SEQUENTIAL PROCEDURES FOR SELECTING THE BEST ONE
OF SEVERAL BINOMIAL POPULATIONS!

By Epwarp PAavuLson

Queens College of the City University of New York

1. Introduction and summary. A problem that seems to be of some practical
importance is how to select the best one of k experimental categories or popula-
tions when there is a fixed probability for each population that any measure-
ment will be classified as a ‘success’ and the best population is defined as the
one with the greatest probability of a success. For example, we might be in-
terested in determining which of k& new drugs offers the greatest probability of
survival against a specified disease, or which of £ new production techniques
has the greatest probability of producing a ‘good’ item.

A treatment of this problem using a fixed sample size approach was given by
Sobel and Huyett [6]. To describe their formulation of the problem, denote the
populations by II;, Il,, - - - , Iy, the corresponding probabilities by p1, p:,
«++, px, and the ordered probabilities by py = Py = -+ = pw, and let
II;; be the population associated with p(;; . Then [6] described a statistical pro-
cedure and gave tables for determining the common sample size required with
each population so that population IIy; will be selected with probability =P*
whenever pyy = p + d, where d and P* are constants selected in advance of
the experiment. This formulation of the problem, which we will call the main
formulation, seems satisfactory when nothing is known about the magnitude
of (p1, P2, -+, pe) or if there is some a priors information available which
indicates that pp and pg do not differ too much from .5, say .25 £ py =
pm = .75. An alternative formulation of the problem when the a priori in-
formation indicates that pp and pp; differ substantially from .5 was given in
[6] as follows: the sample size is determined so that population Il is selected
with probability =P* whenever pz; < p’[';] and py; = p}'}] -+ d, where p?}]
is an additional constant determined in advance of the experiment on the basis
of the a prior: information about the probable value of pyy .

The present paper is based on a somewhat novel use of the Poisson distribu-
tion to obtain a random number of measurements from each population at
every stage of experiment combined with the application of one-sided sequential
confidence limits developed in [4]. Using these techniques we derive sequential
procedures for selecting the best population both for the main formulation and
for a generalization of the alternative formulation of the problem. Some Monte
Carlo calculations which are summarized in Section 5 indicate that a substan-
tial saving is possible with the sequential procedures.
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118 EDWARD PAULSON

2. The sampling procedure. The basic approach of the present paper is to
require that at each stage of the experiment the number of measurements taken
from any population is a random variable having the Poisson distribution. In
practise, this can be carried out using the published tabulations of the Poisson
distribution such as [2] and a table of random numbers, such as [5].

Let{Ns} (+=1,2,--- k;r = 1,2, .- -) be a double sequence of independent
random variables each having a Poisson distribution with mean = J, where J
is a positive integer fixed in advance of the experiment. Let S, denote the num-
ber of successes and F;, the number of failures when N, measurements are taken
from population II; at the rth stage of the experiment. If N, = 0, we take
Si# = Fi = 0. We assume that all measurements are independent and that
there is a constant probability p; that any measurement from II, is classified as a
success. It is easy to prove (and is actually worked out as an example in [1}, page
203) that for each 7 and r the (unconditional) joint probability distribution of
Si and F, is that of two independent Poisson random variables with means
Jpiand J(1 — p;) respectively. The pair (S;., F,) is independent of (S;:, Fj:)
unless 7 = jand r = .

Nowweletq,- =1- p,'fOI"i = 1, 2, s ,k,let A;j = Pi — Pj, 0,‘]' = q,'/qj,
0:; = pi/pj, and let V5 = Sir + Fjry Wijp = Sjp + Fiy, Yijy = Fin + Fjp
and Z,;; = Si» + Sj-. Since the sum of independent random variables each
having a Poisson distribution also has a Poisson distribution, it follows that
V:ir has a Poisson distribution with mean = Jp; + Jg; = J(1 + A;;), and
W i has a Poisson distribution with mean = J(1 — Ayj).

We now consider Y;; = Fi;r + Fj . Since Y, has a Poisson distribution with
mean = J(¢;: + g ), it is known (and easy to prove) that the conditional dis-
tribution of F; when Y;, is fixed is that a binomial distribution corresponding to
Y ;jr trials with constant probability p = ¢i/(¢: + ¢;) = 0:;/(1 + 8;;) on each
trial. By the same reasoning, the conditional distribution of S, when Z;, is fixed
is that of a binomial distribution corresponding to Z;;, trials with constant prob-
ability p = pi/(p: + p;) = 0:;/(1 + 6:5).

3. Sequential confidence limits. In this section we will make use of the general
procedure of [4] to obtain one-sided sequential confidence limits for A;;, 6.;,
and 6; i . Let f(v,w) = P[Vij, = vand W;; = w]. From the discussion of Section
2, we have

f(v,w) = {exp [=J(1 + AT + A;)]"/v!
fexp [=J(1 — AT (1 = Aiy)]"/w!
Let g(v, w) denote the probability distribution
g(v, w) = {exp [=J(1 4+ A;)/N}I (1 + Asz)/N"/v!
fexp [N (1 — AHIIIN (1 — Ai)]"/w!

Here A > 1 is a constant whose selection is discussed in Section 4. If we let
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o* = 1 — P* then (see [7], page 146)
3.1) PIIr<f Vi, Wiie) /1179 Vise , Weie)
>a* forall n,n =12 -] = P*
Taking logarithms to the base ¢ and simplifying, (3.1) reduces to
Pla; < (0 = 1)*/(\* —1)
(32) + [—Alog @ + D a1 (Vijr — W)\ log M(nd (A* — 1))
forall n,m =1,23,---] =P*
Noting that V.'j,- - W;,',- = (S.’r bl F;,-) bl (S,',- —_ Fj,-), it follows from (32)
that when A;; = p; — p; > d,
P[Z:Ll (Sir - s'r) é Z:’Ll (Sjr - Fjr)
(3.3) + Aloga* + nJ[d(M® — 1) — (A — 1))} (A log )™
for at least one n,n = 1,2, -+ | p; — p; > d] < o™

With a view to applications when a priors information indicates that py; and
P2 are large, we shall now derive a one-sided sequential confidence limits for
0:; = ¢:i/q; . Let f(fir | tizr) = P[Fir = fir | Fir + Fj = t;j). From the discussion
of Section 2,

F(far | tiir) = (GNP (1 — )i ir
where p = ¢./(g; + ¢;) = 0:;/(1 + 6:5). ‘

Let g(fir | tize) = (591 — ax(1 — p)"*"laa(1 — p)]“""* where a, is a
constant with 0 < a; < 1 whose selection is discussed in Section 4. If ¢;; = 0,
we take f(0 | 0) = g(0]|0) = 1. Now let ¢;; denote the sequence (¢;j1,ti2, *- ).
Then we have
(34) PlIIr< f(Fir | tiie) /1171 9(Fir | tisr)

>a* forall n,n=1,2, - |t;] = P*
Since the lower bound on the conditional rrobability in (3.4) holds for each
sequence t;; = (tij1, tij2, -+ ) the same relationship must hold for the uncon-
ditional probability, so that
(3-5) P[H:;lf(Fir l Fir + FJ'T)/I__I:'—'I g(Fir | Fir + Fir)
>ao* forall n,n =12 ---]= P
Upon simplifying, we obtain
P[0 > {(a*)FF™" (g,) BFOEROTE (1 _ g))
(36) {1l = (a*)ETOT (ay) Br BT T

for every n such that )~y Fi, > 0] = P¥,
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where each sum in (3.6) ranges fromr = 1tor = n. When 0;; = ¢;/¢; S a1 < 1,
it follows from (3.6) that

(3.7) P[2X 7 Fir Z {log a1 27=1 Fjr + log &*} (log {ar/(1 + ¢ — a)}) ™
for at least one n,n = 1,2, --- | ¢:/¢; < ¢&1] S *.

To obtain an equivalent inequality when 6i; = pi/p; = c¢;, we note
that p./p; = ¢; > 1 is equivalent to p;/p: £ 1/¢; < 1 so from the analogue of

(3.7) we obtain
(88) P[27-18: < {llog (1 + ¢ — azc2)] 2o7=1 8;r + log a}*(— log @)™

for at least one n,m = 1,2, --- | p:/p; = &] £ o*
where a, is a constant with 0< a; < 1. The choice of a; is discussed in Section 4.

4. The specification of the sequential procedures.

4.1. Sequential procedures for the main formulation. In this section we will first
derive a class of sequential procedures when \ is restricted to the interval 1 < A <
(1 4+ d)/(1 — d) so that for any choice of A in this interval the corresponding
sequential procedure satisfies the basic requirement that population IIjy is
selected with probability =P* whenever py; — pr = d. In addition to specify-
ing values of d, P* and \, it is also necessary to select a value for J in advance
of the experiment. The choice of J will be a compromise based on the considera-
tion that increasing J decreases the number of stages required by the procedure
but also increases the average sample size. The choice of J is similar to the
problem of selecting the group size in the standard theory of sequential analysis.

To describe the procedures, first set « = (1 — P*)/(k — 1), let A(\) =
JAO® — 1) — (A = 1)}/(\log\), and let N()\) denote the largest integer
which is less than (—log a)/[A(N\) logA]. Since 1 < A < (1 4+ d)/(1 — d) we
have A(\) > 0, and without any real loss in the applicability of the results, we
can suppose the parameters were chosen so that N(A\) > 0. We now start the
sequential procedure by observing the values Ny, Na, ---, Nu of k inde-
pendent random variables each having a Poisson distribution with mean = J,
using published tables such as [2] and [5]. Then we take Ny; measurements from
II; , N measurements from II;, - - - , and Ny measurements from II . After
the first stage of the experiment we reject any population II; for which

Sa — Fa £ maxi<j<ilSin — Fil + loga/logh + A(N).

Proceeding by induction, suppose at the start of the rth stage of the experiment
there are 7'(r) populations II,, , II,, , - - - , I, left after the (r — 1)st stage
is completed. We then observe the values of T'(r) additional Poisson random
variables N, , Ny, =<, N,}(,), , and then take N, measurements from
o, -+, Nip(,yr measurements from II,,.,. We then reject any remaining
population II; for which

(41) 251 (Sis — Fip) < max[2 51 (S — Fig)] + loga/log A + rA(N),
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where the max is taken over all T'(r) populations left after the (r — 1)st stage.
The experiment is terminated as soon as only one population is left, in which
case the remaining population is selected as best. Since N(\) was defined so that
log a/log A + rA(\) < 0 for r = N()\), the populations can never be all elimi-
nated before the (N(\) + 1)st stage. If more than one population is left after
the N (\)th stage, the experiment is terminated at the (N(A) + 1)st stage by
selecting the remaining population II; for which Y g2’ ™ (Si — Fys) is a maxi-
mum. If a tie for first place should occur at the (N (M) + 1)st stage, the popula-
tion to be selected as best can be obtained by selecting one among the tied popu-
lations by any random mechanism.

We now give the proof that whenever py; — Pz = d population Iy will be
selected with probability = P* for any sequential procedure in this class, that
is for any A satisfying 1 < A < (1 + d)/(1 — d). We first note that if r =
N()\) + 1, the inequality (4.1) is satisfied for every population left after the
N ()\)th stage. The event that Iy is eliminated can occur if and only if for at
least one value of s(s = 2, 3, -+, K) there is an integer n(s) such that

2B (Sws — Fug) £ 25550 (Stas — Fras) + loga/log A + n(s)A(N).

It follows from (3.3) that when py — p; = d the probability of this event
is £(k — 1)a = & = 1 — P* so the probability that Iy is selected s> P*.
An optimum choice of A is unknown at present. We recommend using

N = (14 .75d)/(1 — .75d).

The calculations summarized in Section 5 seem to indicate that this choice of A
yields good results, since it results in a substantial reduction in the average
sample size.

4.2. Sequential procedures for an allernative formulation. In this section we
consider a different formulation of the problem which may be more useful than
the preceding formulation if there is a priori knowledge either that py is large
(say p = .8) or that pry is small (say py = .2). This new formulation will
include the alternative formulation of Sobel and Huyett (which was described
in the introduction) as a special case. We will first consider the situation where
Py is known to be large, and then more briefly the situation where py is known
to be small.

When py is large the quantity qpi/qz seems to be a useful measure of the
superiority of pu; over p; . We therefore consider the following formulation of
the problem: to find a sequential procedure for selecting the best population so
that Iy is selected with probability =P* whenever qu;/qis < ¢, where ¢; is a
constant <1 which is specified in advance of the experiment. Since the
inequalities p = ply and pm = pin + d imply that qu/qm =
(1 — ply — d)/(1 — piy), this means that the alternative formulation given
by Sobel and Huyett is included as a special case of this new formulation if we
take ¢ = (1 — piy — d)/(1 — pix).

We now restrict a; to the interval ¢; < a; < 1 and obtain a family of sequential
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procedures, one for each choice of a, in this interval, such that for each procedure
in this family the basic requirement that IIj;; should be selected with probability
> P* whenever qu;/qe < ¢ is satisfied.

We now give the class of sequential procedures satisfying the specified require-
ment. The selection of J and the general sampling procedure is the same as in
Section 4.1. However instead of (4.1), we now eliminate at the rth stage (r =
1, 2, ---) any category II; remaining after the (r — 1)st stage for which

(4.2)2 54 Fip = {Iming, (25=1 Fj5)] log a1 + log a}flog [ar/ (1 + ¢1 — a)} ™

where the minimum is taken over all populations not eliminated in the first
(r — 1) stages. The experiment is terminated as soon as only one population is
left, in which case the remaining population is selected as best. However, if at
any stage (4.2) is satisfied for all the remaining populations, we terminate the
experiment and select one of these populations with the minimum cumulative
sum as the best.

The event that I, is eliminated by the above procedure can occur if and only
if for at least one integer s (s = 2, 3, ---, k) we have

D p=1 Frup = {( 251 Frap) log a1 + log a}flog [e/ (1 + & — a1)]} ™

for at least one integer n. When qu/q@ = ¢, it follows from (3.7) that the
probability of this event is <(k — 1)a = a* = 1 — P* so the probability
requirement is satisfied.

For each choice of g, in the interval ¢; < a; < 1 the resulting sequential pro-
cedure is partially closed in the sense that the number of stages in which at least
one failure occurs with at least one of the remaining populations is bounded.

The optimum choice of a; is unknown. At present, we recommend using
a = ¢ + .25(1 — ¢1). The calculations in Section 5 indicate that this choice
yields good results, since there is a substantial reduction in the average sample
size compared to the corresponding fixed sample size procedure.

TABLE 1

A comparison of the average total sample sizes for k = 4 and P* = .95
Main Formulation Alternative Formulation

P: ter Configurati : : - - -

Te e a0 RPN BIN TR Sl Ryt
@=.1) @= 4,A=1162) @= 1, = .8) a1 = .625)

(8, 8, 8, 8) 848 699 428 350
< (20$) 11)
(8, .8, .8, .9) 848 485 428 291
(19) (10)
(8, 7, 8,.9) 848 347 498 195
13) @)

(1) The value J = 1 was used for each sequential procedure.
(2) Each number in parenthesis is the estimated standard deviation of the number
directly above it.
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We note that this sequential procedure only involves the random variables
{F.}, and does not depend on the random variables {S;,}. This feature is due to
the fact that we were unable to discover any function of S; and S ;s whose prob-
ability distribution would depend only on the parameter ¢:/q; . We conjecture
that when py is large there is only a small loss of information in not using the
{S.}, but further research on this and other matters would clearly be desirable.
Similar considerations apply to the case when ppz is small, which will now be
discussed.

Returning briefly to the case when pyz is small, we now work directly in terms
of the parameter pu/pry, and look for a sequential procedure meeting the re-
quirement that whenever pp;/p = ¢z > 1, then Iy is selected with prob-
ability =P*. This satisfies the alternative formulation of [6] if we take ¢y =
(pla + d)/pla - To obtain a sequential procedure meeting this requirement we
use the previous general sampling procedure, but at the rth stage of the experi-
ment now reject any remaining population II; for which

> 518 < {max; 2 1 Sillog (1 + ¢z — ascs)] + log a}(— logas)™,

where the maximum is taken over all populations left after the first (r — 1)
stages, and a; is restricted to the interval 1/c; < a; < 1. We can show just as
before on the basis of (3.8) that the probability requirement is met. For each
az with 1/¢c; < a2 < 1 we again get a partially closed procedure. At present we
recommend using a2 = 1/c; + .25(1 — 1/c).

6. Some numerical results. In order to obtain some idea of the efficiency of
the recommended sequential procedures using A = (1 + .75d)/(1 — .75d) for
the main formulation and a; = ¢; + .25(1 — ¢1) oraz = 1/¢ca + .25(1 — 1/c2)
for the alternative formulation, a number of sampling experiments were carried
out. The results for the case k = 4, P* = .95 and three different parameter con-
figurations are summarized in Table I. The data of Table I shows that a sub-
stantial reduction in the average sample size is possible with the sequential
procedures.
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