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0. Summary. In [4], Doob shows that F*(z) = u f o[l — Fw)]du is a
stationary probability measure for a renewal process when the common distri-
bution function F has a finite mean u. In [2], Derman shows that an irreducible,
null recurrent Markov chain (MC) has a unique positive stationary measure.
In this paper, similar results are obtained for a class of irreducible recurrent
Markov renewal processes (MRP). Since MRP’s are generalizations of MC’s
and renewal processes these results generalize those mentioned above. Stationary
measures are also derived for a class of MRP’s with auxiliary paths.

1. Introduction. Let {X,.: n = 1} be a positive renewal process; that is, a
sequence of independent non-negative random variables (rv’s) with a common
non-degenerate distribution function (df), F.Set S, = X; + - + X, , (n = 1),
So = Xo=0and N(t) = sup {n = 0: S, = #}. Two related processes of interest
in renewal theory are the “age’” and “excess” processes defined respectively by
U=t — Sy and V; = Sy — t. Both of these processes are Markovian.
If u = E(X)) < 4, Doob [4] showed in 1948 that the df, F*(z) =
! fo’” [l — F(y)]dy, gives the unique stationary probability measure for the

V-process. That is, F* satisfies
(1.1) F*(z) = [{Z PV < 2|V, = yl dF*(y)

forallz = 0. If g = 4 o, it still remains true that the measure determined by

the mass function
(12) F(z) = [§11 — F(y)ldy

is a stationary measure since (1.1) is a well defined identity in F even when
F(4+ o) = + . This result, together with the result that # is the unique
o-finite stationary measure, will be a consequence of the main theorems of this
paper. (Whenever we speak of the uniqueness of a measure, it is understood that
only uniqueness up to multiplication by a constant is intended.)

Let {J, : n = 0} be an irreducible recurrent MC defined on a countable state
space, taken for convenience to be the non-negative integers 1 t=10,1,2, -},
with transition matrix P = (p;;). If this MC is positive then it is well known
that a unique stationary probability measure exists and may be expressed in
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terms of the mean recurrence times of the states. If the chain is null-recurrent,
then Derman [2] shows that a unique positive stationary measure {m.*: ¢ ¢ I'}
still exists; that is, m;* > 0 and m;* = >, m.*p;; for all j € I'". In this case, m."
may be defined explicitly as the expected number of visits to state z which occur
between two successive visits to some fixed state, say state 0.

As should be expected, the stationary measure of a recurrent MRP is, under
certain assumptions, a combination of those for a Markov chain and a renewal
process, even though the Markov chain involved may be transient. The proof of the
existence and uniqueness of a stationary probability measure for a positive re-
current, irreducible MRP with a finite number of states is very straightforward
and was given for example in [10]. The proof given there also applies to a strongly
regular MRP with countably many states. (See Definition 2.2 of [11] and Section
5 below.) The proof of existence and uniqueness is much more involved, however,
for general MRP’s.

Although the problem of stationarity of measures is solely concerned with the
transition measures of a process and not with any properties of the sample paths,
it is essential to the proofs given below to make assumptions about the sample
behavior of the processes concerned. The class of MRP’s to be considered in this
paper are those which are referred to in [11] (see page 1749) as satisfying hy-
pothesis A. Although the reader must be referred to [11] for a complete definition
of these processes, the following discussion will serve to outline the definition as
well as to give an explanation of the notation used. The reader should also con-
sider the general definition given by Feller [5].

We are concerned with stochastic processes {Z; : ¢ = 0} defined on a measur-
able space (2, §) and obtained as follows. © is the collection of all functions hav-
ing domain [0, + « ), having range I = I'* u { =}, and satisfying the following
conditions. Each w ¢ Q is right continuous, has left limits, and is such that if
w(t) — « ast— s from one side, then w(t) — « as ¢t — s from both sides. Z,;
is defined by Z;(w) = () and § is the natural o-field associated with such a
definition. (The state, «, will always be a fictitious state, added so that the right
continuity of the sample paths may be assumed.) Associated with the Z-process
are the quantities

Vi=supfu=t:Z,=2Z, forall selt, ul} —{,
Zt+ = Zt+V”
Ni(t) =card{0 < u £ t: Zo %= Z, =3}, jelt,

where Z,_ denotes the left limit of Z(., at s. The interpretation of these quantities
is as follows: Z; denotes the state of a process at time ¢, V; denotes the remaining
time until the next transition after time ¢, Z,* denotes the next state visited after
t and N;(t) records the number of entrances into state j during (0, {]. Another
quantity of interest, which is to be denoted by U, , is the amount of time since
the last transition of the Z-process. In order to define U; conveniently it is

necessary when working with stationary measures to have the process “in
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progress’ at time £ = 0; that is, to allow U, to be an arbitrary initial rv whose
distribution would have to be specified as part of the initial measure for the
Z-process. We then define

Ut=U0+t if t<V0
=t—inf{u£t:Z, =27, forall selu,tl} if t= V.

When U, = 0 a.s., this definition is equivalent to the one given in [11]. In this pa-
per we will be working with the processes {(Z;, U):t = 0} and {(Z;, V:):t = 0}.
These two types of processes are closely related, the one being essentially a time-
reversal of the other.

The assumptions made above on €, the sample space of the Z-process, insure
that if the Z-process has explosions, there can be no instantaneous jumps to, or
returns from, infinity. They also imply that any finite state has a successor and
every finite state but the first has an immediate predecessor.

To obtain a probability structure, it is assumed that {(Z,, U;): t =Z 0} is a
Markov process having the strong Markov property for all stopping times, 7,
for which Z, ¢ I (a.s.) and having a transition function denoted by P.(¢, z;7, y)
= PlZiys = j, Uns S y | Z; = 4, U, = al.

The evolution of an MRP is determined by a matrix of transition functions
Qi;i(+, +), 4, jeI", defined on [0, + ) X (—», + ) such that Qi;(u, -) is
a mass function, Q.;(u; ) = 0 forz < 0 and

(13) PZt =4 Vigz|Z. =14 U, =u (Z,U,),0 £ s <t] = Quj(u;)

with probability one for all ¢ = 0. If we set H(u, ) = Z 5 Qii(u; x), it is further
assumed that Hy(u, +«) = 1 forallu = 0Oand ¢ I*. The properties of this
transition function and its ‘“backward” relationship with the Q.; are given in
[11]. We shall refer to any of the Z- or (Z, U)- or (Z, V)-processes as an MRP.

Throughout this paper we shall consider only MRP’s of the type just defined
(those satisfying hypothesis A in [11]) so that further specific mention of this
will be omitted. Also, throughout the remainder of this paper we shall work only
with non-lattice MRP’s. That is, the recurrence-time df’s Gi; (see (1.5.3) below)
are non-lattice. This represents no significant loss of generality since the lattice
case can be treated in a simpler, though similar, manner.

It is convenient to consider, as in [11], the special class of MRP’s for which
Qii(u; ©) = poH(u; &) where pi; = Qi;(0, + ).

That this may be done without loss of generality may be seen as follows: if
Y, = (Z;, U;) is the glven Markov process with mass functions {Q:;(-; -)},
set Y, = (Z{,U,) where Z = (Z.,Z.") and set Q,, wm(23t) = Sapen@Qii(z; )/
Q:;j(z; + ). The reader may compute that the Y’-process is a regular MRP of
the type considered in this paper whenever the Y-process is, and moreover, its
transition matrix has the desired factorization. Once one has found the unique
stationary measure for this special class, it is an easy job to use this to determine
the stationary measure for a more general MRP (see Remark 3 of Section 4

below).
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In Section 2, the existence of a stationary measure is proved. Section 3 con-
tains a proof of the uniqueness of this measure. In Section 4, several remarks
are made. In particular, it is shown that the stationary measure is a probability
measure if and only if the MRP is positive recurrent. Also, the relationship be-
tween the results of this paper with those known for discrete and continuous
parameter Markov chains is explained in Section 5. Section 6 extends the results
of Sections 2 and 3 to MRP’s with auxiliary paths.

Before proceeding to the question of stationarity, we state a lemma and list
the definitions and notation which will be used in the remainder of this paper.

By summing over j in (1.3), one obtains
Hiu;z) =PlVi=2z|Zi=1% U, = u; (Z,,U,;),0 = s <] forall ¢t=0.
Upon setting H.(-) = H(0, -), it is possible to evaluate H(u, x) in terms of H;
as given in Lemma 1.1 below. The proof of the lemma follows from a considera-
tion of the indicated conditional probabilities and the deterministic behavior of

the U-process.
Lemma 1.1. For all i e I, z = 0 and all u = O for which Hi(u) < 1, one has

(1.4) Hiw;2) = Hi(u + ) — H(w]l — Ho(w)]™"

Let P;. denote the probability measure for the (Z, U)-process, determined
by the initial condition that Z, = 7 and U, = z. Let E;, denote expectation
with respect to P;, . Define

(1.5.1) Qii(t) = Qii(0;8),  pij = Qui(+=);

(1.5.2) Pij(t) = PsoZ: = jl = Pu(4,0;4, +=);

(1.5.3) G:i(7) = Py oN;(t) > 0];

(1.5.4) M () = EoN;(¢)] + 645 ;

(1.5.5) wPii(t) = PiolZ, = 7, Nu(t) = 0];

(1.5.6) #Gii(t) = Pyglfor some u =< ¢, Nj(uw) > 0, N(u) = 0];

(1.5.7) WMii(¢) = (1 — 84)EioN;(Se)] + 8i; where s = min (¢, Tk)
and T, = inf{t > Vy:2Z, = k};

(1.568) Sij,z;t) = PilZ, =3, U; £ ]

(1.5.9) Ri(j,z;t) = PiolZ: =4, V: £ zl.

Let 5; and u;; be the first moments of H; and G;; respectively.
For any function K(-), K(-) and K(-) are defined by

R(s) = [iK(t)dt, R(s) = [([K(+e) — K(t)]dt
whenever these quantities are well-defined. (This is consistent with the notation

used in (1.2) above.) Define the convolution operation by K = L(¢) =
ft_K(t — u) dL(u) whenever the integration is defined. Also, set K‘”(¢) = 1

Il
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or 0 according as ¢ = 0 or t < 0 and define K™ (t) = K" « K@) forn = 1.
Since we are only interested in ¢ = 0 in this paper we shall often simply write 1
for K(¢).
In terms of the above notation it is possible to evaluate the transition function
P.(i, z; j, y) of the (Z, U)-process to be
(1.6)  Pu(d, z55,y) = 226 Sk(G, 45 +) * Qal; )(8) i t+az>y
= 2 Pui(+) % Qalz; -)(8) + 8:ll — Hi(z; 1))
if t42=y.
The (Z, V)-process is also a continuous parameter Markov process. If we let
Q:(4, x4, y) = PlZ, = j, Vi, < y| Zy = i, Vo = u] denote its transition func-
tion, then

QGG u; 5, y) = 2wpale(f, yst —u) i u =t

(1.7) = §i; if t<ust+y
=0 if t4y<uwu
For each je I" and z = 0, set
(1.8) m; = Moj(+) and  w(j,z) = miH (z).

Clearly (7, z) is finite for all j £ I *and z = 0, so that = defines a o-finite meas-
ure on ®(X), the Borel sets of & = I X [0, ).

Observe further that =(j, + ) < 4 o if and only if 9; < + . In Section 2
it is shown that = is a stationary measure for both the (Z, U)-process and the
(Z, V)-process. That = is a natural choice for a stationary measure is intuitively
clear on the basis of the known result in [10] for the finite state case. However,
it is motivated most strongly by the following Doeblin ratio theorem, proved in

[II%HEOREM 1.1. For a recurrent, irreductble, non-lattice regular MRP,
(1.9) limg, oo Mij(8)/ Mir(t) = Moj(+0);

(1.10) lim oo Sk (3, @5 8)/Moo(t) = 7(3, z);

(1.11) lime. 4o Ri(, y5 8)/Mu(t) = (3, y).

2. Stationarity of =. For any initial measure », one obtains a measure @, for
the (Z, V)-process. We will write

(2.1) Q.G z;t) = 2 [o-Qu4, u; 4, ©)v(i, du)

to denote the resulting measure of the event [Z; = j, V: £ z]. Let E, denote ex-
pectation with respect to the measure @, . In this section we wish to show that
the particular initial measure = determined by (1.8) is a stationary measure for
the (Z, V)-process. That is, we wish to show that Q.(j, z; t) = =(j, z) for all
jeI™, z = 0andt = 0. This result is proved as an immediate consequence of
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the following basic lemma. Since for any initial measure »,

(2.2) EN;(t)] = 22 2 pav(i, - ) * Mas(t),

and since the right hand side of (2.3) below is simply the derivative of this ex-
pression when » = m, this lemma will imply that E.[N;(¢)] is proportional to ¢,

as should be the case if 7 is to be a stationary measure.
Levma 2.1. Forall jeI" and all t = 0

(2.3) mi = D imi Dk (pax — Que) * Mij(t)
and
(24) mi = D impi; .

Proor. Assume Z, = 0 and U, = 0 and fix jeI™ and ¢t = 0. Let
T = inf{s > Vo: Z, = 0} be the time of the first return to state 0. Let N’
count the number of visits to j by the Z-process in (¢, ¢ + T]. Because of the
strong Markov property and recurrence, EooN(t + T) — N(T)] = Eo,olN()].
Hence, Eoo[N'] = EooNi(t + T) — Ni(t)] = EoolN;(T)] = m;, the left side
of (2.3). To show the E,4[N'] is also equal to the right side of (2.3), for each
i1eI",let {T4 ;r = 1} be the times of successive visits of the Z-process to state 3,
let {Xir ;7 = 1} be the successive holding times in state 7, and let { YV ;;(n, r);r = 1}
be the time from the rth entrance into 7 until the nth visit (» = 1) to 5 which
occurs after T';, . Observe that here Ty = 0, Tos = T, and X, = Vi, . Each
visit to 7 in (¢, ¢ + T will be identified with a visit to some state in [0, T'), the
identification being made by looking back ¢+ units of time from the instant j
was entered, seeing what state the process was in and counting the number of
visits of j since then. Formally, the rth visit to state ¢ is said to be of type-n if
Ti < Tand Yij(n,r) >t = Yij(n,7) — Xo . ThenN' = D s D> Do Wii(n,r)
where W;(n, r) = 1 or 0 according as the rth visit to state ¢ is or is not of
type-n. Then

EooWij(n, )]
= [ PYi(n,r) >t = Yinr) — Xir| Zo =0, Uy =0, Tir = 0]
oGoi % oG (du).

The integrand in this expression is straightforwardly computed to be

2oksei (P — Qu) * Goy % G5770(8) + (pij — Qug) * G577 (1)
which does not depend on u or r. Hence, since

2275 oGos # oGV (u) = oMoi(u)
for all w and 7 £ 0, and since
202 oy x BTV (8) = Mi(t) — &,

one obtains
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Eo Nl = 22ims 2ok (pa — Q) * Maus(t).

Equation (2.4) follows from (2.3) by noting that (ps — Qua) * My;(0) = pade;
so that the right side of (2.3) reduces to Y :mpi; .

It should be remarked that (2.4) does not follow from Derman’s theorem [2]
for Markov chains unless the MRP is strongly regular. If a recurrent MRP is
regular but not strongly regular, the imbedded Markov chain with transition
matrix (pi;) is necessarily transient.

We now prove the existence of a stationary measure for an MRP.

THEOREM 2.1. 7 ¢s a stationary measure for both the (Z, U)-process and the
(Z, V)-process.

Proor. As mentioned at the start of this section, stationarity of = for the
(Z, V)-process will be established if it is shown that @, = =. From (2.1) and
(1.7), one obtains

(25) QG5 t) = 2in paRi(Gy @5 -) xw(i, -) + 7(i, t + z) — =(4, t).

However, it is easily seen (a detailed derivation is included in [12]) that

(2.6) Ri(j, z;t) = [Hi(z + ) — H;(+)] * Ma;(t).

Therefore, the first term on the right hand side of (2.5) becomes, in view of (2.2),
EAN;(O)V*[Hi(z + -) — H;(-)I(2).

Since E,[N;(t)] = m;, by Lemma 2.1 and the comment preceding it, one then
obtains

Q. (j, z;t) = my f [H; (x4 u) — H; (w)ldu + (i, +2) — ()

=m; [§[1 — Hy(uw)]du = =(j, )

as required.
To prove the stationarity of = for the (Z, U)-process, one must show that

P, = 7 where
(27) Po(j, 23 1) = 22i [ Pu(s, w; j, ©)m(3, du).
If x < t, substitution of (1.6) into this expression gives
(28)  Pi(j,z;t) = 2ia fo- Si(d, @5 +) * Qulu; - ) ()7 (s, du)
= 2axpaSi(y &5 ) * [i- Hiu; -)m(s, du)(t).
But, by Lemma 1.1 and (1.8),
[o- Hi(u; v)7(d, du) = m; [5 [Hi(u + v) — Hy(u)] du
=m; [o[1 — Hou)]du = =(4, v).
Since Si(j, z; t) = K;(-, z) * M,;(t) where K;(u,z) = 1 — Hj(u) f u < 2z
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and zero otherwise, one obtains
P.(j, ;1) = 2in DK i( -, ®) % Mg m(3, ) (2)
(2.9) = K;(-, z) » E.[N;(-)](t)
=m; [0 K;(v, z) dv = 7(j, 2).
If x = t, there is an additional term to evaluate, but a similar argument suffices.

3. Uniqueness of 7. Let o be any o-finite stationary measure for the (Z, V)-
process which is not identically zero. Write « (7, A) for the a-measure of {7} X A
and write a(7, ) for the a-measure of {7} X [0, z]. Since « is stationary, it
satisfies
(3.1) QuVieA,Z;, =1 = a(i, A)

where Q.. is defined by (2.1). The uniqueness of = will be established if it can be
shown that (3.1) implies that « is proportional to . The proof of this fact is in
two parts. The first and simpler part is to show that there exist constants {ci}
such that a(4, ) = c{H:(z). The second part is to show that these constants
are proportional to {m.;}. These results are given below in Theorems 3.1 and 3.2
respectively. Before proving these theorems, some preliminary properties of o
are recorded.
From the relationship
a(i, A) = QdVye A, Z, = 1] 2 QudVo >y, Vye A, Zy = 1]
= Qa[VOSA + Y, ZO = 1] = a(iy A + y))
it follows that
(3.2) a(i,A) = a(i, A + y)

for all ¢eIt, y = 0, and all Borel sets 4 C (0, + o) where 4 + y =
{z:x — y ¢ A}. Therefore, the following lemma applies to each measure a(%, - ).

LemMma 3.1. Let B be any o-finite measure defined on the Borel subsets of [0, «)
which satisfies B(A) = B(A + y) for all y = 0, and Borel sets A < (0, + ).
Then

1) B[z, z +t]) < + forallz >0and0 =1 < + .

(i) B K pron (0, + ) sothat B(A) = [af(w)pz (du)
for all Borel sets A C (0, + o ), where 1, denotes Lebesgue measure, and f is equal
a.e.-uz to a mon-negative, non-increasing Lebesgue measurable function.

Proor. (i) Let A be a Borel set, A € (0, + « ), for which 8(4) < .
By hypothesis, B(A + y) is a monotone decreasing function in y, and hence
integrable. Upon integrating both sides of the inequality B(4) = B(4 + y)
with respect to y over (0, £), one obtains

t8(4) = [38(4 + y)uw (dy)
(3.3) = [0 J3Z Ii(u — y)B(du)p. (dy)
= [0 [§I.(u — y)uc(dy)B (du).
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Making the change of variable 4 — y = v, this becomes
B(A4) = [12 [imt1a(v)ni(dv)B(du)
(34) = fo—z I4(v) fgt‘ﬁ(du)p,,(dv)
4+ [¢ 1u(v) [ B(du)pr(d)
= 4800, 4 + v)us(dv).

Therefore, if there exists > 0 and ¢ > 0 such that 8([z, x 4 {]) = + «, then
B([0,t] +v) = 4+ for0 < » < x. Choose A C (0, + » ) such that 8(4) < +
and u.(A n (0, z)) > 0. This is possible because of the s-finiteness of 8. Then
the left side of (3.4) is finite while the integrand on the right side is infinite on
a set of positive Lebesgue measure. This contradiction establishes the validity
of (i).

(ii) For e > 0,1let A C (¢ + ) be a Borel set for which u.(A) = 0. Then
B(A) = B(A — y) for 0 = y = e and an argument similar to that used in (i)
shows that 8(A) = 0. This shows that 8, when restricted to (¢, 4 « ) for any
e > 0, is absolutely continuous with respect to x, . From this and the mono-
tonicity of B(A + -), it is a straightforward matter to complete the proof of (ii).

Because of (3.2), the above lemma applies to each of the measures «(7, - ) for
i e I't. For these specific measures, however, the results of Lemma 3.1 may be
strengthened as follows.

LemMa 3.2. ForeachieIT andz 2 0, a(Z,z) < ©,a(i,0) =0, a(s, -) < pz
over [0, «) and
(85)  a(i,z) — a(s, (y,y +2]) = ¢ [L[Hiu + 2) — Hi(u)] du
for some constants ¢; = 0.

Proor. By definition, a(4, ) = a(%, [0, 2]). Forany z = 0,y > 0,4, jeI*
and 0 < ¢ < y, consider
a(jy (x,x+y]) = Qa[x <V:s x+y’Zt=j]

ZQVost,Zo=4, s+t < Vy,+ VoS a+t+y, 2" =4l

The left hand side is finite by Lemma 3.1, whereas the right hand side equals
pi; [icHiz +t+y — u) — H(z + t — u)la(i, du)
= pia(i, )[Hi(z + y) — Hl(z + t)].

Since this holds for all 7, z, ¥ and ¢, it is possible to choose values such that the
first and last factors do not vanish, thereby establishing the finiteness of «(7, t)
for at least one, and hence all, positive values of ¢.

To establish that a(%, -) K 1, it suffices, in view of Lemma 3.1 (ii), to show
that a(7, {0}) = a(z, 0) = 0. However, this will be immediate once we have
derived (3.5). To derive (3.5), observe that, by stationarity, we have
EJN«(t)] = EJNi(t + s) — Ni(s)] forall s, ¢ = 0. Thus, if E,[N(s)] < + oo,
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then
(36) Ea[Nz(t + 3)] = Ea[Nt(t)] + Ea[Ni(s)]y

and since Ni(-) is non-decreasing a.s., it would follow that E.[N:(¢)] = ci
for all t = 0 and some constant ¢; = 0. That E [N ;(s)] is finite follows by Fubini’s

theorem applied to the equation of stationarity (3.1), namely,
4o > (i, x)
(37) = 2iapa [i-MinHi(z + -) — Hi( )t — w)a(), du)
+ a(d, (3, ¢ + z])
Jo-Hz + t — w) — H(t — w)] dEJN(u)] + a(5, (¢, t + 2]).

It

If one now substitutes cau for E.[Ni(u)], one obtains (3.5).
CoROLLARY 3.1. Fort 2 2 2 0,y = Oandiel™,

(38) QU =z, V.=y,Z =1 =a(y) +aliz) — ali,z + y).
Proor. For any measurable set A C [0, =) it is true that
a(i, A) = QJVie A, Z; = 1]
=QVia S, Vied, Zi =1+ QulVieo > 2, Viec A, Z; = 1]
=QuVia =2, VieAd Zi =i + QuVioe (4 — {0}) + 2, Z1s = 1]

for any ¢t = x. This is simply an elaboration on the relationship given prior
to equation (3.2). If 4 is such that a(¢, A) < -+, we therefore have that

(39) QuVio =<2 V.ed, Z: =1 = a(t, A) — a(i, (4 — {0}) + 2).

By taking A = [0, y], which has finite a(7, -) measure by Lemma 3.2, and ob-
serving that the sets [U; < 2] and [V .-, £ z] differ by a set of measure zero, the
proof of the corollary is complete.

We now state and prove the first part of the uniqueness argument.

TuaeoreM 3.1. If a is any o-finile stationary measure for the (Z, V)-process

which is not identically zero, then for all j e I tand 2z = 0,
(3.10) a(j, 2) = c;Hi(x) = ¢; [T[1 — Hi(w)]du

for positive constants {c;}.

Proor. For any i I", define the measure 8(¢, 4) = ¢ f a1 — Hjdu, for
any Borel set 4, where c; is the constant that appears in (3.5). Write 8(4, ) =
(3, (0, z]). By (3.5), one obtains that (i, 4) — a(i, A + y) = B(s, 4) —
8(i, A + y) for all y = 0. This implies that a(s, -) = (4, -) + biu. for some
constant b; . To show that b; = 0, observe first, that b; = 0 since by construc-
tion

0 < limyow a(é, 4 + y) = limyw B33, 4 +y) + bipr(A) = bur(4).
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Therefore, by substituting 8(7, - ) + by for a(z, -) into the right side of (3.7),
one obtains

B(Z’ .’B) - ﬁ(i, (t, t+ x])

I

a(t, z) — a(d, (4, t + 2])
2 D oabpaMixH(x + ) — Hi(-)(1).
By letting ¢ — « and using Fatou’s lemma, one obtains
BGi, x) = 2 bipaH (@) Mri( )

which implies that each b; = 0 since M () = 4 forallkel * due to the
recurrence and irreducibility of the MRP.

The fact that each c¢; is strictly positive follows similarly from (3.7). For if
¢i = 0, then (3.7) implies that each of the non-negative summands
cipiH #Myx[Hi (- 4+ x) — Hi(-)](t), is zero for all ¢ > 0. This could happen
only if ¢; = 0 for all j, or equivalently, if @ = 0. The trivial case, however, has
been excluded.

COROLLARY 3.2. For all j ¢ I'* and almost all (with respect to ur) = = 0,

(3.11) ¢;i = 2ixcipu — Qu)*Mii(2).
Proor. By the proof of Lemma 3.2, one has
(3.12) cit = Bo[Nj(t)] = 2oix paMisxa(s, -)(2).

By Theorem 3.1, a(¢, #) = c:Hi(x) = ¢; [§[1 — Hi(u)] du. Thus, since Qz =
paH i, (3.12) may be rewritten as

foeide = cit = [§{2 incipa — Qu)*Mi;(z)] da.

A comparison of the integrands completes the proof.

It may actually be shown that (3.11) holds for all z. However, this fact is not
needed to complete the proof of uniqueness, and once the uniqueness is es-
tablished, it will follow as a consequence of Lemma 2.1. The special case of
(3.11) for = 0 is given below in Corollary 3.3.

The first part of the uniqueness proof is now established. It remains to prove
the second part; namely, that the constants {¢;} are proportional to {m}. This
part may be proved in two ways. The first is to apply a uniqueness theorem of
Isaac [7] for discrete parameter Markov processes to skeletons of the MRP.
The second involves reversing the (Z, V)-process and applying an appropriate
Doeblin-ratio theorem as was done for Markov chains by Derman [2]. Rather
than give one proof in complete detail, we shall outline both methods of proof,
with slightly more emphasis on the latter since it gives more explicit information
about the processes.

The first method proceeds as follows. For a fixed h > 0, set Xn = (Zun, Van)
forn = 0,1, 2, - . Since « and = are stationary measures for the (Z, V)-
process, they also are for the X-process, {X, : n = 0, 1, - - -}. It may be checked
that = is such that whenever w(4) > 0 for an event A in the state space of
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Xo = (Z,, Vy), then Q,[X, ¢ A infinitely often | Xo = z] = 1 for almost all
() x. We will say that = satisfies condition (I). (If we let condition (H), for
Harris [6], denote the same condition except that ‘“for almost all ()” is re-
placed by ‘“for all,”” it is interesting to note that in the original version of our
paper, which appeared prior to Isaac’s paper, it was pointed out by means of a
counterexample that the skeletons of an MRP do not satisfy condition (H).)
Since 7(3, x) = mH(z) by definition (1.8), and since it has been proved,
Theorem 3.1, that a(?, x) = cH.(x) with all coefficients positive, it follows
that @ << 7. We now apply Isaac’s Theorem 1 and Corollary 1 of Theorem 2
from [7] to conclude that « = c¢r for some constant ¢ > 0, thereby establishing
the uniqueness of =. The major step in the above method of proof is to verify
that = satisfies condition I.

The second method involves reversing the (Z, V)-process. The transitional
mechanics of the reversed process are indicated in the following lemma, in
which Z;~ = Z_v,- denotes the state occupied by the process immediately
before the present state. Z, is therefore only defined on [V, = ¢].

LemMma 3.3. Forz,2,t = 0and 4, je It

QZ: =14,2Z=35,U =2V, <2
(3.13) = copijei la(j, 2) + a(f, 2) — a(j,x +2)] for z =t
= cpijei a(j, 2) + a(G, t) — a(f, 2+ t)] for z >t

Proor. For < t, one obtains by the usual “backward’” probabilistic argu-
ments that

Qa[Zt_ =1, Z, = j, U; £ =, Ve £ 2l
=pi; [l Hi(t + 2 — w) — Hi(t — w)la(i, du)
+ [o[iTicHi(z+t—u—v) — Hi(t — u — )] dQi;(v) dEN {(u)).

Since EJN:(u)] = cau by (3.6), the above becomes, after the change of variable
s=1—u,

cpiil [§11 — Hi(t — wH;(z + w) — Hy(w)] du
+ Ji[ialHz + s — v) — Hi(s — 0)]dHq(v) ds),
which in turn may be reduced to
Cipij ﬁ 1 — H(t—u) + H(l —z) + Hi(t — u)
— Hit — z)|H(z + u) — Hj(u)] du
= cpiei la(j, @) + a(j, 2) — a(j, ¢ + 2)]

by (3.5). A similar argument handles the case where z > ¢.
COROLLARY 3.3. For all j e I,

(3.14) cj = Zi CiPis -
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Proor. By (3.8) and (3.10) Q.[U; < =, Z, = j] = a(j, «) for t = x. Thus,
using (3.13), one obtains

a(j, €) = D2 iliMeto QulZ =4, Ui S 2,2, =j, V. £ 2]
= D icpiei a(j, z).

Since a(j, ) > 0 for some z > 0, (3.14) is verified.

Equations (3.11) and (3.14) state that the constants ¢, satisfy, for almost all
x, the same equations, (2.3) and (2.4), which the m; satisfy. In particular,
(3.14) states that the constants ¢; must be a solution of the stationarity equa-
tions, ; = P :xpi;, for the embedded Markov chain with transition matrix
P = (pi;). Since by (2.4) the m; also form a solution to these equations, the
uniqueness of & would be established if it were known that these equations had a
unique solution. Such would be the case for example if the MRP were strongly
regular so that the recurrence of the MRP would imply the recurrence of the
embedded Markov chain with transition matrix P. However, if the MRP is not
strongly regular, the imbedded Markov chain associated with P must necessarily
be transient so that the equations need not have a unique solution. (An example
in which uniqueness does not hold is given in the next section.) A further argu-
ment is therefore needed to verify the proportionality of the ¢’s to the m.’s. The
verification is completed by applying an appropriate Doeblin-ratio theorem to
the reversed MRP.

To define the reversed MRP, we exhibit, on the space of time-reversed sample
paths, a transition function,

(315) Qt*(i’ x;j; y) = Qa[VO =y, Zy = JI V.= z, Z, = 1; (Vs’ Zs)’ t = 8]
and a matrix of mass functions Q};(u; ) which satisfy
(316) Q5(us;z) = QZ7 =5, U 2|V =, 20 = 4; (Vs, Z,), t < sl

The notation Q. indicates that these transition functions must depend upon the
initial measure «, the given stationary measure. By means of (3.13), the desired
conditional probability QF; is seen to be

(3.17) Q¥i(u;z) = ¢ 'Hi(w; 2)pjics ; QTi(x) = ¢ Hi(x)piic; -

To verify this, one notes that for ¢ 2 2, QuZ, =4, Z: = j, Ur =2, Vi = 2]
is equal to [§ Q7i(w, z)a(7, du) by definition, and equal to cpiici o Hi(u, x) -
a(, du) by (3.5) and (3.13). Hence

& Q¥(w; 2)ald, du) = [§epiei Hiu, x)ald, du)
for all z = 0, so that (3.17) is a version of the desired conditional probability.

Now put
(3.18) M3 = ¢ H o (Dop piaMii)e; + 8is
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and set
QF (4, 235, y) = 2k piSi (G, y; < )*Hu(a, -)(1), t+az>y,
(3.19) = Dk php () xH(x, -)(1)
+ 844[1 — Hi(z, £)], t+ 2z =
where
(3.20) S,y ) = flemw— 11 — Hi(t — w)] dMi5(w)

and pi = Q(o) = ¢; 'prick are the analogues to Si(j, y; t) and pj for the
reversed MRP. To see that Q/* satisfies (3.15), it is necessary to check that it
satisfies

(3 21) fg— Qs*(j, U; 7:; x)“(j: du) = fz— Qs(i’ u.jy y)a(i, du)y

both sides of which are evaluations of Q.[Zy = 4, Vo < 2, Z, = j, Vs = y]. The
details are omitted, but are carried out by means of (3.11), (3.18), (3 19) and
(3.20). The reader should also observe from (3.18) and 2.7.4. of [11], the in-
tuitive fact that M3;(t) = M,;(t). That the reversed MRP has the sample
function properties assumed in this paper is a consequence of defining it ap-
propriately on the space of reversed sample functions of the original MRP.

TaeoREM 3.2. If « is a o-finite stationary measure for the (Z, V)-process,
then o = cm for some posttive constant c.

Proor. Let K;;(t) = Zk#i PiGri(t) + pji. Since Mipi(t) = GuxM () if
k # 1 (cf. (2.7.5) of [11]), (3.18) becomes

(3.22) M5(t) = cjci "HsM ;%K i5(8) + 8:; .

Dividing both sides by M7;(t) = M ;;(t), letting ¢ — -+, and usmg Doeblin-
ratio theorem (1.9) together with Lemma 3.1 of [11], one obtams Gii(+ o) =
cici - ;M ji(+ ). But M5t = j,(t) implies that GJ;(t) = G;;(t) so that

the reversed process is recurrent and G3;(+ ) = 1. Setting j = 0, one obtains
1 = coci 'm;or ¢; = com;, completing the proof.
COROLLARY 3.4. For any two states i, k e I,

Mij(+°°)/kMkj(+°°) =

for all j £ I, The constant C = ;M (4 =) is independent of j.

Proor. This can be proved directly by means of the Doeblin-ratio theorems
proved in [11]. However, it also follows from Theorem 3.2 since the fact that
w(j, ) = m;H;(x) is the unique stationary measure does not depend on which
state is fixed; in this paper state 0 was fixed and m; defined as oMo;(+ «).
Thus since ;M ;;(+ ) H;(z) and M3 j( + ) A ;(z) are both stationary measures,
one must have that M,;(+ o) = C (My;(+«). That C = @Mlk(+ ) follows
by letting j = k and noting that xMu(+) = 1 for any k ¢ It

The proof that = is also the unique o-finite stationary measure for the (Z, U)-
process now follows easily.
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TuroreM 3.3. If a is a o-finite measure for the (Z, U)-process, then o = cr
for some positive constant c.
Proor. Any o-finite stationary measure for this process satisfies the following

equation:
(3.23) a(j, A) = Serpafos 8, A, ) *Hi(u, -)(t)ali, du)
+ Jaull = Hj(u, D)]a(G, du).
By using an argument similar to that of Lemma 3.1,
a(j, 4) Z [udl — Hi(u, t)la(j, du)

implies that a(j, z) < 4+ forz < zo = inf {0 < u £ 4 : Hi(u) = 1}. By
Fubini’s theorem, this again implies that E [N ;(¢)] is finite and measurable so
that E.[N;(t)] = cit. For A = [0, 2] and ¢ = z, (3.23) becomes

a(j, z) = ¢; [e Ki(u, @) du = ¢; [§11 — H;(u)] du.
If P, denotes the measure on the (Z, U)-process induced by the initial measure
a, then

PdZ, =4, V.S 2] = [¢°Hiu, x)a(s, du) = ¢;[5[1 — Ho(u)] du = a(s, ),

I

and
PdZ, =i, Vi.<al= 2 [§°PlZ, =4, V. S x| Zo = j, Uo = ula(j, du)
= Zf,k pﬂch('I;y z, ')*a(j’ du) + a(j) [t’ 14 + t])

Therefore by (3.1) and (3.7), these last computations show that « is also a
o-finite stationary measure for the (Z, V)-process so that ¢; = ¢m; by Theorem
3.2, completing the proof.

4. Remarks. 1. An important special case of Theorems 2.1, 3.2, and 3.3 is the
result that =(z) = F(z) = fﬁ [1 — F(w)] du, as given in (1.2), is the unique
positive o-finite stationary measure for the U- or V-process of a renewal process
with common distribution function F. This extends the result of Doob [4]. (In
connection with this it is important to observe that in order to view a renewal
process as a special case of an MRP of the type considered in this paper, one
must be careful how one represents the Z-process. For example, one may con-
struct a 2-state MRP with pio = pa = 1 and Hy = H, = F. Some such artifice
is needed since we have assumed for convenience that U, and V, measure the
time since the last and next discontinuity of the Z-process.)

2. In Sections 2 and 3 it was pointed out that

(4.1) D TPi; = X;

need not have a unique solution since the embedded chain determined by (ps;)
may be transient. (It must be transient if the MRP is not strongly regular.)
Derman, in [3], gives examples of transient chains for which the above equation
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has no solutions, one solution, or many solutions. One of his examples may be
modified to give an example of an irreducible, recurrent non-lattice MRP of the
type discussed in this paper for which the embedded MC is transient and for
which (4.1) does not have a unique solution.

Let {Z,*;t = 0} be a continuous parameter MC with state space {—1, 0, 2,
4, ...} obtained from an asymmetrical discrete random walk with transition
probabilities piize = p > $, piia =1 —p=¢q(E =2,4,6,---), pn = p,
Po—1 = ¢, and p_1,0 = 1. By a suitable choice of the holding time parameters, say
g1 =1,and ¢; = (p/q)* (5 = 0,2, 4, ---), it may be shown that Z,* explodes
with probability one (see Miller [8]). Let {Z,*; t < 71} be the stopped con-
tinuous parameter MC where 7, is the random variable which records the time
of the first explosion. To this stopped process, hitch a descending escalator (as
in Chung [1], I1.20) with state space {--- , 5, 3, 1}. The combined process, call
it Z;, is now defined for ¢ < 7, + 72 where 7, is the random variable which
measures the time required to come down the descending escalator. At the end
of the holding time in state 1, the process moves to state —1 (p1,—1 = 1) and
the process described above is repeated a countable number of times so that Z;
is defined for all ¢ = 0. {Z;; ¢ = 0} is then a recurrent, irreducible, non-lattice
MRP. The embedded MC with state space {—1, 0, 1, 2, - - -} has a transition
matrix, P, given by paisise = D, prigie = ¢ (0 = 2,4,6, --), pr = P, o, = ¢,
P10 = 1, Priyagia = 1 (1 = 0,2, 4,6, ---). The reader may verify that 2»; =
Cl(p/q)1 +e{(t=012-),51=o0caq+ CoPy and Tz = 02(p - Q) (1= 0,
1,2, ---) is a solution of (4.1) for any choice of ¢; , ¢z = 0 such that ¢; + ¢; = 1.
Hence, (4.1) does not have a unique solution.

This example serves to illustrate several points. First, a stationary measure
cannot be constructed for the (Z, V)- or (Z, U)-processes by multiplying H;
by c¢; where {c;} is any solution of (4.1). For then, by Theorem 3.2, ¢; = cms,
contradicting the fact that not all of the solutions in the example are proportional
to m;.

Secondly, although (4.1) is the equation of stationarity for a recurrent MC,
it is not for a recurrent MRP. The basic equation for such processes (see Lemma
2.1 and Corollary 3.2) is

(4.2) z; = D iptipa(l — Hi)xMy(2)

for all ¢ = 0. This equation implies (4.1) by setting ¢ = 0. What has been shown
in Section 3 is that there is a unique solution to (4.2).

Thirdly, the example illustrates that m; = oMo+ o« ), which is a solution to
(4.1), need not be the same quantity as (Mg;(+ =), the expected number of
visits by the embedded chain to ¢ before a visit to zero, starting at zero. This
follows since m_, is easily evaluated to be p so that m; = 1 (¢ = 0,2, 4, ---),
andm;=p —q (@ =1,3,5,---), whereas Mo;(+®) = 0if ¢ = 1,3,5, - .

Lemma 2.1 shows that any transient MC which may be considered as the
embedded MC of an irreducible, recurrent, non-lattice MRP of the type dis-
cussed in this paper, has at least one solution to (4.1). An example of a recurrent,
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irreducible, non-lattice MRP for which the embedded MC has no solution is
constructed as follows. Construct an ascending escalator on I™. Hitch another
ascending escalator on 1™ onto this stopped process. Continue to define a process,
Z:, by this method for all ¢ = 0. The embedded MC has transition probabilities
given by piia = 1for i = 0, 1,2, --- . There is therefore no positive solution
to (4.1) since this equation would imply that z, = D, i = 0 because py = 0
for all 7. Observe that this MRP does not satisfy the conditions of this paper,
since Z, — « asu / ¢ does not imply Z, — « asu \ ¢.

3. To obtain the stationary measure for the more general MRP for which the
factorlzatlon Q”( 3*) = psH(-;-) does not hold, proceed as follows. Let
Z ¢ = (Z ¢, Z:%). As discussed in the third paragraph following (1.3) of Section

L{(Z* V);t= 0 and {(Z.%, U,);t = 0} are MRP’s to which Theorems 2.1,
3. 2 and 3.3 may be applied. Choose 4, j, k, m & I'" such that p.; > 0 and pgm > 0.
Then Hu,m = pin@im and )M, 5., m)(+ w) = C;Mu(+ ® )pim where C
is a constant independent of k and m. The latter result may be obtained by
direct evaluation or by showing that ;M jpi. satisfies equation (4.2), so that
by Remark 2, ¢, yM ¢, 5,¢m = C ;M pu(+ © )prm . Setting (Ic m) = (4, 7) and
recalling that M, ), G = 1, C is evaluated as p;; {M(+ ). Thus,
M n.am(+ o) = pij Ma(+ © )pim . Hence, if = is any o-finite stationary
measure, then

w(k, m, &) = Cii,yM e iy,eom(+®) [TI1 — Hepm(u)] du
= C,mk fz [pkm - ka(u)] du = C,kakm(x)'

4. A delayed Markov renewal process (called a general Markov renewal
process in [10]) is one for which U, = 0, the distribution of Z, is governed by a
set {a} of non-negative numbers (these numbers forming a probability distri-
bution only if Y a; = 1), the distribution of (Z,*, V) is governed by one set of
transition functions {Q;;( - )} whereas from then on the (Z, V')-process is governed
by {Q:;(-)}. Theorems 2.1 and 3.2 show that an MRP will give rise to a sta-
tionary delayed MRP if and only if a; and Q;; are chosen so that aQii(z) =

zQw(x)

In particular, if the process is positive recurrent (that is, uj; < o, where
u;; is the mean of Gj;), it follows that m; is proportlonal to ,uul and
that Y naii = 1, where n; is the mean of H,. Setting a; = g7 and Qi;(z) =
ni 'Q:(x), one obtams the unique stationary probability measure. In the case
of a strongly-regular positive recurrent MRP, this gives the exact relationship
between the ‘‘stationary” probablhtles {nius; = lime,e P;;(£)} of the Z-process
and the stationary probabilities {u}; '} of the embedded MC, where u}; denotes
the mean recurrence time of state j in the embedded MC. (Cf. [10]). It is shown
in [10] that u;; = Cu};. Therefore, the “stationary” probability of state Jin
the Z-process is proportional to n; times the stationary probability of state j
in the embedded MC. This is related to a result of Miller [8] for stable, con-
tinuous parameter MC’s.
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5. From Theorem 3.2, one can deduce an interesting fact about the recur-
rence-time distribution of the various states, namely

TaroREM 4.1. For any states i, j e IT of a recurrent, irreducible, non-lattice
MRP,

(4.3) (1 — Gy5) %M ii(t) — ;M j(+ )

ast— 4o,
Proor. If the MRP is positive recurrent, this follows from the key renewal
theorem since

(1 — Gi)*Mi(t) = pa [§ 1L — Gij(w)] du = piitpis = iM (4 ).

If the MRP is null recurrent this approach does not work since the limit re-
duces to 4« /4 . However, in this case one obtains from (3.22), (since M1;
= GiM7; + 8i; and M3; = M),

GHi(t) = Mi(+ o )HaK ixMix(1 — G3)(2).

Since Gi;(t) — 1, Hi(t) — 1, and K;(t) — 1 as t — + o, one obtains
1 = ;M;j(+ o) limeoM:#(1 — G;;) (1) which is the desired result.

5. Stationarity of a strongly regular MRP. Throughout this section it is
assumed that the MRP is strongly regular, that is, N(¢) = > :Ni(t) < + o
a.s., and that 9; = [T [1 — H(z)]dv < o foralljeI™. Set

(5.1) qij = (Pij — 6i5)/ni .

The following theorem generalizes a result of Miller [8] for continuous parameter
MC’s to a result for MRP’s by means of a shorter non-analytic proof.

TuaroreMm 5.1. A strongly-regular, irreducible MRP 1is positive recurrent (i.e.
ui; < o for all jeI*) if and only if n; < 4o for j e I'" and there exists a con-
vergent sequence {yi} of positive numbers such that Y yiqi; = 0. The sequence
1s unique (up to a multiplicative constant).

Proor. Assume the MRP is positive recurrent. Then the finiteness of u;;
implies that of each 5;, a consequence of the identity

(5.2) pii = i M ()i

(see equation (4.9) of [11]) since each ;M ;i( « ) is positive as may be seen from
the relationship, ;M ;i( o) = Mo )/sMoj(©) = m;/m;, which follows from
Corollary 3.4. Also, by substituting this last relationship into (5.2) it follows
that m; = pe/uj; for each j. Therefore, upon setting y; = 75./u:; one obtains
that »_;y: = 1 and D ;5. = 0, the latter using the fact that {mJ = {uoo/pid)
satisfies (4.1).

If n; < + o, 2 iys < +o, and D iyiqs; = O for some positive sequence of
y’s, set ¢; = yini . Then Simes < 4+ and Y icpy = ¢i. Set Q(x) =
cjci 'piiH (x) where pj; and H; are the functions which determine the original
strongly-regular MRP. Q* is a matrix of mass functions and hence also de-
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termines a strongly-regular MRP. (This can be shown using Theorem 4.1 of
[9].) The renewal function, M*(¢), associated with the latter MRP is uniquely
determined by Q*(¢) and is given in terms of the original renewal function
M(¢) by

M3(t) = cici "Ho D p piuMui(t) + 8.
From this and (2.7.2) of [11] one obtains
PH(t) = o 'Huwe; 2w pi(1 — Hy)xMui(t) + 81 — H (1))
Summing over j, one obtains

1=1—Ht) + ci'Ha D jncpn(l — Hj)xMyi(t)
or

(5.3) cHi(t) = Hox D jncipin(l — H;)xMyi(t).
Upon integrating both sides of (5.3) from 0 to s, one obtains
(54) ¢ [SH(t)dt = HxD i cipndl j#Mii(s)
= H{ D s hi cpaH p#Goi + 225 eyl J+M ii(2).

As s — + o, the left side of (5.4) approaches 4 «. On the other hand, since the
factor within parentheses on the right hand side is bounded by its value at + o,
namely

Dol D i DienGri( @) + pmi]l £ Dsemi < + oo,

it follows that M.i(+ ) = 4« so that the MRP is recurrent. Since the proc-
ess is strongly-regular, the embedded MC is also recurrent so that the solution
{cj is unique. Therefore ¢; = C ;M ;i( ) for any choice of jeI * Thus pj; =
> iiMj(o)n; = CDicms < + . This states that the MRP is positive re-
current as required. Also, since y; = Cmy; , it follows that {y;} is unique, thereby
completing the proof.

Theorem 4.1 shows that in the strongly-regular case with each n; < o, posi-
tive recurrence depends only on the equation ) ;y.gi; = 0 or equivalently on
> ixpi; = x;. Therefore, in this case, (4.1) must imply equation (4.2).

6. Stationarity of Markov renewal processes with auxiliary paths. In most
applications involving a Renewal process, the process arises as the successive
occurrence times of some regenerative event, such as the event that a server is
free in a single-server queueing model with exponential inter-arrival times and
arbitrary service times. (This queueing model is commonly denoted by
(M, G, 1).) Likewise, many Markov chains arise in practice as embedded proc-
esses, such as the, sequence of queue lengths of a (M, G, 1) queueing model ob-
served at the successive times of completion of service. One of the shortcomings
of this method of embedded Markov chains is that the continuous time parameter
of the basic stochastic process has been replaced by the discrete time parameter
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of an MC. In particular, in many applications of this method to queueing theory,
the stationary distribution of the embedded MC is obtained and applied even
though it is not the stationary distribution of the original process. It is much
more natural and informative to study the embedded MRP rather than the
embedded MC since the time scale of the original process is retained. Thus, for
the (M, @G, 1) queueing model, it is reasonable to study the embedded MRP
which makes transitions at each completion of service and whose states indicate
the queue lengths after these completions. (We remark that the relationship
between the stationary distribution of the embedded MRP and the correspond-
ing embedded MC is given in Section 5 above.)

Although the embedded MRP in the queueing model is more informative
than the embedded MC, it does not contain all of the information yielded by
the model. It does not, for example, contain the information about the arrival
times of customers. However, it is possible to generalize the concept of an MRP
to include the complete queueing process. This generalization allows for auxiliary
stochastic processes to occur between successive transitions of the MRP. An
example of an MRP with auxiliary processes is given by the (M, G, 1) queueing
model as follows. If with each state of the embedded MRP, which measures the
queue length after each completion of service, one associates appropriately a
Poisson process to describe the arrivals to the queue during the subsequent
service time, the original queueing process may be obtained. Another example
involving Brownian motion is described as follows: Consider the MRP (actually
an S-MP) which measures at time ¢ the last integer value taken on by a Brownian
motion which is equal to zero at ¢ = 0. It is then possible to attach to each
state of this MRP an appropriate Brownian motion in such a way that the
resulting process is equivalent to the original Brownian motion.

A formal definition of an MRP with auxiliary paths is given as follows: It is
an extension of the regenerative processes with fours introduced by Smith [14].
Consider an MRP which satisfies the definition given in Section 1. Let there be
a collection of stochastic processes, {Yi(u): u = 0}, one for each state i e I,
with values in some fixed abstract measurable space (E, @).

Forn = 1, let {Y™(u); u = 0} be independent versions of the ¥ ;-process.
Let these processes and the MRP be defined on the same probability space. At
the instant, T';, , that the given MRP enters state j for the rth time, the auxiliary
path on [T}, T; + X;) is defined as the process {¥;”(u); 0 < w < X}
where T, + X, is the time until the next transition. It is assumed that each
auxiliary path is completely independent of past states visited, holding times in
these states, and the auxiliary paths described while in these states.

Fort = 0, define W, = Y,;”(U,) on the event, [T <t < Tj, + X,J]. The
W-process will be called the auxiliary path process associated with the given
MRP.

In order to relate the W-process to the MRP it will be assumed that there are
functions Q:;(+, -; +) and Ki( -, -5 -, -, +), the former defined on [0, + ) X
(—o, +) X @ for each 4, j ¢ I'" and the latter on [0, + ) X E X I" X
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[0, + =) X @ for each ¢ ¢ I, such that
(6.1) PWiue A, Vi>u, 2" =352, =1, U = x;
(Zs, Us, W,),O é s<t— x] = Qii(x7u;A)
and
(6.2) PZ =45, Vi>uWaueA|Zi=14,U =2, W:=w;

(Ze, Uy, W), 0 = s < 1] = Ki(z, w; J, u, 4)
for all ¢ = 0. Note that (6.2) says that at time ¢, the state next to be visited
and the time until the next transition may be dependent upon W, .

Set Qij(u; A) = Q:;(0, u; A) and H(u; A) = > i Qii(u; A). It is clear that
Hiu;E) = 1 — Hy(u) and it may be shown as in Lemma 1.1 that Q:;(z, u; 4) =

Q:;(u + z; A)[1 — Hy(z)I™". Under assumptions (6.1) and (6.2), it follows that
the (Z, U, W)-process is a Markov process with a stationary transition function

given by
PlZ, =5 U Sy WieA|Zy=1, Uy =z, Wy = w]
= > [ [Gn-Hi(t — u — v; A) dMy;(v) duLi(z, w, k, w)

(6.3) if z+t>y
= 2 Joo [T Hi(t — w — v; A) dMi;(v) duLi(=, w, K, u)
+ 8;Ti(x, w; t, A) if z4+t=y

where Li(z, w, k,u) = Ki(z, w;5,0,E) — Ki(z, w;j, u, E) and Ti(z, w5 t, 4) =
> Ki(x, wi k, 8, A).

Let « be a measure defined on the Borel sets of I7 X [0, +=) X E. Let
a(i, z, A) denote the measure of the set {7} X [0, ] X A for each A £ @. The
main result of this section shows that if the underlying MRP is recurrent, then
there is a unique stationary measure for the (Z, U, W)-process amongst a

natural class of measures.
TueoreM 6.1. If the underlying MRP is recurrent then

(i, y, A) = m; [ Hi(u; A) du

is the unique positive stationary measure for the (Z, U, W )-process amongst all
measures o for which (-, -, E) is a o-finite measure for the (Z, U)-process.
Proor. For any initial measure e, let P, be the measure induced on the proc-

ess and let
Pa(j, Y, A) t) =
Zk fﬁ’fP[Zt =5 U Sy Wi=A4|Zo=k Uy=1x,Wo= wla(k, dz, dw).

Showing that 7 is a stationary measure is equivalent to showing that =(j, , A) =
P.(3,y,4,1) for eachjel™,y 2 0,A¢e@,andforallt = 0. Fort > y,
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P,y A, 8) = 2k [62 [ [Gumiy Hi(t — w — v; A) dM 5(0)
~duLi(x, w, r, w)w(k, dz, dw)
= D ks f(t)- Cmuepy— Hi(t — w — v; A) dM i5(v)
A [3Z [ 5 La(x, w, 7, w)n(k, de, dw)}.
The bracketed expression may be simplified as follows:
[62 [ & Li(z, w, r, w)w(k, dz, dw) = PuZo = k, Zo* =1, Vo < u]
= [(2PZt =1, Vo S u|Zy =k, Uy = zla(k, dz, E)

(6.4)

= [Z Qu(z; w)[l — Hi(z)ldz = mupir [o [1 — He(z)] de.
Thus, (6.4) becomes’
P.(j, y, 4, 1)
Dokrmupee [§ [y Hi(t — u — v; A)[1 — Hy(w)] dM,;(v) du
my [§H(s, A) ds = (j, y, A)

using (2.1) and the change of variablet — v — v = s.
If t £ y, one obtains

P.(j,y, 4, 1)
= Zk,r 3—_00 fE f(t)— J‘(t)-_—u HJ(t —U-— U,A) dMTJ'(v) duLk(x, w, T, u)”("’, d(l?, d’ll))
+ [ [ 2 Ti(x, w; t, A)7(j, dz, dw).

The first term on the right side of this equation reduces to =(j, ¢, A) and the
second to

PZo=35 U=y —t, Vo>t WieA]
= ['PWVo> t, Wee A | Zy = j, Uy = zln(j, dz, E)
= m; [§ Hi(z, t; A)[1 — H(z)] dz
=m; [ Hi(x + t; A) de = m; [YHi(s, A) ds
=7,y 4) — 7, 4, 4)

so that P.(j,y, 4, t) = 7(j, y, A) and = is a stationary measure.
Now let o be any other stationary measure. Then 8(¢, ) = a(4, z, E) is a
measure on the Borel sets of It X [0, + « ). The equations of stationarity become

a(Gy, A) = 2 Joo [Zump—Hi(t — w — v; A) dM,i(v)
d{ [3Z [ & Li(z, w, r, w)a(k, dz, dw)} if t >y
(6.5) = D Joo [T H(t — u — v; A) dM;(v)
A [32 [ & La(z, w, v, w)a(k, dz, dw)}
F [T (2 Ti(o, w3 t, A)alk, dz, dw) i t < g.
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The bracketed expression in each equation of (6.5) reduces to
PulZo =k Zo" =1, Vo= ul = [& Qu(z; w)B(k, dz)
and the second term in the second equation reduces to
Polzo=3, U=y —t, Vo> t, Wee Al = [ Hj(x, t; A)B(4, dz).

Using these results and letting A = E in (6.5), one obtains

B Y) = 2Zkrper [0 8y w5 +) * Hils - ) (DB(k, dz) i ¢ >y
(6.6) = 2 ks i [02 Pri(-) * Hila; - ) (£)B(k, dz)

+ [5L ~ Hy(z; 018G, do) i L= g,

That is, 8 is a o-finite stationary measure for the (Z, U)-process. Hence, 8(j, z) =
cm; f ¢ [1 — H;(u)] du by Theorem 3.3 and from the first equation in (6.5), one

obtains
(G, 9, A) = ¢ 2ok rmuprr [o [(up— Hi(t — u — v, A)[1 — Hy(w)]dM,;(r) du
= cm; ngf('S’ A) ds = C’ll'(j, Y, A)

as before and the proof is complete.

Two very simple but interesting examples of auxiliary paths are obtained by
letting ¥, (u) = max (X;# — w, 0) and Y " (u) = Z(r;,+x;,). In these cases
W:=V, and W, = Z,*. The reader can verify that in the first example
Qij(x, u; [0, y]) = pilH(z + y + u) — Hiz + w)]l — Hy(z)]™ and
Ki(x, w; j, u, [0, y]) = pi; or 0 depending as 4 < w < u + y or not; while in
the second example Q.;(x, u; k) = dapy[l — Hi(z; u)] and Ki(x, m, §, u, k) =
8i40kmll — PimQim(z; u)]. From these one obtains H (8 [0, yI) = His + y)
— H(s) in the first example and H(s, k) = pa[l — H(s)] in the second exam-
ple so that, not unexpectedly, the unique stationary measures for the (Z, U, V)-
process and (Z, Z*, U)-process are, respectively, m; f’é [H(s+y) — Hiys)]ds =
w(4, 2) + 7(4,y) — 7(5, x + y) and mpa [§[1 — Hi(s)]ds = par(i, z).
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