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DISTRIBUTION HAVING A PRESCRIBED
PROPORTIONAL CLOSENESS
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0. Introduction and summary. It is a common practice, in engineering and
applied sciences, to ask for an estimator of a parameter of a statistical distribu-
tion which, with high probability, does not deviate from the value of the param-
eter by more than a certain percentage of its absolute value. In other words,
if 9 is a parameter under consideration, and § is an estimator of 4 it is required
that, forgiven0 < § < 1,and 0 < v < 1,

(0.1) Pollo — 0] < 6l6]] = v, for all 6.

This probability is called the proportional closeness of § (see Ehrenfeld and
Littauer [5] p. 339).

In the present paper we study the problem of estimating the mean of a log-
normal distribution, by a procedure which guarantees a prescribed propor-
tional closeness. When the variance, o°, of the corresponding normal distribution
is known, there is an efficient fixed sample estimation procedure having the re-
quired closeness property. The sample size required in this case is,

(0.2) no = smallest integer = x,’[1]o" log™ (1 + &),

where x,’[1] denotes the yth fractile of the x’-distribution, with 1 degree of
freedom. As indicated in the sequel, there is no such fixed sample procedure,
when ¢® is unknown. The prescribed closeness property can be, however, guar-
anteed if the estimation is based on at least two stages of sampling. The prop-
erties of two sequential estimation procedures, which asymptotically (as 6 — 0)
guarantee the prescribed proportional closeness, are presented in the present
paper. One procedure is based on the maximum likelihood estimator of the mean,
and is called the sequential M.L. procedure. The other procedure is based on the
sample mean, and is called the sequential S.M. procedure.

Let v, denote the maximum likelihood estimator of ¢*. The stopping rule for
the sequential M.L. procedure defines the sample size, K, to be the first integer
k = 2, for which the following inequality is satisfied:

(0.3) v £ (1 4+ (2/c)k log® (1 + 8))F — 1, 0<s<1

where {ci} is a sequence of bounded, positive constants, approaching x,[1]
as k — . The sample size, N, in the sequential S.M. procedure, is the first
integer n = 2 such,

(0.4) v < log (1 4 (6/cu)n), 0<dé<1
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It is proven that both stopping rules, (0.3) and (0.4), yield well-defined stopping
variables, which are decreasing functions of 8, and have finite expectations for
every 0 < § < 1. The asymptotic orders of magnitude (a.s.) of K and of N are
given, as well as the asymptotic order of magnitudes of their expectations (as
6 — 0). It is shown that the efficiency of the sequential S.M. procedure, relative
to that of the sequential M.L. procedure, decreases to zero as ¢ — «. That is,

(0.5) lims.0,020 E{K}/E{N} = 0.

Moreover, lim;.o E{K}/E{N} < 1 for all 0 < ¢° < . This result establishes
the uniform asymptotic superiority (with respect to all 0 < ¢ < ) of the
sequential M.L. procedure over the sequential S.M. procedure. The sequential
M.L. procedure studied in the present paper is not, however, asymptotically
efficient in the Chow-Robbins sense. Chow and Robbins defined in [3] a sequential
procedure to be asymptotically efficient, if

E {sample size in sequential procedure}
minimum sample size required for ¢® known

(06 ) ].im,;»()

It is proven that, for the sequential M.L. procedure
(0.7) limso E{K}/no = 1 + 157, 0 <o < .

This limit is always greater than 1, and approaches infinity as ¢® — . A se-
quential procedure for the log-normal case, which satisfies asymptotically the
prescribed closeness condition, and is asymptotically efficient in the Chow-
Robbins sense is still unavailable. The reason for this shortcoming is that we have
actually to determine a fixed-width confidence interval for (u + %0°), where
(i, ¢°) are the mean and variance of the normally distributed ¥ = log X. Chow
and Robbins [3], Gleser, Robbins and Starr [6], and Starr [7] show that a se-
quential estimation of the mean, based on the sample mean and the sample
variance, provides an asymptotically efficient fized width confidence procedure.
This result is in contrast to the main result of the present paper, which shows
that a prescribed proportional closeness sequential estimator of the meanof a log-
normal distribution based on the sample mean is inefficient, and that there exists a
more efficient sequential procedure, which is the one based on the M.L. estimator.

1. Preliminaries. Let X;, X;, --- be a sequence of independent random
variables, identically distributed like exp {N(u, o°)}; i.e., log X ~ N(u, ¢°);
—w < u < 0,0 <o < ».Asis well known (see Aitchison and Brown [1])
the expected value of X is

(1.1) £ = exp {u+ 37

and its variance is

(1.2) Var {X} = £[exp {¢*} — 1].

If Xy, -, X, is a fixed size sample from the given sequence, then

V.= >mY/nand Q, = > i (Vi — V)%
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where Y; = log X; (¢ = 1, ---, n), are complete sufficient statistics (both u
and ¢” are unknown). The maximum likelihood (M.L.) estimator of ¢ = E{X}
is

(1.3) £, = exp (V. + (20)7'Q.).
It is easy to show that the Fisher information matrix is
£ — 3
="
(14) I, o) = [_ 1 _;;(1 +%)J.

It follows that the M.L. estimator £, is distributed, asymptotically as n — o,
like N(§ (o*/n)E(1 + 3o°)).

The following lemma of Chow and Robbins [3] and a theorem of Anscombe
[2], are required for the proofs in the sequel.

Lemma 1.1 (Chow and Robbins). Let W, (n = 1, 2, ---) be any sequence of
random variables such that W, > 0 a.s., lim,. W, = la.s. Letf(n) (n = 1,2, --+)
be any sequence of constants such that

(L5) f(n) >0, liMpof(n) = ©, liMuof(n)/f(n —1) =1,
and define, for each 0 < t < o,
(1.6) N(t) = smallest n = 1 such that W, =< f(n)/t

Then N (t) is a well-defined and non-decreasing function of t,

(1.7) lim,, N(t) = « a.s., limg,eo EN(t) = oo,
and
(1.8) limysw f(N(£))/t = 1, as..

In order to state the theorem of Anscombe, the following notions are intro-
duced. Let {Z,}(n = 1, 2, - - -) be any sequence of random variables, satisfying:

(1.9) limpe P[Z, — 6 < 2] = F(x)

at all continuity points z of a distribution function F; where v, (n = 1,2, --+)
are positive constants, — o < 6§ < «. Furthermore, let {Z,}(n = 1,2, ---) be
uniformly continuous in probability (see Anscombe [2] for definition). Let a(¢)
be a decreasing positive function of ¢. Let #, be a consistent estimate of 7, , and
define

(1.10) N(t) = smallest integer n, such that %, =< a(¢)
and
(1.11) n(t) = smallest integer =, such that =, =< a(¢).

Moreover, assume that {r, : n = 1, 2, ---} is a decreasing sequence | 0, and
limyosw 7a/Ta41 = 1. Assume that N(¢) is well-defined, and
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(1.12) lims.o N(t)/n(t) = 1, in probability.

As proven by Anscombe in [2],
TrEOREM 1.2. Under the Conditions (1.9) and (1.12), if Z, are uniformly con-
tinuous tn probability, then

(1.13) limg,e PlZywy — 0 < za(t)] = F(x)
at all continuity points x of F.

2. The fixed sample size solution for the case of known o°, and the problem
when ¢” is unknown. The M.L. estimator of the mean of a log-normal distri-
bution, when ¢° is known, is

(2.1) £.(6") = exp {V, + 14}, 0<d < .

For every fixed sample size, n, the proportional closeness of £,(¢”) is, for all
0<tit< oandall0 <o < o,

(22) Pllé.(o") — & < o8] = P[IN(0,1)| < nle log (1 +8)], 0 <8< 1L
Thus, when ¢ is known, if the sample size is greater than
(2.3) no = smallest integer n = x,’[1]6” log™> (1 + &),

the estimator £,(¢°) has the prescribed closeness.

We give now a heuristic argument to indicate that there is no fixed sample
solution to the prescribed proportional closeness problem, when ¢ is unknown.
Suppose k, is a fixed sample estimator of ¢ such that for every n = n/,

(2.4) Pllh, — & < 8] = =, forall0 < £ < ©,0 <o < w,
Hence,

(2.5)  Pllog (1 — 8) < log hs — (s + %6%) < log (1 + 8)] = 7,
forall —o <u <

and all 0 < o® < . Suppose now that after the sample was drawn, the value of
o’ is told to us. Then, ¥, = log k, + ¢ furnishes a fixed-width confidence
interval (¥, + log (1 — §), ¥, + log (1 4+ §)) for u. But this contradicts
Dantzig’s result [4], according to which there is no fixed sample procedure which
yields a fixed width confidence interval for u. Although the assumption that ¢*
is known after we draw the sample is unrealistic, assuming this fact only improves
our chances of finding a fixed sample size procedure which estimates ¢ with a
prescribed proportional closeness.

3. The sequential M.L. estimation procedure. As mentioned in the introduc-
tion, the sequential M.L. procedure has the following stopping rule: Given
Xy, -+, X (k = 2), determine the M.L. estimate of ¢°, namely v, = Q./k.
Continue sampling until the number of observations reaches the value,

(3.1) K = smallest integer & = max {2, ao(1 + Lue) log™ (1 + 8)},
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{cx} is a sequence of bounded positive constants, ¢, — x'[1]. After K observa-
tions have been taken, estimate ¢ by fx = exp {¥x + Lox}.

LemMma 3.1. The sample size K 1is a well-defined, decreasing function of 8, having
the properties:

(3.2) E{K} < o forall0<86<1,0<£< ©,0<d < o.
(3.3) lims.n K = o a.s., lims,o E{K} = «,
and
(3.4) limso K log® (1 4+ 8)/x,[1le*(1 + 6%/2) = 1 a.s.

Proor. Let,
(3.5) Wi = v(1 + 30 /o*(1 + 6°/2), k=23, -
(3.6) f(k) = k/c, k=23, -
and
(3.7) t = o’ (1 + o°/2)/log’ (1 + 8).

Thent— w asd—0; Wy — 1 as.ask — «;f(k) = o and f(k)/f(k — 1) > 1
as k — o, Furthermore, according to (3.5)—(3.7) the sample size K can be
defined by (1.6), with the restriction that K = 2. Hence, from Lemma 1.1,
K is well-defined, decreasing function of §, satisfying (3.3) and (3.4). To
prove (3.2), define

(3.8) D, = cn(1l + 20p) — k log® (1 +8), k=23, ---
Let d = log” (1 + 6), and let

(3.9) D.* = ce™ — dk, k=23, ---
The expected value of K, for every 0 < § < 1, is

(3.10) E{(K} = 204 PK >k =14+ 2% PK > k]

For every k = 2,
(8.11) P[K > k] = Plminsg,<x D; > 0]

< Plming <<k D;* > 0] = Plminzg;<i {Q; — j log (jd/c;)} > 0]
where Q; ~ o®Y_iZ1 U,’(2 £ j < k), and where {U, :» = 1,2, - - -} is a sequence
of independent random variables, identically distributed like N (0, 1). Moreover,
(3.12) Plmineg;<i {Q; — jlog (j d/c;)} > 0] = PQi > klog (kd/ci)].

Let &* be such that, for every k = k¥, log (d/c)k — o > 0. Such k* exists, since
{ct} is bounded. Then, for every k = k*, we obtain from Tchebytchev’s inequality,

P[Qy, > k log (kd/cx)]
< PQ — (b — 1)d*| > k(log (kd/ci) — o°) + o]
(3.13) < 2%k — 1)/
[K*(log (kd/cx) — o°)* + 2ke*(log (kd/ci) — o) + o]
= 0(1/klog’ k), as k— .
Finally, from (3.10), (3.11), (3.12) and (3.13), we obtain (3.2).
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In the following theorem we prove that the sequential M.L. estimation pro-
cedure has asymptotically the prescribed proportional closeness.

TaEOREM 3.2. The M.L. estimator £x , where K is determined sequentially by
(3.1), satisfies asymptotically the prescribed closeness requirement, i.e.,

(3.14) lims.o Plléx — & < 88 = +, forall0 < £ < ©,0 <o < .
Proor. The proof of the thleorem is based on Anscombe’s Theorem 1.3. Let

Zy = Yy + 3 and 7 = k(1 + %02)%. Since Z; is the M.L. estimator of

(v + %6°), (1.9) is satisfied in the special form:

(3.15) limgow P[¥% + 20k — (u + %6%) < 2k7%(1 + 2D} = &(z),

where ®(z) denotes the standard normal integral. Since, for a given k, Z,

is the M.L. estimator of u + %¢°, the sequence {Z:} (k = 2, 3, ---) consists of

uniformly continuous in probability random variables (see Anscombe [2]). #

is a consistent estimator of 74 . Let ¢ = log™ (1 + 8), and a’(¢) = (¢x, (1))

According to (3.1), K is the smallest integer k& = 2 for which 7, < a(¢). Moreover,

k(t) is the smallest integer k = x,’[1le*(1 + ¢°/2)/log® (1 + 8). According to

(3.4), lim;, K/k(t) = 1 a.s.. Thus, according to Theorem 1.2, since log (1 + &)

= a(t) x~[1],

(3.16) limaus P[7x + Jox — (u + 30%) = log (1+8)] = ®(x[1]) = 3(1 + ).

Similarly,

(3.17) limso P[Yx + 30k — (o + 36°) = — log (1 + 4)]

Hence,

(1 — ).

limg,o P[|éx — & < 8¢
(8.18) 2 lims,o P[| Y + $vx — (1 + 30°)| S log (1 4+ 6)] = v
forall0 < § < ©,0 <o’ <

We prove now that,
TraeoREM 3.3. In the sequential M.L. procedure, the sample size, K, satisfies:

(3.19) lims.o B{K} log’ (1 + 8)/x,[1]c*(1 + o) = 1.
Proor. Let

(3.20) k* = smallest integer = x,’[1]c*(1 + %o°)/log® (1 + 9).

Consider the function log® (1 + 8)E{K}. For all0 < 6§ < 1,

(3.21) log® (1 + 8)E(K} = log® (1 + 8) > i PIK > k]

+ log® (1 + 8) Do P[K > k.
As proven in Lemma 3.1, Y e P[K > k] < «. Hence,

(3.22) lim;oo log® (1 4 8) Dreto P[K > k] = 0.

According to Lemma 3.1, lim;,o K/A° = 1 a.s.. Hence, since K is a decreasing
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function of 8, lims.o P[K = k°] = 1. Therefore, for any ¢ > 0, there exists 6°(¢)
such that, for all 0 < & < 8°(e)
(3.23) PK>k)=1—¢ forall 1 <k < K.
Thus, for all 0 < & < 8°(e),
(1 — &)[x,[1o*(1 + 30") — log® (1 + )]
(3.24) < log® (1 + 8) 2+ PIK > K
< x%'[We*(1 + 36°) — log* (1 + 5)

It follows that,
(3.25) % [1le*(1 + 36®)(1 — €) < lims.oinf log? (1 4 8) iy’ PIK > k]

< lims.o sup log® (1 + 8) > iy* P[K > k] £ x,/[1c*(1 + 4%/2).
Letting ¢ — 0 we arrive at,
(3.26) limso log? (1 + 8) 2 f3' PIK > k] = x,7[1(1 + %°).

From (3.21), (3.22) and (3.26) we obtain (3.19).

The result established in the present theorem proves that the sequential
M.L. procedure is inefficient in the Chow-Robbins sense, for large values of
o”. Indeed, the comparison of (3.19) with (2.3) yields

(3.27) lims.o B{K}/m = 1 + id°, 0<d < .

There is not available, as yet, a more efficient procedure. As demonstrated in
the next section, the sequential estimation procedure based on the sample mean
is asymptotically inferior to that based on the M.L. estimator, forall0 < ¢* < .

4. The sequential S.M. procedure. Let X;, X, ---, be a sequence of inde-
pendent random variables, identically distributed like exp {N(u, a)}. Let X,

be the sample mean of the first n random variables; i.e., X, = Zi;l X.i/n.
According to the central limit theorem,

(4.1) L(rH(X, — £) > N0, £(e" — 1)), as n— .

Consider the following sequential estimation procedure: Given X;, .-, X,,

compute v, = 2 1 (Vi — ¥,)*/n, where ¥, = log X; (i = 1, - -+ ,n). Take N
observations (at least 2), where

(4.2) N = smallest integer n = max {2, ¢,6 (e™ — 1)}.

As before, {c,} is an appropriate sequence of bounded positive constants. Define,
(4.3) W, = (& — 1)/( — 1)

(4 4) f(n) = n/ca

and

(4.5) "= (" —1)/8

o~
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Then, according to Lemma 1.1, N is a well-defined, decreasing function of §,
satisfying: lims;.o N = « a.s., and lim;,o E{N} = « a.s.. Moreover,

(4.6) limpw N6%/ %, [1](e” — 1) = 1 as..
We show now that the sequential S.M. procedure has asymptotically the pre-
seribed proportional closeness property. For this purpose, let Z, = X,/

ml = n (" — 1), and %’ = c./nx, [1](¢™ — 1). Furthermore, let a’(¢) =
(x,[1]t)7", where ¢t = 6. Then, N = the smallest integer n = 2, such that
%, =< a(t), and n(t) = smallest integer n: 7, < a(¢). According to (4.6),
lim,.» N/n(f) = 1 a.s.. Finally, the sequence {Z,} is uniformly continuous in
probability, since Z, is the mean of independent identically distributed random
variables. Thus, according to Theorem 1.2,

(4.7) lims.o P[Xy — £ < 6¢]
= limpw PlZ, — 1 < wyasna(t)] = ®(uzary) = 3(1 + 7).

Similarly,

(4.8) lims.o P[Xy — £ < —8] = ®(—wsasm) = 5(1 — 7).

Hence,

(4.9) limso P[| Xy — & < 8] = v, forall0 < ¢ < »,0 < o” < o.

This proves the asymptotic consistency.
A slight modification of the proof of Lemma 3.1 will yield that, E{N} < «
for all 0 < & < 1. Moreover, one can prove, like in Theorem 3.3, that,

(4.10) lims.o B{N}6*/ x,2[1](¢” — 1) = 1, 0<o’ < .
The asymptotic efficiency of the sequential S.M. procedure, relative to that
of the sequential M.L. procedure, is given by the limit
(4.11) lims.o B{K} log® (1 + 8)/E{N}&* = o*(1 + %*)/(¢” — 1)
= (14 2" /[*(1 + %") + 2+ -] <1, forall0 <o® < w.
Hence, aso” — o, the relative efficiency (4.11) tends to 0. The relative efficiency
(4.11) tends to 1 if o® — 0. The sequential estimation procedure based on the

sample mean is asymptotically inferior to that based on the M.L. estimator,
forall0 < ¢® < .
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