ESTIMATING THE MEAN OF A MULTIVARIATE NORMAL POPULATION
WITH GENERAL QUADRATIC LOSS FUNCTION'
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1. Introduction and summary. Let X be a p-variate random vector, p = 3,
having a normal distribution with mean vector § and covariance matrix o’I.
For estimating  with loss function

Li(8,6) = (6 — 6)'(6 — 8) = |6 — 8|,

and known ¢°, Stein [2] has shown the inadmissibility of the usual estimator X
by considering an alternative estimator with uniformly smaller risk than that of
X, the improvement being substantial for 6 close to the origin. The problem of
estimating 6 with the same loss function when ¢° is unknown has been treated
similarly by James and Stein [1], when an observation is available on another
random variable which is distributed as o*x,’ independently of X. James and
Stein have also demonstrated the inadmissibility of the usual estimator for 6
under the loss function

(1) Ly(6,6) = (6 — 6)'D(6 — 6)

for the case of known ¢*, where D is a diagonal matrix with unequal diagonal ele-
ments. This result has been proved even without the normality assumption,
but no explicit formulas for alternative estimators have been given which im-
prove on the usual estimator in some parts of the parameter space under nor-
mality.

In this note an estimator for  is obtained for the case when ¢” is unknown and
the loss function is L, . An upper bound for the risk function of this estimator
is given, which always remains below the risk function of the usual estimator
and is substantially smaller for 8 close to the origin. This estimator coincides
with the estimator given by James and Stein when the diagonal elements of D
become equal. An application of this estimator gives an improvement on the
least squares estimator of the parameter vector in a usual linear observational
model with normal errors.

2. An estimator for the multivariate normal mean when the loss function is
L, . The different steps in constructing the estimator given in this section can
be outlined as follows:

(i) The original problem with loss function L. is decomposed into a number
of problems of different dimensionalities with loss function L, .
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(ii) The estimator of James and Stein is used for each of these problems
followed by a suitable randomization. This yields a randomized estimator for the
original problem whose risk function is computed easily from the risk functions
of the corresponding estimators of James and Stein for the various problems
with loss function L.

(iii) By the convexity of the loss function, a non-randomized estimator is then
constructed which is everywhere better than this randomized estimator.

Let X and V have the joint density function

p(z,0) = (2r0")™""® exp [~ (26") (z — 0)(z — 0)]
. [(20_2) n/2r(n/2)]—-le—(v/2¢2)vn/2—-1’

z ¢ E, (the p-dimensional Euclidean space) and 0 < v < «. We want to es-
timate 6 from (X, V) with loss function L, . Let \; be the ith diagonal element
of the matrix D in (1) and suppose \; = A2 = -+ = A, > 0. The usual estimator

ﬁal(xs 1)) =2
has risk function
7.(0’ 0'2; (Pl) = 0'2 Zg;l i

for all 6.
Definea; =N — Nja=0,2=1,---,p— 1, and ap = A, > 0. Then
(2) >‘i=2§’=ia:’, t=1 .-,

DPaNi= D Pyda.
Define X(5 = (X1, -+, X4), 0y = (61, --+, 65), and
fi(z,v) =1, 1 =1,
1= 1[G =2)/(n+2)v/|lzel’, i=2-,p.

Using the result of James and Stein [1] for the estimation of 6¢; from (X5, V)
subject to the loss function

L8 , b)) = i |6 — bl

we see that when 6 and o are the true parameters, the risk of the estimator
f(X, V)X is

@iBo,ot [f (X, V)Xo — 0ol”
(3) = o, i =1

= aw’li — [u(i — 2)"/(n + )]-E(i — 2+ 2K)7), i=2,--+,p,

where K; is a Poisson variate with mean ||6(,||*/2¢.
Now for every given (z, v), let Gi(z, v), - -+, Go(x, v) be random variables
whose marginal distributions are given by
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(4) P[Gi(=, 1)) = fi(=, 1))] = ai/zli;iak ’ J=1 " ,D

Any joint distribution of Gi(z, v), ---, Gp(x, v) with marginal distributions
satisfying (4) will serve our purpose.
Consider the randomized estimator

Gl(x v) Ty
ea(,v) =
Gy (w v) “Tp

The risk function of this estimator is given by
(0, 0*; ) = Eo2B[D P MN{Gi(X, V)-X: — 04°| X, V]
= 2l Eo( - BI{GA(X, V) -X: — 04" | X, V]
= 2 Bor( i) 2o ti (i ki an)ifi(X, V)-Xi — 63
= D 2B Dt aif{fi(X, V)X — 047
2t ak Ifi(X, V)-Xo — 06
= o 2 i — [nd’/(n + 2)] 21 (1 — 2)’a E(5 — 2 + 2K,) 7,
using (2), (3) and (4).Since a; = 0,7 =1, --+, p,and a, > 0,
[ne®/(n + 2)] 20 (5 — 2)’asE(i — 2+ 2K) ™ > 0

and
r(6, 02, @) < o Zf=1 Ni = 7(9, o, o).

Consider now the non-randomized estimator

hl(x l)) T
es(z,v) = ,
hop (x v) Ty

where hi(z, v) = D= afi(x, v)/ 2 2=ia;. Then it follows from the convexity
of the loss function that for all 6 and ¢*

7‘(0 0‘7&‘78) 7'(0 0'>€02)

Hence ¢; is uniformly better than the usual estimator ¢, . The improvement
achieved at 6 = 0 is

(0, o*; 1) — 7(0, 0% 03) = 7(0, 0’5 @1) — 7(0, 0%; ¢2)
[ne®/(n + 2)] 2 0=s (1 — 2)as
= [7“72/(” + 2)] Zf=3 i

by (2).
3. An improvement on the least squares estimator for the parameter vector
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in a linear observational model with normal errors. Suppose Z is a known N X p
matrix where N > p = 3 and rank (Z) = p; Y is an N-dimensional random
vector ha.vmg a normal dlstnbutlon with mean Zn and covariance matrix o’

where o' = (g, -++, 7p) and ¢ > 0 are unknown, ie., Y has the density
function
(5) p(y) = (2rd’) ™ exp| — (2°) " (y — Zn)' (y — Zn)l.

We want to estimate 5 subject to the loss function
Ls(n, %) = (1 — #)'A(g — 4)

where A is a known p X p symmetric positive definite matrix.

Let Bbe an N X (N — p) matrix such that Z’B = 0 and B'B = I. If we
make the transformation U = (Z'Z)7'Z’'Y and W = B'Y, andlet V = w'w,
n = N — p, then U is distributed as p-variate normal distribution with mean
vector 4 and covariance matrix ¢*(Z'Z)™", and V is distributed independently
of U as ¢*x».

We can now find a p X p non-singular matrix C such that

(6) Z'7Z =CC and A= C'DC,

where D is a diagonal matrix whose ¢th diagonal element \;, 7 = 1, ---, p, are
such that Ay = A = ++- = N, > 0.

Now make the transformation CU = X and Cy = 6. Then X has a p-variate
normal distribution with mean vector 6 and covariance matrix o’I, and V is dis-
tributed independently of X as o”x.’, as in Section 2. Consider now the problem
of estimating 8 subject to loss function L. in which the matrix D is the same as

in (6), and define for every estimate 4 for 6, an estimate 4 = C'6 for . Then
Ly(6, é) = Ls(n, 7).

Thus the problem of estimating 7 from (U, V') subject to loss function L; is the
same as that of estimating 8 from (X, V) subject to loss function L, . In this
correspondence, the usual estimator ¢1(X, V) = X for 0 is equivalent to the
estimator

w(Y) = Ce(C(Z'2)72'Y, V) = (ZZ)7'Z'Y
for n which is the least squares estimator. If we now define
w(Y) = C'e(C(Z'2)72'Y, V),

then it follows from Section 2 and from the correspondence mentioned above,
that 5 is better than the least squares estimator ¢ .

We have been assuming that A is a positive definite matrix in order to ensure
that A, > 0. However if A is positive semi-definite with A, > 0 for some r = 3
and A1 = +++ = A, = 0, then o, > 0 and a,11 = -+ = @, = 0. In that case
we define hy(z, v), -+, h(z, v) in the same way as in Section 2 and fix
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hrya(z, ), -+, hp(z, v) arbitrarily. The resulting estimator ¢5 will behave in the
same way as mentioned above.
For simplicity let us assume A = I. Then the quantities A, --- , A, entering

into the estimator y; are the latent roots of the inverse of the matrix of normal
equations Z'Z. Suppose we believe in the loss function under consideration and
agree to use the estimator ¥s;. Suppose further that we have an approximate
knowledge of m/c, -+, p/c. Let us now look at the design aspect of the prob-
lem. Our optimality criterion now becomes the minimization of

PaN(Z) — (N —p)/(N — p+2)] 20 (5 — 2)°ai(Z2)-E(i — 2 + 2K:)™*

over all available N X p observational matrices Z where A((Z), - -+, A\py(Z) are
the latent roots of (Z'Z)™" and a:(Z) are related to A«(Z) by (2). If we use a
design which is optimal in this sense and if we estimate 4 by y; we shall do better
than using a design which minimizes tr (Z'Z)™" subject to the condition of es-
timability and estimating # by the least squares estimator.

When Z is a random matrix such that Z'Z is positive definite with probability
1 and the conditional distribution of Y given Z has the density function given in
(5), we consider the conditional risk given Z and then the argument for fixed Z
applies to the conditional risk functions for almost all Z. Thus by treating the
data as if Z were non-stochastic and computing the estimator y; , we do better
than the least squares estimator in terms of the conditional risk functions given
Z for almost all Z and therefore we do better also in terms of the unconditional
risk function.

4. Generalizations. (i) Let Z be a random vector whose probability distribution
belongs to the family {P, , w ¢ Q}. Let 0,(w), 2 = 1, - -+ , p, be real-valued func-
tions on @ and let 8¢;(w)" denote the row-vector (6i(w), - -+, 8:(w)), ¢ = 1,
.-+, p. Consider the problems of estimating 6,(w) subject to the loss function

L6 , 0n) = |0 — b lI",

i=1, ---, p. Suppose 0(y(Z)" = (6:%(Z), .-+, 6*(Z)) and §(Z) =
(0a4(Z), -+, 0:(Z)), ¢ = 1, -+, p, are such that for each ¢ = 1, ..., p,
05 (Z) is at least as good an extimate of 8, under the loss function L; as 6;)(Z)
is and that for some 7, 6,(Z) is strictly better than 67;(Z) for some w ¢ Q, i.e.

Eullbr(Z) — 0 (0)|* £ B 1005(Z) — 0 ()],

1 =1, ---, p, and for all w ¢ Q, and the inequality is strict for some 7 and for
some w £ Q. Consider now the problem of estimating 6(w) subject to the loss
function

L(6, 6) = (6 — §)'D(6 — 6),

where D = diag{\, «+-, A}, M = A = -++ = N, > 0. Following the argu-
ments in Section 2, it can be shown that ¢(Z) defined as

o(Z) = (0:1(2), -+~ $o(2))
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Where¢i(Z) = Zf=i ajéij(z)/Z;;i Aj, 01, """, Qp being related to Ay y "ty Ap
by (2) is a strictly better estimate of 6(w) under the loss function L than §*(Z) =
0?2» ( Z ) .

(ii) In Section 2, the random vector X is p-variate normal with mean vector
6 and covariance matrix ¢’I, and the loss function is

Ls(6,8) = (6 — 6)'D(6 — 8)

where D is a diagonal matrix. However, no additional difficulty is presented if in
the above formulation of the problem the covariance matrix of X is ¢’A instead
of ¢’I and the diagonal matrix D involving in the loss function is replaced by B
where A and B are arbitrary but known positive definite matrices. How this
slightly more general problem can be reduced to the simpler problem of Section
2, is illustrated in Section 3.
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