A THEOREM ON THE GALTON-WATSON PROCESS!

By BernT P. STi6UM

Cornell University

In this note we will prove a theorem concerning a limiting distribution associ-
ated with the Galton-Watson process. Specifically, we consider a stochastic
process, {Z, ;n = 0, 1, - - -}, with the following properties:

(1) Zy =1,

(2) if P denotes the probability measure associated with the process, then
P(Zy=1) =p:,2=0,1, --- . Moreover the process ig a Markoff process with
transition probabilities,

Pij=P(Znp1r = j | Zn = %) = Dkybhyte-thimi Dy Dhy = * Di »
i=1,2,j=01 - ,Py=0j=1,2, and Pu=1;

(3) p: ¥ 1 for all 7; and

(4) E(Z,)) =m > 1.

We will show that the random variables, (Z,/m"),n = 0, 1, - - - , converge a.e. to
a random variable, W, whose probability distribution has a jump at the origin
and a continuous density function on the set of positive real numbers. Levinson
and Harris have proved similar theorems but under more restrictive assumptions
and by using quite different arguments. Specifically, Levinson [4] by assuming
that E(Z,log Z;) < « and Harris [3] by assuming that E(Z,") < « have estab-
lished our result. Harris has also proved that his assumptions imply convergence
in the mean of the (Z,/m")’s, and both Harris and Levinson have proved that
their assumptions imply that £(W) = 1 and that P(W = 0) = ¢q < 1, where ¢ is
a number to be defined later. In contrast under our assumptions we can only
prove that E(W) = 1 and that P(W = 0) = q or 1. However we will show in a
forthcoming paper with Harry Kesten that if Assumptions 1 through 4 hold
and if P(W =0) =g¢q, then E(W) = 1. Moreover E(W) =1 only if
E(Z1 lOg Zl) < o,

The probability generating function of Z; will be denoted f(s) and is defined
by the equation, f(s) = e prs”, on the set of all complex numbers s such that
|s| = 1. The probability generating function of Z, will be denoted by f.(-). We
will make repeated use of a few facts about the f,(-)’s that are stated briefly
below. ‘

(5) faru(s) = fu(fi(s)) = fu(fa(s)).

(6) There exists a unique real number ¢ such that 0 = ¢ < 1, f(q) = q.

(7) For all seg, 1) we have 1 > s = f(s) = fa(s) = -+ = fa(s) = ¢ with
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lim, f.(s) = ¢. Similarly forall s¢ [0, ¢] wehave0 = s S f(s) S fo(s) = -+ =
fa(8) = q with lim, fu(s) = q.

(8) The f.(-)’sare all differentiable and convex on the unit interval. Moreover
forallse (g, 1),/ (s) < {f(s)}", and forall s £[0, g], f»'(s) Z {f'(s)}".

Doob has pointed out that the random variables, (Z./m"),n = 0, 1, - - - consti-
tute a martingale that converges a.e. to a random variable W with mean less
than or equal to one (Harris [2], p. 13). We will denote the characteristic func-
tion of W by ¢(it) where ¢ varies over the interval (— «, «). It is easy to show
that ¢(-) must satisfy the functional equation, ¢(mit) = f(¢(4t)). In particular,
e(m™it) = fa(e(it)) for all n. We will next show that either ¢(4t) = 1 identically
in tor |p(it)| < 1forallt 5 0.

Lemma 1. Either o(4t) = 1 for all t or |p(it)| < 1 for all t 5 0.

Proor. Throughout this proof we assume that ¢(it) is not identically equal to
one. We will first show that the equality |¢(#t)| = 1 for all ¢ is impossible. Suppose
the contrary to be true. Then ¢(it) = ¢"** for some a (Lo&ve [5], p. 202). More-
over, when using the functional equation, ¢(mit) = f(p(it)), we find that
eEmE = Y R pe™ ™. Hence Y reopi(1 — cos (k — m)ta = 0 for all ¢. This
implies that m is an integer and that p, = 1 which is contrary to Assumption 3
above.

We will next show that there exists a § > 0 such that for all t & (—3§, §)— 0,
le(4t)| < 1. Suppose not. Then there is a sequence of numbers ¢, that converge to
zero with the property that |¢(4,)| = 1 for all n. We may assume without loss in
generality that the t,’s are all positive. If |¢(4t,)| = 1, then there exists a number
@» in the interval [0, 2r) such that ¢(it,) = et Moreover, if z is a point of in-
crease of the distribution associated with W, then there exists an integer k. such
that t,x = a, + k.2x. Since the ¢,’s converge to zero, we conclude that there is a
large number N such that x = (a,/t,) for all » = N. This implies that ¢( - )is de-
generate which contradicts our previous result. (The argument used above is due
to Levinson [4].)

Finally we will show that |p(4t)|] < 1 for all ¢ ¢ 0. Let 6 > 0 beso small that
forallte (—8,8) — 0, [e(it)| < 1, and let M be an integer so large that m™ < &.
Moreover let A = [m~ ™t m™). If ¢ is any positive number greater than 8,
then there exists a number u € A and an integer n such that {, = m"u. Hence
lo(ito)| = le(im™u)| = |fale(iu))| < fa(le(7w)|) < 1. This proves our assertion
for all positive #’s. Our arguments with only obvious modifications work equally
well for negative numbers. Q.E.D.

Lemma 2. If o(it) 4s mot identically equal to onme and ¢ = 0, then
lims.ye l@(2t)| = 0.

Proor. To prove this lemma we let § be a positive number and let A be defined
as in the proof of the preceding lemma. Moreover we let @ = maxz |o(it)],
and let N be an integer so large that fx(a) < ¢, where eis an arbitrarily chosen
positive real number. If 4, is any number greater than m" ", then there is a
number % in A such that ¢, = m™u for some n. Hence |o(ito)| = |p(tm™u)| =
Fallo(iu)]) = fu(le(iu)]) < fv(a) < e. The proof that lim,., . |¢(¢t)| = 0 can be
obtained by essentially the same argument. Q.E.D.
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We will next show that if ¢ = 0, then ¢'( - ) is absolutely integrable.

LeMma 3. If o(it) is not identically equal to one, then o(it) is differentiable; and
if in addition q = 0, then ¢’ (it) is absolutely integrable.

Proor. Since E |W| = 1, ¢(-) is obviously differentiable (Doob [1], p. 38).
Hence the only thing to prove is that ¢'(-) is absolutely integrable whenever
g = 0. To do this we proceed as follows: Since lim;. 1, |¢(2¢t)| = 0, we can find a
large constant K such that for all ¢ with absolute value greater than or equal to K,
FUe(i)]) < 1. Let 8 = max;seix.me f (Jo(it)|) < 1. Then [Mg'® | (it)| dt =
m® [2 ¢/ (im™) dt = [R5 £ (le(it)])le' (it)| dt = [=5F (le(it)])" ' (it)| dt <
8" 5 l¢’ (4¢)| dt. Similarly [Zpfix o' (at)| dt < 8" [“5x |¢'(4t)| dt. Hence for all
T z K there exists a constant @ independent of T such that [Zz |¢'(it)| dt <

e le’(it)| dt + 2Q(m — 1)(1/(1 — B))K < ».Q.E.D.

When using the preceding lemmas we can give an exceedingly simple proof of
the following theorem:

TuareorEM 1. If o(t) is not identically equal to one, then the distribution of W has
a jump of magnitude equal to'q at the origin and a continuous density function on the
set of positive real numbers.

Proor. We will first prove that the distribution of W is differentiable on the
set, (0, «) under the additional assumption that ¢ = 0. Let gr(z) =
(1/2n) [Zre ™ p(it) dt for T = 1,2, ---, and z > 0. Clearly, gr(-) is a con-
tinuous function on the set, (0, ). Moreover by integrating by parts we find
that gr(z) = (—1/2mix){e Te(iT) — & p(—iT)} + (1/2wiz) [Ir e
(de(4t)/dt) dt. Hence if 0 < z; < x2 < o, we can use Lemmas 2 and 3 to deduce
that as T tends to infinity g-(-) converges uniformly on [z; , 2] to a continuous
function g(z). Finally if K(z) = P(W = z), then by using the uniform bounded-
ness of gr(-) on closed bounded intervals we find that K(x:) — K(z1) =
limrae [Z7 ((677%2 — ¢%) /—2mit)p(it) dt = limg.., [2 gr(z) de = [2 g(z) dx,
which establishes the required differentiability of K(-) for the case, ¢ = 0 (the
last argument is the same as that used by Harris [3]). To show that K(0+) = 0
we need only observe that

lime, i |p(it)| = lime.yw |[K(0+) + [0+ 67K () da|
= |[K(0+) + lim,, o [or €K' (z) do| = K(0+).

To prove the theorem in the case ¢ > 0 we proceed as follows: Let ¥(5t) =
(¢((1 — g)it) — q)/(1 — g) and let h(s) = (f((1 — ¢)s+¢) — ¢)/(1 — q). Then
it is easily shown that on the set, {0 < s < 1}, h(-) is a convex, differentiable
probability generating function such that 2(0) = 0, h(s) # s”, and A'(1) = m.
Moreover, if for all n we let h,(s) = h(hn—1(s)), then for all s¢ [0, 1) we have
lim, h,(s) = lim, (fu((1 — ¢)s + ¢q) — ¢)/(1 — q) = 0. Finally, 4,'(s) =
L= @s+ ¢ =71 = @s+ ¢" = K(s)" Since P(W = 0) =
lim, f,(0) = g, it is also easy to show that ¥(4¢) is a characteristic function and
that it satisfies the condition, ¥(imt) = h(¥(it)). From these observations it
follows that Lemmas 1, 2, and 3 apply to ¥(t). Hence |¥(4t)| < 1 for all ¢ > 0,
lim,.,o [¥(4t)] = 0, and ¥'(it) is absolutely integrable. When using the in-
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equality, (1 — ¢)[¥(it)| = le((1 — q)it) — gl Z [le((1 — @)it)| — g, these
results imply that lim.,. [¢(ét)| = ¢ and that ¢ (4t) is absolutely integrable.
Similarly if G(-) is the probability distribution associated with ¥(- ), then the
result obtained in the preceding paragraph applies to G( ). Hence G(-) is differ-
entiable on the set (0, « ) and G(0+) = 0. Finally, when using the definition of
¥(-) and the unique correspondence between characteristic funetions and right-
continuous probability distributions we find that

G(z) = (K(z/(1 — @) — ¢B¥(2))/(1 — q)

for all z = 0, where E*(z) = 1forz 2 0 and 0 for z < 0. This implies that K(+)
is differentiable on (0, « ) and that K(0+) = ¢. Q.E.D.
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