CONVERGENCE PROPERTIES OF CONVERGENCE WITH PROBABILITY
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Convergence in probability, convergence in the sense of Levy or Prohorov,
and other familiar types of stochastic convergence are topological in nature. For
countably additive probabilities, Thomasian (1957) gives necessary and sufficient
conditions that convergence with probability one be equivalent to convergence
in a metric or a norm defined on the space of random variables. In this paper we
discuss when convergence with probability one is a topological convergence for
finitely or countably additive probabilities. For finitely additive probabilities
we employ the decomposition theorem of Yosida and Hewitt (1952).

Let (X, @, v) be a finitely additive probability space: v is finitely but not
necessarily countably additive and @ is a sigma-field (see Birkhoff, 1948, p. 185).
Let 9 be a nontrivial normed linear space with norm || - ||. Let 91T be a vector space,
with the same scalars as <Y, of functions defined on & with values in Y which
contain indicator functions of sets: there is y ¥ 0 in Y so that the function
I,=0sryasxzeA’orz e A belongs to 9.

DEerInITIONS. A topology 3 for 91 is equivalent to convergence with probability
one if for each net {f; : d ¢ D} in 9N, limg fa = f € I relative to J if and only if
there is M ¢ @ with v(M) = 0 and limg ||fa(z) —f(z)|| = 0 for z e M° (we
denote the latter by y(limgfs = f) = 1). A topology 3 for 9 is equivalent to
sequential convergence with probability one if we replace “net” by ‘‘sequence”
in the foregoing definition.

We rephrase in probabilistic terminology and slightly specialize in (2), below,
two necessary conditions [Kelley (1955) p. 69 and 74] for a 3 to be equivalent to
convergence with probability one:

(1) If it is false that y(limafs = f) = 1 then there is a subnet {g. : ¢ ¢ E} of
{f4} whose domain is a cofinal subset of D and which has no subnet which con-
verges with probability one to f.

(2) Let @ be a directed set and for each C ¢ € let N¢ = N, the nonnegative
integers. If y(lim¢ fe = f) = 1 and if y(lim, gen = fe) = 1, C & C, then there
is a directed set D and a function R: D — @ X N so that v(limgg o R = f) =
1(9(C,n) = gea)-

Here are some propositions which help characterize when v, finitely or count-
ably additive, may fail to satisfy (1) and/or (2). Recall the following definitions:
(i) v is purely finitely additive if the only countably additive nonnegative meas-
ure ¢ on satisfying ¢(4) = y(4), A € @ is ¢ = 0 [Yosida and Hewitt, (1952)];
(ii) A € @ is a positive y-atom if y(4) > 0 and for each B C 4, B ¢ @ either
v(B) = 0ory(B) = v(4).
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Lemma 1. If v s purely finitely additive and A is a positive y-atom then there
18 a sequence {f, :n € @ = N} and sequences {gn,m : m € N}, n & N so that condition
(2) fails.

Proor. Since the restriction of v to A remains purely finitely additive there is
a decreasing sequence {4,} C @withnA4, =& andy(4,) = v(4). The asser-
tion follows upon defining f, = I4,c,f = y and gn,m = Lac, (n,m)e N X N.

Condition (2) is clearly fulfilled when € = N and v is countably additive—
but not when € has cardinal c. For example, let v = A be the Lebesgue measure
on the Borel sets of [0, 1] and let @ = {C: A\(C°) = 0}. Let Yy = Randy = 1.
Now e is directed if C; = C; means C; C (' and clearly A(lim¢ I¢e = 1) = 1.
But condition (2) fails if we define g¢,, = 0, (C, n) ¢ @ X N. We mention the
following:

Prorosition. Assume that v(4) > 0 and each finite subset of A belongs to G
and has probability zero. Then there is a net tn M so that condition (2) s not ful-
filled.

Because of the above fact we consider the case when € = N, the nonnegative
integers.

LemMmA 2. Assume that in condition (2) @ = N. A necessary and sufficient
condition that (2) always be satisfied is that for each countable class {M; :i e N} C @
satisfying v(M:) = 0,74 & N, it is true that v( Ui=y M;) = 0.

Proor. Sufficiency follows from the fact that if y(lim, f, = f) = land
y(limy, gn,m = fn) = 1 then f, — f and gm,» — fa in the topology of pointwise
convergence on the complement of a fixed null set. This permits us to apply
Theorem 4 [Kelley (1955) p. 69] and obtain the result. To verify necessity let
v(M;) = 0 and y(U7= M) > 0. The conclusion follows upon defining B, =
U?:lMi y B = U?=1M,- ,fn = IB” ,f = IB y and In,.m = 0.

Of course countable additivity on null sets does not imply countable additivity
on Q. For example, let & be the integers and let v = 3(P 4+ ¢) where P is a
countably additive probability assigning positive probability to each integer
and ¢ is a purely finitely additive probability. The argument given by Thoma-
sian (1957) in Theorem 1 easily carries over to the next lemma (it is here we
require @ to be a sigma-field).

Lemma 3. If (X, @, v) is a probability space so that {y(A): A € @} is dense in
[0, 1] then condition (1) fails for sequences.

According to a theorem of Yosida and Hewitt (1952) each finitely additive
probability v may be uniquely decomposed into v = v:1 -+ v2 where v; is a non-
negative countably additive measure and v; is a nonnegative purely additive
measure. The following is a partial converse to Lemma 13.

LemMA 4. Let X = U7 A; where each A is a positive y-atom. Furthermore, for
v = 71+ 72 assumeva(A;) = 0 and if y(AJ) = v(4;) thenya(x ~ U1 A)) =
0. If |If(- )| is measurable then condition (1) s satisfied for sequences.

Proor. Let y(lim,f, = f) < 1. The assumptions on +; ensure that
y(lim, fo = f) < 71(X). Let P(4) = vi(4)/v1(%). Since convergence in
probability is equivalent to convergence with probability one for countably
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additive probabilities on atomic sigma-fields [Thomasian (1957)] and since con-
vergence in probability is pseudo-metric convergence there is a subsequence
{fa;} of {fa} no subsequence of which converges in probability (P) to f. The above
mentioned equivalence of the two types of convergence plus the assumptions on
72 imply that no subsequence of {f,;} converges with probability one (v) to f.

THEOREM. Let (X, @,v) and IN be given with v = v1 + vz , v1 countably additive
and v, purely finitely additive, and let ||f(-)| be measurable, f € M. The following
assertions are equivalent:

(A) There is a topology 3 for I equivalent to sequential convergence with proba-
bility one.

(B) There is a pseudo-metric topology 3 for M equivalent to sequential convergence
with probability one.

(C) ¥(fa—f) = Lif and only if y1(f» — f) = v1(X) #f and only if for each ¢ > 0,
Ti(|lfa — fll > €) < ewhenn = n(e).

(D) x = Uili4;,1 £ k £ «, each A, is a positive yi-atom and y(M;) = 0,
ie N, impliesy(Ui=1 M) = 0.

Proor. Clearly (B) implies (A) and by the pseudo-metric convergence of
convergence in probability under vy; (C) implies (B). That (D) implies (C)
follows from the hypotheses (and argument) of Lemma 4 and Lemma 2. To
verify that (A) implies (D) we first remark that Lemma 3, after a brief argu-
ment, implies that & = U%_; A, , with each A, a positive y-atom. On account of
Lemma 1 and Theorem 1.19 [Yosida and Hewitt (1952)] v2(4;) = 0, that is
v1(A;) > 0. Clearly (A) implies countable additivity on null sets because of
Lemma, 2. This completes the proof.

Acknowledgment. The author thanks the referee for pointing out the paper of
Thomasian (1957).
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