su)] < exp [JI|(K + B) D t=ws1laxll,  uniformly in z.

By the lemma of [5], there exists a constant vs (independent of x) such that
E.(sy — sx)® < ¥ Q_t=mus1 |ax|. The right hand side tends to zero as M, N — =,
thus for every initial measure v, E,(sy — sx)’ = fs E.(sy — su)? dv — 0. Thus,
s = D1 af(X;) is determined as a limit-in-the-mean of its partial sums.
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Now, for 0 < t < Tjs, a well known inequality ([7], p. 127) yields

Plxsy = ¢ = Py[(sy — €)/A 2 0] < ¢ [g B2 iy
s IS €xp [(itZkN=1 arps () + 18] B ZkN=1 lax])/A] dv.
< exp [(8 — )|tl/N [ exp [t 2 kw1 aupa(k)/N] db.

By the bounded convergence theorem, the last expression converges (uniformly
in »), ylelding in the limit as N — o,

PJlts = ¢ < exp[(B — ¢)|t]/A] [gexp (£tyz/\) dv
< expl(8 — o)[tl/N g exp [[#] |val/A] dv.

The theorem follows from this and the inequality P[ls| = ¢] < Pls = ¢
+ P[—s = €.

TaeorEM 2. If, in addition to the hypotheses of Theorem 1, we have
liMpsw ¥2(n) = 0 uniformly in x, then for every e > O there exist positive numbers A
and p < 1 such that, uniformly for all initial measures v,

(1) Pl|Sa| = ¢ = 4o n=1I2---

Proor. Select positive numbers 8 and & such that 8 4+ & < ¢/2. Then, there
exists N such that n = N implies |y.(n)| < & uniformly in z. Thus, by Theorem 1,
for |t| = Ts,

Pv[lsnl = 6] =2 exp [(B — e+ 6)|tl/)‘(n)]’

for all n = N and all initial measures ». Now, select A large enough to uniformly
bound the first N — 1 terms (e.g., 4 = p Ay Then, (1) holds with p =
exp (—eTs/2).

If v,(n) — 0 as n — o but the convergence is not uniform in z, then an in-
equality comparable to (1) is available in many cases but the constants A and p
will no longer be independent of ». For example, if § is a topological space and »
concentrates its mass on a compact set S, then (1) will hold and the constants A
and p will depend on » only through S.

3. The case of stationary transition probabilities. The following results are
based on the assumption that the Markov process has a stationary transition
probability function P(z, A) = PXse A | Xem = 2],k = 1,2, --- . Wewil
show that a sufficient condition for Theorem 1 to hold in this case is a uniformity
condition on the conditional moment generating function of |f(X1)| (given X,)
only slightly stronger than the one introduced in [1] for Cesaro averages.

AssumpTION S. There exist positive numbers 7' and v, independent of z, such
that for |{| < Tand allz ¢ 8,

E.exp [t|f(X1)]] < exp [ [tl].

THEOREM 3. If the Markov process {Xi :k = 0, 1, -« -} has stationary transition
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probabilities and Assumption S is satisfied for the function f, then the conclusions of
Theorem 1 hold.

Proor. It suffices to establish the validity of Assumptions 1 and 2. The
equality, ¢ + ¢ = ¢! + ¢ **! implies that for any random variable X,
Ee™™ < Ee'™™' + E¢ "™ whenever the right hand side exists. Thus, Assumption S
implies that

(2) Mz(t) — Exetf(xl) < ze‘llfl
uniformly in z for |¢| < T.
Form the functions of a complex variable M.(z) = Ee’*Y zes. Since

|M.(2)| < M. (Rez) < = for |Rez| < T by virtue of (2), it follows that M,(z)
is analytic in this region. Select 8 such that 0 < & < T and let C be the circle
{z = 3¢”: 0 < 6 < 2x}. By Cauchy’s integral formula,

wo(1) = (d/de)Mu(2) | o = (279) 7" [0 (Ma(2)/2") de.
Thus,
(3) ()] < (2m)7 37 [IM;(&e‘o)[/f] do < 2¢°%/8 = K < .

Let E¥1""%i) denote conditional expectation relative to the sigma-algebra
generated by X,, , -+, X:, . Then, fork > 1,

ua(k) = [ E*Vf(Xz) dva
— j‘E(XO)E(Xo."'.xk-l)f(Xk) d,
= f EXOEX =05 X,) dy, by the Markov property.

Thus, by the stationarity of the transition probabilities and (3), |ua(k)] =
[ E*9(K) dv, = K. This establishes Assumption 1.

To prove that Assumption 2 is satisfied, we dominate a limited power series
expansion of E, exp [t D k=1 bif(Xi)]:

(4) E.exp [t 21 baf(Xi)] < 14 ¢ 20 bena(k)
+ £E( DN [bel [F(Xa)])? exp [e] 2ok (el [f(X)]-

N

The last term is dominated as follows: Let Ci = [bil/2 i1 |bxl and Ry =

=1 Ci, |f(Xy)|. Since for every § > 0, y'e ™ — 0 as y — =, it follows that there
exists A; > 0 such that y = A; implies %' < ¢! for all ¢. Fix § = T/4 and
lt| < T/2 sothat0 < |f| + & < T). Now, if I is the set characteristic function
of the event B = [Ry < Aj], then the inequality D i~ [b;] = 1 implies that

E.( X0 [b] 1£(Xa))* exp [Jt] 2555 (bl [£(X0)]]
S (X [l ERye "™
= (XAt [B)’Ba(Tn + Lnc)Ra'e! ™
< (W [Bal) {Adle! 14 o BoetOy,
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But,
(5) B = [ ... [T exp [(J¢] 4 8)Ck [f (@) |IP (@1, di), @0 = 1,

N t|+8) C, 3
< Hk-l e(l 1+)Cky _ e(ltl+ )1.

This last inequality is obtained by taking the suprema of the first arguments of

the transition probabilities under the integral signs in the second expression of

(5). Then, since E, exp (a|f(X1)]) = [ exp (a|f(y)|)P(z, dy), it follows by

Assumption S that sup, [ exp (e« |f(y)|)P(z, dy) < exp (ay) for0 < a < T.
Substituting these expressions into (4), we have

E.exp [t D2 oim bif (X)) S 1+ ¢ D 2t besa(k) + |¢] 2 i [oel{1e] @)
< exp [t D mms bapa() + [t 2ot [Bel{]] G},

where G = A;” exp [(T/2)As] + exp [(T/2 + 8)7v]. (Recall [t| = T/2.)

Now, if 8 > 0, Assumption 2 is satisfied by selecting 7's = min {T/2, 8/G}.

CoROLLARY 1. If the Markov process has stationary transition probabilities and
the function f is bounded, then the conclusions of Theorem 1 are valid.

Proor. Assumption S is clearly true for bounded functions.

The theorem for Cesaro averages stated in the introduction was first proved in
[6] under the assumption that f is bounded.

In order to obtain the conclusions of Theorem 2 in the present context it is
only necessary that v,(n) — 0 uniformly in « as n — . This is not, however, a
consequence of Assumption S. To see this, consider the normal Markov process
with 8 = Reals and k-step (stationary) transition probability function

P®(z, A) = [2r(1 — ™) [aexp —[(y — p*0)’/20 — p™)]dy, 0<p <1,

and let f(y) = arc tan y. The conclusions of Theorem 1 are valid by virtue of
Corollary 1. Also, by a change of variables,

(6) (k) = (2m)7F [Zoarc tan [(1 — p™)by + ple™* dy

from which it is easily seen that u.(k) — 0. However, it is also seen from (6) that
for every ¢ > 0 and integer K there exists an z > 0 such that 7/2 — ¢ < p,(k) <
x/2 for 1 £ k = K. Now, consider any Toeplitz matrix {a.,:} of non-negative
terms and assume, for convenience, that » s @.x = 1 for all n. Then,
vao(n) = i1 Gupuz(k) — 0 as n — oo. But, if K, is an integer such that
> ok @y > 1 — 2¢/m, by selecting this to be the above defined integer K, there
is an ¢ > 0 such that |v,(n) — Dok Gaps(k)] < € and w/2 — 2 <
> k2 @ pua(k) S 7/2 — e It follows that for every n, there exists an > 0
such that y.(n) > 7/2 — 3e.

In the next section we will impose a further restriction on the process that will
ensure the uniformity of convergence of v.(n).

4. The case of stationary transition probabilities which satisfy Doeblin’s
condition. As in the last section, the transition probabilities of the process are as-
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sumed to be stationary. We will impose Doeblin’s condition (Hypothesis (D) pg.
192 [2]) on the transition probabilities. We list here only the definitions and
results explicitly needed in our development. For a complete account of the perti-
nent theory, the reader is referred to [2]. In the notation of [2], «C. Will denote the
ath cyclic subclass of the ath ergodic class By, = 1,2, -+ ,da;a=1,2, .-+, A.

p(x, .C.) is the conditional probability that the process, initially at z, will
finally be in ,C, . It is true that for all z ¢ §,

(7) Za.a p(x, a a) = 1

JI.(E) is the stationary probability measure associated with ,C, and is deter-
mined by

(8) daim(A) = liMgae P (2, A) for ze.Ca,

where, in this and future expressions, the index @ + m is to be reduced (mod d,).
This limit is uniform in z and 4.

Finally, if {a,} is a Toeplitz matrix, we let Ym,o = limg.e Zr?—o G kdgtm -

The basic result of this section is the following theorem :

TurorEM 4. Let the M arkov process { X : k = 0, 1, - - -} have a stationary transi-
tion probability function which satisfies Doeblin’s condition, and let the function f
satisfy Assumption S. Then, if {@. .} is a Toeplitz matrix of non-negative elements,

limn.>°° 'y,(n) = Za.a P(xy uCa) ana=l Ym,a ff(y) anam(dy):

uniformly in x.
Proor. If we let h(z) = u.(1), by Theorem 3, h(z) is bounded on 8. Then, by
an extension of the Fubini theorem, [7], p. 140, u.(k) can be written in the form

pa(k) = [ f(y)P® (=, dy)
= [ h(z)P*(x, dz),

where P® (z, A) is the k-step transition function for the Markov process.

The following easily proved lemma will be used in the proof.

Lemua. If {P,"(E) |n = 1,2, - - - ;v & T} is a parameterized sequence of prob-
ability measures such that P.,(”) (E) — P,(E) as n — « uniformly for all measur-
able sets E and all v € T and if h is a bounded, measurable function, then

J h(@)P,® (dz) — [ h(z)Py(dz),

uniformly in v.

Since the a,.’s are taken to be non-negative, ym. = 0. We assume that
Yma > 0. Only a trivial modification in the proof is needed if ym,o = 0. Then, for
m=1,2, -, das, the matrices {(¥m.a)  @n,ia,+m} satisfy the conditions

(@) i (Yma) tnidgtm S (Yma) - < o foralln;

(b)" maxy (Yma) Gnidyim = AN1)/¥ma — 0asn — 0}

(C)’ lilnn-veo Z;:=0 ('Ym,a)—lan.kdam = 1.

Le., they are again Toeplitz matrices ([8]). Now, by an application of the lemma
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N -1 kd j—1)
to the sequence { D a0 (Ym,a) " GnkaemP ™ P (x, A): N = 1,2, -- -}, we have

20 (Ymia) " Onpigim [ R(y) P (2, dy) = [ R(y)QuA(z, dy),

where Q,(,,'.‘.)l(x, A) = Zleco=0 ('Ym,a)_lan.kda+mP(Ma+m_l) (x, A)'
But, by (8) and the easily established fact that uniform convergence is pre-
served under Toeplitz summation, it follows that for z ¢ .C. ,

Qf(nt)l(x) A) - aHa+m—1(A) as n — o,

uniformly in z and A.
Now, another application of the lemma yields the uniform (for z € ,C,) limit

liMaaw [ B(y)Q(2, dy) = [ h(Y) alfaim-1(dy).
Thus, uniformly for z € .Ca ,

Ye(n) = D i G i) = Do D im0 Gn pdgim f h(y)P(M“"'m"l)(x, dy)
— Dt Yma [ B(Y) lapm-1(dy).

Multiplying each term of this expression by p(z, .Cs) and summing over all a
and a, it follows from (7) that uniformly for all z ¢ §,

'Ya:(’n/) - Za,cx P(x, aCa) Z:‘na=l Ym,a f h(y) allatm—1 (dy)~

Now, it is easily shown by another application of the lemma and (8) that

aHa+m(A) = fP(yy A) aHa+m—1(dy)'
Thus,
fh<y) dlaym1(dy) = ff(z) fP(y, dz) ollaym1(dz) = ff(z) llaim(d2),

and the theorem is proved.
Because of this theorem, to obtain the conclusions of Theorem 2 in the present
context it is sufficient to have

(9) Za,a p(x, aCa) Z;ina-l Ym,a If(y) anam(dy) =0 for all xeS.

An immediate (but not too interesting) sufficient condition for (9) to hold is
that [ f(y) oIa(dy) = O for all @ and a.

To obtain conditions comparable to those made in [1] and [6] which guarantee
(9), we restrict attention to the class of Markov processes with only one ergodic
class. We hereafter drop the index a. Now there is a unique stationary measure
for each process defined by

(10) I(E) = d 2 em ().

If there are no cyclically moving subclasses, which corresponds to the case d = 1
in (10), then the condition f f(y)II(dy) = 0is clearly sufficient for (9) to hold:
COROLLARY 2. If, in addition to the conditions of Theorem 4, the Markov process
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has only one ergodic class with no cyclically moving subclasses and if

(11) [ f)a(dy) = o,

then the conclusions of Theorem 2 hold.

For Cesaro averages, Condition (11) is sufficient to guarantee the conclusions
of Theorem 2 even when cyclically moving subclasses are present. The reason for
this is that in the Cesaro case, ym = d— form = 1,2, --+ , d. Thus, forallz ¢ §,

Zcx P(xy ch) E;in-l Ym ff(?/)nam(dy)
(12) = Za p(z, C) ff(y)d—l Z:»=1Ha+m(dy)
= [ f()m(dy) = 0,

and (9) is satisfied. For general Toeplitz averages this is no longer the case. It is
easily seen that for any processes with cyclically moving subclasses for which (11)
holds but [ f(y)I.(dy) > 0 for some &, many Toeplitz matrices can be con-
structed such that lim, v.(n) % 0 for some z ¢ $. In fact, a study of the null spaces
of the cyclic matrices with 4jth elements [ f(y)I:4;(dy) (¢ + j reduced (mod d))
for which (11) is satisfied, shows that, in the most general situation, the equal
assignment is the only assignment of the ya’s for which (9) holds for all z ¢ 8.
This motivates the introduction of the following class of Toeplitz matrices:

DEerFINITION. A Toeplitz matrix {a,:} with nonnegative elements is said to be
Cesaro Regular if, for eachd = 1,2, -- -,

. © 1
lim, e Zk"-ﬂ Qp hdpm = d- , m = 1’ 2, cee, d.

CoROLLARY 3. If, in addition to the conditions of Theorem 4, the Markov process
has only one ergodic class, (11) is satisfied, and the Toeplitz matriz is Cesaro Regular,
then the conclusions of Theorem 2 hold.

Proor. If the Toeplitz matrix is Cesaro Regular, then (8) follows from (11) as
in the case of Cesaro averages.

Cesaro regularity is difficult to check in practice and the extent of the class of
Cesaro regular Toeplitz matrices is not known. However, this class contains other
than the usual Cesaro (C, 1) matrix as is demonstrated by the following con-
struction which yields a subclass based on the Poisson distribution.

Let H(n) be an arbitrary, strictly positive function of » such that H(n) — «
asn — . Define

Qn .k = 3—H(n)[H(n)]k/k!, k = 07 1, 27 Tt .

It is easily established that {a..} satisfies Conditions (a), (b) and (c) of the
Introduction. In fact, it is a Toeplitz matrix of positive terms for which

Zk=0 anx = 1 for all n.
Fix an integerd = 1. Let ; = exp (27rzj/d), the jth of the d-roots of unity,

j=0,1,---,d — 1, and define the functions
fu(n) = d7* 2567, m=0,1,---,d— L
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It is easily seen by expanding ¢’#* in its MacLaurin series and forming the lin-
ear combination defining f.,(n), that

Fa(n) = Do [H®)™/ (kd + m)1], m=0,1,---,d— 1
Thus,
D it Un ki = € " f(n) = d7[1 + Do} 8meTVE™],

But, forall0 <j = d — 1,Re (§; — 1) < 0. Hence, |exp [(6; — 1)H(n)]| — 0
asn — o, and

(13)  Srvaaism—d as n—w for m=0,1,---,d — 1.

Note that in the special case d = 2, fo(n) = cosh H(n) and fi(n) = sinh H(n)
and (13) is easily obtained from the familiar exponential representations and
series expansions of these functions.

Acknowledgment. I am indebted to my collaborator D. L. Hanson for in-
troducing me to this area of research and for suggesting the study pursued in
this paper.
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