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1. Introduction and summary. To every matrix A of real valued payoffs
there corresponds a unique quantity V(A), the value of a game with payoff
matrix A, defined by

V(A) = min, max, z’Ay = max, min, 2’4y,

where the maximum and minimum are taken over all  and y having nonnegative
components summing to one. We wish to show that, for a relatively wide class of
probability distributions on the class of all m X n game matrices, the probability
P(m, n) that the value of a random game is greater than zero is given by the
cumulative binomial distribution

P(m,n) = (3)™™" i ("),
The observation that, for any ¢ > 0,
limy.w P(m, (1 4 €)m) = 0,
P(m,m) = &, for all m,
limm,o P(m, (1 — e)m) = 1,

suggests that large rectangular games tend to be strongly biased in favor of the
player having the greater number of alternatives. Thus we characterize the
extent to which the “nonsquareness’ of a game is reflected in a bias for one of
the players. Our method involves an application of a theorem in combinatorial
geometry due to Schliafli [5]. A discussion of the consequences of Schléfli’s
theorem in geometrical probability is given in [2], [3], [9].

2. Random work on random games. Goldman [4] has shown that ‘“large
matrices rarely have saddlepoints.” More precisely, he shows that an m X n
matrix of independent identically distributed random variables with a common
continuous distribution function has a saddlepoint (an element simultaneously
the minimum of its row and the maximum of its column) with probability
min!/(m 4+ n — 1).. A ready generalization of this result is made via the
Shapley-Snow theorem [6] which states that corresponding to a basic optimal
strategy for either player in any matrix game there is a square submatrix (the
kernel) whose associated game has the same value as the given game and which
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has basic optimal strategies that are optimal in the original game when aug-
mented by zeros in the restored coordinates. Thrall and Falk [7] establish a
geometric argument for the kernel as a generalized saddlepoint and investigate
the probabilities of £ X k kernels for games whose elements are i.i.d. uniformly
on [0, 1], without, however, making a systematic evaluation of the resulting
integrals.

The aforementioned results are probabilistic statements about the structure
of random games. In special cases, statements about the values of random games
can be developed. Thomas ([7], p. 88) and Thrall and Falk ([8], p. 366), for
example, have observed that the value of a game of i.i.d. elements, conditioned
on its having a saddlepoint, has the distribution of the nth largest of m + n— 1
ii.d. random variables drawn according to the common distribution governing
the elements of A. Thrall and Falk obtain partial results on determining the
distribution of the value of random games the elements of which are i.i.d. random
variables drawn according to the uniform distribution on [0, 1]. Thomas goes on
to determine the distribution of the value of the game under these conditions
for 2 X 2 games and, asymptotically as n — o, for 2 X n games. Thomas is also
concerned with the values of n-stage random games. This aspect of his work is
somewhat related to the work of Chernoff and Teicher [1] in which they determine
the class of limiting distributions for the normalized minimax (or maximin) of
independent identically distributed random variables. We find that even in the
simplest cases, determining the distribution of the value of a random game is
largely an unsolved problem.

3. Propositions. We shall determine P(m, n) by first establishing a com-
binatorial proposition counting the number of game matrices with positive
values derivable from A by negations of subsets of rows and columns. Let a
(and B) range over m X m (and n X n) diagonal matrices with diagonal ele-
ments =4=1. Thus the set of all matrices derivable from A by negations of subsets
of rows and columns is the set of 2" w48’ (of which at most 2"" are dis-
tinct).

Prorosition 1. Let A be an m X n matrix every square submatriz of which is
nonsingular. The number of games aAB for which V(adB) > 052> me (™77,
Since, by the Snow-Shapley theorem, V(aAB) = 0, the remaining 2 Y _mom > (™77
games have V(aAB) < 0.

Proor. We utilize a combinatorial geometric statement due to Schlifli [5].
Let 21, 22, -+, 2z € E™ be in general position (i.e., every m-element subset of
21, 22, * -, 2 is linearly independent). Then Schlifli has proved that the set of

inequalities s,w’2; > 0,¢ = 1, 2, ---, k, is consistent for precisely
C(k,m) =237 (55

of the 2" sequences {8, = =1, 8 = =1, ---, & = ==1}. Alternatively, pre-
cisely C(k, m) polyhedral cones of the form n',;l {w: 8;w’2; > 0} are nonempty.
By the definition of the value of the game, it is clear that V(adB) > 0 iff
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there exists z > 0 such that z'aAB > 0, where all vector inequalities are meant
to hold component-wise. Let ¢, ¢z, -+ ¢, e E™ be the columns of A, and let
e1,6, - ,exbe the positive unit basis vectors of E™. Consider polyhedral convex
cones of the form

W(a, B) = Mi=1 {w: Baw'c; > 0} (Y71 {w: ajw'e; > 0.

Now W(ea, 8) is nonempty if and only if V(adB) > 0. For, if x = aw, with
we W(a, B), then > 0 and z‘adf = w'AB > 0, which implies that
V(aAB) > 0. On the other hand V(adB) > 0 implies there exists z, > 0 such
that z'adB > 0; hence axo e W(a, 8) and W(a, 8) ¥ . Thus the number of
nonempty W(a, 8)’sis equal to the number of games a4 having positive values,
and the set of strategies achieving positive values in the game aAp is the cone
aW(a, B).

Every m-element subset {ci, , ¢i,, -+ , i, , €4, , €i,} Of the set {c1, 2, <+,
Cn, €1, -+, €n} is linearly independent, as can be seen by expanding the de-
terminant of the subset by minors with respect to the columns e;,,, -, €,
and observing that the determinant of the resulting & X k submatrix of 4 is
nonzero by assumption. Hence, the set {ci, ¢z, -, ¢., €1, €2, -+, en} isin
general position in E™, and by Schlifli’s theorem precisely C(m + n, m) of the
cones W(a, 8) are nonempty. This completes the proof.

ProrosiTION 2. Let A be an m X n matriz such that every square submatriz s
nonsingular. Then the number of games aAB for which V((eAB)‘'adB) > 0 is
2"y ("), and, since V(A'A) = 0, the rest have V = 0.

Proor. The nonnegativity of V is established by matching strategy = to y:

V((adB)‘'aAB) = max, min, z°8°A‘ABy = min, (48y)‘48y = 0

Equality holds if and only if there exists a probability vector y > 0 such that
ABy = 0. By the duality theorem of linear programming such a y exists if and
only if there exists no z in E™ such that z’A8 > 0. By Schlifli’s theorem, this
system of n simultaneous inequalities in m unknowns is consistent for precisely
C(m, m) choices of 3. Since this is true for each of the 2™ choices of «, the proof is
complete.

4. Implications for random games. It is easy to generate probabilistic state-
ments of Propositions 1 and 2. Let 4 be a random matrix such that every square
submatrix is nonsingular with probability one. Then the relative frequencies
implicit in the propositions become probabilities for any distribution on {A}
for which the conditional distributions of A, given the orbits {@4g | all (e, 8)},
are uniform. (The orbits { A8 | all 8} suffice in the case of Proposition 2.) Under
these conditions on the distribution of A we have the following statements:

ProrposiTioN 3. Pr (V(4) > 0) = P(m, n),
Pr (V(A) =0) =0,
Pr (V(A) < 0) = P(n,m).
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ProrosrTion 4. Pr (V(4°4) > 0)
Pr (V(A'4) = 0)
ProrposiTioN 5. Pr (V(A44*) > 0)
Pr (V(44") = 0)

The above sufficient conditions on the distribution of A are satisfied, for
example, in the special case where the elements of A are independent, sym-
metric, real valued random variables with continuous distribution functions. In
particular, let the elements of the m X n matrix 4 be i.i.d. uniformly on [0, 1],
as in the considerations of Thomas, Thrall, and Falk. Then Proposition 3, re-
ferred to the matrix A centered at its mean, yields Pr (V(4) > %) = P(m,n);
Pr(V(A) =3%) =0;Pr(V(4) < %) =1— P(m,n) = P(n,m).

6. Acknowledgment. I wish to thank the referee for restating in combina-
torial rather than probabilistic form the propositions contained in the first draft
of this paper. His comments led to simplified conditions and stronger conclusions.

P(m,n — m),

P(n — m, m).

P(n,m — n),

I

Il

P(m — n,n).
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