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1. Introduction and summary. The power and efficiency of robust procedures
have been considered for parametric alternatives by Tukey (1946), Hoeffding
(1951), Lehmann (1953), (1959), Chernoff and Savage (1958), Capon (1961),
and others. For instance, it has been shown that the two-sample normal scores
statistic is optimal for normal translation alternatives in that for these alterna-
tives, it is locally most powerful [12], [15], [4] in the class of all rank statistics
and it is asymptotically efficient [6], [4] in the class of all statistics. However, for
other types of translation alternatives, the normal scores statistic does not have
these optimal properties.

In this paper, optimality properties for non-parametric classes of alternatives
are treated. In particular, statistics that maximize the minimum power asymp-
totically over classes of non-parametric alternatives will be considered. If one
takes (1-power) as the risk function, these statistics are asymptotically minimax.
It turns out that in this sense the Wilcoxon statistic is asymptotically minimax
over a class of one-sided alternatives (F, G) with o(F, G) = A, where p is the
Kolmogorov distance, while the normal scores statistic is asymptotically minimax
for a non-parametric class of translation type alternatives.

For the problem of estimating differences in location, the normal scores estimate
of Hodges and Lehmann (1963) is shown to be minimax when the risk function
is asymptotic variance. Finally, the results are used to obtain asymptotic effi-
ciencies that are defined for non-parametric classes of alternatives.

2. Minimax results in the two-sample case. Let X;, --+ , X,and ¥;, ---, Y,
be two independent random samples with distributions ¥ and G respectively.
Consider the problem of testing H¢:F = @G against one sided alternatives
H,:G < F.If 3is a class of level a tests for this problem, and Q is a class of alterna-
tives (F, G) with G < F, then ¢ £ 3 is said to be minimaz over Q@ and 3 iff it maxi-
mizes the minimum power, i.e. iff
(2.1) inf(r, a0 B(F, G) = SuPyes [inf(r, 00 By (F, G)].

It is clear thar @ can not be taken to be all (F, @) with @ < F since for this
class, the infima in (2.1) would both be « and all tests in 3 would be minimax.
Thus the alternatives in @ must be ‘“separated.” Birnbaum (1953), Chapman
(1958), Bell, Moser and Thompson (1966), and others have considered alterna-
tives separated by the Kolmogorov distance, i.e. alternatives (F, G) with G < F
and sup, [F(z) — G(z)] = A. Here, @(A) will denote the class of (¥, G) with
G < F,sup; [F(z) — G(z)] = A and F continuous.
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A class of statistics considered extensively in the literature (e.g. [6], [15], [4])
is the class of rank statistics that can be put in the form

(2.2) Try = m™ D Julrs/(N + 1)],

where 7, is the rank of z; in the combined sample of 2’s and y’s, N = m + n, and
Jw is a function on the unit interval. Lehmann (1959), Capon (1961) and others
have shown that these are the only statistics that are invariant for Ho against H,
and are locally most powerful for a specific parametric alternative. For instance,
for normal translation alternatives, the normal scores statistic

V =m™ X ElZ(r)| %]

is locally most powerful and is known [6] to be of the form (2.2) (E[Z()|®] de-
notes the expected value of the ith order statistic in a random sample of size N
from a standard normal distribution). Similarly, for logistic translation alterna-
tives, the Wilcoxon statistic W = m™ ), r;/(N + 1) islocally most powerful and
is of the form (2.2) with Jy(u) = u.

The class of tests for which asymptotic minimax results are first obtained is
the class 3 of level a tests ¢, With critical region of the form [T';, < c] with Jx
converging to some continuously differentiable function J on (0, 1), and with J
and J y satisfying the conditions of Theorem 4.1 or Theorem 4.2 of Govindarajulu,
LeCam and Raghavachari (1965). The conditions of these authors are generali-
zations of those of Theorem 1 of Chernoff and Savage (1958). The above con-
ditions are used because they yield asymptotic normality and they imply that

(2.3) J has a continuous derivative J' on (0, 1), and
[8 7% (w) du < .
It is assumed throughout that
(2.4) 0 <lim(m/N) =\<1.

TraeoREM 2.1. (i) The Wilcoxon test ¢o is asymptotically minimaz over @(A) and
3 in the sense that

(2.5)  liMyoe [inf(r,aenny) Boo(Fy G)]
= SUPges {1im SUPK-»eo [iDf(r,ere00ap) B (F, G)1}

for each sequence {An} satisfying

(I) a < limy.y [infr,gemy Boo(F, G)] = 8 < 1.

(ii) (I) holds iff AyN* — ¢ for some ¢ > 0.

(iii) o 78 asymptotically uniquely minimax in the sense that if ¢y satisfies (i),
then Jxy(u) — bu + d on (0, 1) for some b and d.

Proor. The result follows at once from the following two lemmas. Let 8,,(Ax)
denote inf {8,,(F, G): (F, @) € 2(Ax)} and let ® denote the standard normal dis-
tribution, then
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LEMMA 2.1. 8,,(Ax) — ®(ke 4+ [BA(1 — N)P’) with ®(k.) = a iff AyN* — ¢,
c> 0.

Proor. Using the arguments of Birnbaum (1953), Chapman (1958), and Bell,
Moser and Thompson (1966), one finds distributions (U, Ga,.) that are least
favorable in the sense that

(26) Bsoo(A) = inf0§a§l—A ﬂm)(U, GA,a);

where U is the standard uniform distribution, and Ga, is the Birnbaum alterna-
tive defined by

Gao(z) =0 if =0

=z if Sfzx=<a or.a+A=z=1
=aq if aszxz<a+A
=1 if = 1.

Note that Ga . is not continuous. Since most theorems on asymptotic normality
require continuity, the following remark by Thompson (1964) on continuous
least favorable distributions will be used:

(27) Beo(U, Gae) = Boo(Faa, Giia),
where Fa . and G . are the Thompson alternatives defined by
Fao(z) =0 if =0
=z if 0=z=<a++ A

=a+ A if a+A=z=a+ 22
=z — A if a+20=2z=1+A

=1 if z=21+A
and
Gra(z) =0 if =z=20
=z if 0=z=a
=a if a=zxz=a-+A
=2z — A if a+A=Zz=1+A
=1 if z=14A

Equation (2.7) follows since r; equals the rank of Fa .(z:) among
Fao(21), -+, Faa(n); Faa(y1) -+, Faa(yn)

and the distributions of Fa .(X1) and Fa,.(Y1) are U and G, . respectively.
Let B,, (A, a) denote B,y (Fa e, @3 o). Corollary 1 of Chernoff and Savage and a
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few computations yield

(28)  Supogagiay Be(dn, @) — ®(ka + [BM(1 — N)J'AY'N)| - 0,
provided that Ay — 0 as N — . Hence,

(29)  |infogagi-ay Be(4, 6) — ®(ka + BML — N)PAx'NY)| — 0,

if Ay > 0as N — «. Using (2.6) and (2.7), Lemma 2.1 follows.
Lemma 2.2. Let ¢sy €3, if Aw s such that AxN? > ¢, and if Ty — J with J(u)
not of the form bu + d (i.e. ¢sy s not asymptotically equivalent to ¢o), then

(2.10)  lim SUPy-w [If(r, orencamy Bosy (Fy @)1 < 8(ka + [BN(1 — N)Je?).

Proor. If J (%) is not of the form bu + d, it must give less weight to some parts
of (0, 1) than to others. The proof consists of choosing (Fx , Gx) € Q(Ay) such
that the most “mass” falls in the parts of (0, 1) to which J(u) gives the least
weight. The details are as follows:

Since (Fa,., Gx.0) € 2(A),

(2.11) inf(r,ar6008) Beyy (Fy @) = By (Faa, Gaoa)-

Let 8,,(A, a) denote the right hand side of (2.11), then one can use the results of
Chernoff and Savage (1958) to compute

(2.12) Bry(Ax , a) — &k + N1 — NI (a)¢/204],

where o,” = f}, JA(z) de — (f}) J(z) dz)® If J'(a) < 0 for some ain (0, 1), then
(2.12) implies that limy.. Bsy(Ay, @) = a and the result follows from (2.11).
The only remaining case is when J'(a) > 0 for all a in (0, 1). Then J is the in-
verse of some distribution function H (say) with variance ¢,” and a density h.
One can now write (2.12) in the form

(2.13) Bow(Br , @) = Blke + N1 — NIe/20,417 (a)]].

Among all densities h with variance ¢,” the uniform density has the smallest
supremum sup, h(z), namely 1/ (2-3%,). Since J is not of the form bu -+ d (and
thus 2(z) cannot be uniform), one concludes that there exists an ao £ (0, 1) such
that h[J (ao)] > 1/(2-3%,). Lemma 2.2 now follows from this remark together
with (2.11) and (2.13).

From (2.12), it is seen that the condition (2.3) is not necessary for Theorem
2.1. Let 3; denote the class of tests obtained from 3 by replacing (2.3) with the
condition : f 0 J? < «» and there eXISts ao in (0, 1) such that J has a continuous
derivative J'(ao) at ao satisfying J'(a0) = 2- 3!, ; then the above arguments
show that 3 C 3; and

COROLLARY 2.1. The results of Theorem 2.1 hold if 3 is replaced by 3; .

Next, asymptotic minimax results will be considered for a different class of non-
parametric alternatives. It is the class I‘(A v) of translation type alternatives
(F, @) with F continuous, G(z) < F(x — A), and such that F has a density f and
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variance cr’ < v. The assumption o> < v is a convenient way to keep infima of
power functions away from a.

Let ¢, denote the level a normal scores test whose rejection region is of the form
[V < c] and let 3* be the class of all level a tests. Using the results of Chernoff
and Savage (1958), one now easily proves

TaEOREM 2.2. (i) The mormal scores test ¢1 is minimax asymptotically over
I'(4, v) and 3* in the sense that

(2.14) inf [lim infy.ew By, (F, Gx)] = supgeg+ {inf [lim supy-« B,(F, Gv)]}

for infima over all sequences of alternatives {(F, Gy)} with (F, Gy) e T'(Ax , v) and
for each {Ax} satisfying

(II) & < inf [lim infy.. By, (F, Gx)] = B < 1 and 1im AxN? exists.

(ii) (II) holds iff AyN* — ¢ for some ¢ > 0.

(Note that Theorem 2.1 gives minimax properties in terms of limzts of minimum
powers, while Theorem 2.2 gives minimax properties in terms of minimums of
limits of powers. Of these two quantities, the first seems to be the most natural,
but it is also the hardest to deal with as far as translation type alternatives are
concerned. ) :

Proor. Since Jy is non-decreasing when ¢;; = ¢1, then one can use the argu-
ments of Chapman (1958), Lehmann (1959), p. 187, and Bell, Moser and Thomp-
son (1966) about monotone tests to conclude that for ¢, , the infimum in (2.14)
may be computed over sequences {(F, Fy*)} with Fy*(z) = F(z — Ay) and
orr = ¥ = 1. (As far as minimax results are concerned, no generality is lost by
assuming ¥ = 1.) For such {(F, Fx*)}, Chernoff and Savage (1958) haveessen-
tially shown that

(2.15) infp [lim infy.. By, (F, Fx™)] = ®[ke + N1 — N)]ic]
and that the infimum is attained iff F = &. Since (&, &y*) ¢ I'(Ay, 1), then
(2.16) inf [lim SUPy-ew Bo(F, Gx)] < lim SUPN-w Bp(®, By™)

for any test ¢. However, it is well known (e.g. Chenoff and Savage (1958)) that
@1 is asymptotically efficient for the normal translation alternatives (&, ®y);
i.e. it has greater asymptotic power than any other test. Hence, if ¢ is any test,
then

(2.17)  1im SUPKow Bo(®, Bx™) = liMyow By, (B, Bx™) = Blka + N1 — M.

Using (2.15) and (2.16), Theorem 2.2 follows.

Asymptotic uniqueness of the minimax solution in Theorem 2.2 can readily be
proved under additional assumptions. Let I'i(4, v) be the class of alternatives
(F, F*) e T(A, v) with F*(z) = F(z — A) and such that

h(z) = (8/3A) log f(x — A)|s=o

exists and satisfies [ h*(x)f(x) dx < oo. Moreover, let 3,* denote the class of
tests ¢ry that have rejection regions of the form [Ty > ¢] or [Ty < ¢] with Ty
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satisfying the conditions of van Eeden (1963) when F = &, where Ty is a statistic
such that V — bTy is distribution-free with respect to I'i(4, v) for all b, i.e.
P[(V — bTy) < t|(F, F)] is independent of F for all F such that

(F, F*) eT1(4, 7).

Note that 3,* contains the class of all rank tests whose rejection region is of the
form [T'y > c]or [Ty < ¢] with Ty satisfying the conditions of van Eeden (1963)
when F' = &.

TaEOREM 2.3. (i) The normal scores test ¢y is asymptotically minimax over
T1(4, v) and 3,* in the sense of Theorem 2.2.

(ii) It s asymptotically uniquely minimaz for T1(4, v) and 5,* in that if oy, € 3"
is any other asymptotically minimaz tests, then there exist constants by and dy such
that NY[V — (bxTy + dy)] — O in probability under (F, Fy*) for all
(F, Fy*) e Ty(¢/N*, v), ¢ > 0.

Proor. Since (&,8*) ¢ I'1(4, v), then (i) follows from the proof of Theorem 2.2.
For (ii), note that if ¢r, is asymptotically minimax, then T'v must have asymp-
t/otic efficiency one with respect to V for normal translation alternatives. Using
the results of van Eeden (1963), this implies that

E(N[V — (bsTx + dx)T |®,®) — 0,

where by and dy are regression coefficients. However, since V. — (byTv + dv) is
distribution-free, then this implies that E(N[V — (bxTx + dy)l? | F, F) —0for
all F' such that (F, F*) e T'4(4, v). Using the theory of contiguity developed by
LeCam (1960), Hajek (1962), and Matthes and Truax (1965), the result
follows.

Next, the arguments proving Theorem 2.2 will be applied to find a minimax
solution for the problem of estimating differences in location. It is now assumed
that G(¢) = F(t — A), where A is to be estimated. A class of robust estimates has
been proposed for this problem by Hodges and Lehmann (1963). Using their
notation, let ks (2, y) = m™ Y, Jy(r:i/N) with Jy — J. It is assumed that when
A = 0, the distribution of &, (X, V) is symmetric about a fixed point n. Let
A*(Jy) = sup {Athsy(z,y — A) > p} and A*(Jy) = inf {Athy,(z,y — A) <},
then the Hodges-Lehmann estimate is A(Jy) = [A*(Jx) + A*¥*(Jy)]/2. Hodges
and Lehmann (1963), Theorem 5, have shown that A(Jy) is asymptotically
normal with asymptotic variance,

(2.18) VAW = o/N1 — VIf (dIIF()])/de} dF ()T,

where o,? = [3J°(t) dt — ([5J(¢) dt)™

Let A& be the normal scores estimate obtained from A(Jy) by letting hsy be the
normal scores statistic, and let  be the class of continuous distributions F that
have densities f and variances or < v and that satisfy the condition (b) of
Lemma 3 of Hodges and Lehmann (1961). Finally, let 8 be the class of translation
invariant estimates A such that N*(A — A) has mean zero and an asymptotic
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normal distribution with asymptotic variance V(A) for normal alternatives. The
arguments proving Theorem 2.2 yield

THEOREM 2.4. The normal scores estimate A is minimaz over § and 8§ in the sense
that it minimaizes the maximum asymptotic variance, i.e.

(2.19) supres V() = infieg [supres Ve(4)].

Note that V#(A) is not necessarily available for each F ¢ §. However, (2.19)
should be interpreted as meaning that for each A £ 8, there exists an Fo ¢ § such
that Veo(A) = supres Ve(A). The arguments proving uniqueness in Theorem 2.3
can not be used here since A is not distribution-free.

3. Non-parametric asymptotic efficiencies. An immediate extension of the notion
of Pitman efficiency to classes of distribution function’s is obtained by considering
the limit of the ratio Mi/M, of the smallest number of observations required
by two tests to have power greater than or equal to 8 for all alternatives in a class
of distributions.

More precisely, the asymptotic efficiencies are defined as follows: @(A) will be
considered first. Since the Wilcoxon test is asymptotically minimax for this class
of alternatives and the class of tests considered, the asymptotic efficiency of these
tests will be defined with respect to the Wilcoxon test. Fix 0 < o < 8 < 1 and let
on denote the Wilcoxon test. From Section 3, it is known that there exists a
sequence {Ay} such that inf {8,y (F, G):(F, @) € @(Ay)} tends to B as N — «.
For some other test ¥y, suppose there exists a sequence {ky} such that
inf {8y, (F, @); (F, @) £ @(Ax)} tends to 8 as N — « ; then define the asymptotic

" efficiency of ¢ over 2(A) by
- (3.1) e(y) = limy.o (N/ky)

. whenever this limit exists and is well defined. Moreover, define e(¢) < e to mean
that there exists a sequence {8y(A)} such that inf {8y, (F, G):(F, @) e Q(A)} =
Bx(A) for all A e [0, 1] and such that lim (N/ky') = e for each sequence {ky'}
such that lim Bi,,(A) = B. In other words, e(¥) < e means that ¢ is dominated
by a sequence with efficiency e.

It now follows from (2.12) and the arguments proving Lemma 2 of Hodges and
Lehmann (1961), that )
,,,,,  TurorEM 3.1. If ¥, € 3, then its asymplotic efficiency satisfies

(3.2) e(ys) < inf {|J'(u)/2-3%,"ue (0, 1)} < 1.

Moreover, e(y,) = 1iff J(u) is of the form bu + d, i.e., iff the test ¥,y is asymp-
totically equivalent to the Wilcoxon test. _
COROLLARY 3.1. If Y,y € 3 and J s not strictly increasing, then e(¢,) = 0.
Proor. If J is strictly decreasing, then it follows from the results of Lehmann
(1959), p. 187, that By, (F, G) < aforall (F,G) ¢ Q(A) and the result follows.

If J'(uo) = O for some u € (0, 1), the result follows from Theorem 3.1.
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ExampLE 3.1. For the normal scores test, J = ' and inf {J'(z);z ¢ (0,1)} =
(21 )*, thus the asymptotic efficiency e’ of the normal scores test satisfies
¢ < 11/6 = .52. Hence the normal scores test is at most about half as efficient
over Q(A) as the asymptotically minimax Wilcoxon test. The author conjectures
that ¢’ = I1/6.

Next consider non-parametric efficiencies for the translation type alternatives
T'(4, v) for which the normal scores test is minimax. Fix 0 < a« < 8 < 1 and let
ox" denote the normal scores test. It is known from Section 2 that there exists a
sequence Ay such that inf [lim infy.. By (F, Gy)] = 8, where the infimum is over
sequences {(F, Gy)} with (F, Gy) € I'(Ax™, v). For this same infimum and some
other test ¥ , suppose there exists a sequence {ky*} such that

inf (lim infyse By, +(F, Gv)] = B,
then define the asymptotic efficiency of ¥ over I'(4, v) to equal
(3.3) e* () = limyay (N/ky™)

whenever this limit exists and is well defined.

A result similar to Theorem 3.1 can now be deduced from the arguments of
Section 2 in that statistics in 3* can be shown to have efficiencies bounded by
unity. In particular, one has

ExampLE 3.2. The Wilcoxon test ¢y has the asymptotic efficiency ¢’ = 108/
125 = .86 over I'(4A, v). This follows from Theorem 1 of Hodges and Lehmann
(1956) and Theorem 3 of Chernoff and Savage (1958) in the same way that
Theorems 2.2 and 2.3 follow from Theorem 3 of Chernoff and Savage.

For the problem of estimation treated in Section 2, a non-parametric efficiency
can similarly be defined over the class &. Let V(A) = sup {V#(A):F &5} denote
the maximum asymptotic variance over F of the estimate A ¢ 8. Define the asymp-
totic efficiency of A over F to equal

(3.4) é(A) = V(4)/V(A).

It is clear from [11] that if A is the estimate corresponding to the rank test y,
then 8(A) = e*(¢). Thus if A, is the estimate obtained from the Wilcoxon
statistic, then &(4,) = 108/125 = .86.

4. Extensions to the one-sample location problem. In this section, the results
of the previous two sections will be extended to the one-sample problem. The
author hopes to give extensions to other problems in a later paper. The one-
sample problem is the same as that of Section 2 with one exception: F is known,
so that no X-sample is needed. The class of tests for this problem which cor-
responds to the class (2.2) considered for the two-sample problem is the class
3 of tests with critical regions of the form [ J[F(Y:)] > ¢] with J satisfying
(2.3) (see [1]). From the central limit theorem and the arguments of Section 2,
it follows that the “uniform scores” test with critical region [) F(Y.) > c] is
asymptotically minimax over 2(A) and 3 in the sense of Theorem 2.1. Moreover,
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since J does not depend on 7, it is uniquely asymptotically minimax in that any
other test that is asymptotically minimax coincides with it.

Similarly, the “normal scores” test with critical region [D_ & [F(Y:)] > c]
is minimax asymptotically in the sense of Theorem 2.2.

Suppose that G(z) = F(x — 6) where 0 is to be estimated. Let T,(Y) =
>~ J[F(Y:)] have a symmetric distribution about a point x when 6 = 0, and let
J be strictly increasing. Following Hodges and Lehmann (1963), one can now
define an estimate & of 8 to be the unique number satisfying T';(y — .8) = u,
wherey = (y1, -+ ,¥s) andy — 0 = (g1 — 0, - -+ , y» — 8). It now follows from
the arguments of Hodges and Lehmann (1963) and Section 2 that the normal
scores estimate based on the normal scores statistic )& [F(Y:)] is asymp-
totically minimax (in the sense of Theorem 2.4) over EF'(of Section 2).

Finally, the efficiency results of Section 3 carry over to this one-sample prob-
lem with the uniform scores statistic >, F(Y;) taking the place of the Wilcoxon
statistic and the one-sample normal scores statistic taking the place of the two-
sample normal scores statistic.
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