OPTIMAL STOPPING WHEN THE FUTURE IS DISCOUNTED!

By LesTER E. DuBiNns AND HENRY TEICHER
Unaversity of California, Berkeley and Purdue University

1. Introduction. Let (8, X), (81, X1), (B2, X2), --- be a sequence of iu-
dependent, identically distributed, two-dimensional random variables with
0j< B'< 1and 0 < E|X| < «. (No assumption about the independence of 3
and X is necessary.) Let S, be the partial sum X; + --- + X,, 8" be the
partial product 8, - - - B», and adopt the conventions that Sy = 0 and g° = 1.

This note determines

(1) U(z) = sup E(8(z + 8))

as ¢ ranges over the set T of stopping times for X; , X, , - - - and finds a (typically
unique) optimal ¢ for x, that is a ¢ such that the sup in (1) is attained.

In contrast to the problem invented and studied by Chow and Robbins in
[3], and its generalizations [6] and [10], the mere existence of an optimal stopping
time for our problem is simple to demonstrate, as was noted in [3].

2. An optimal stopping time. Each stopping time t for X; , X, , - - - hasthe non-
negative integers with + « adjoined as its range; the event {{ = n} depends only
on (X, ---,X,) and (B - - Bs); and P{t = 0} is either 0 or 1. It is natural in
this problem to adopt the convention that 8° = 0 whenever ¢ = «, and the
convention that multiplication by 0 always yields 0; so 8°S;is 0 if = o, though
S is not defined.

LemMA 1. There is a random variable G with a finite expectation such that, for
each t,

(2) [8°Si| < G almost certainly.

Proor. Let G = Zk IﬁkSkl.

Plainly, Lemma 1 implies that U is well defined.

Lemma 2. U s convex and nondecreasing. There is a unique number s, necessarily
greater than 0, such that

(3) < U(x) <s forx < s.
and
(4) Ulz) ==« forz = s.

Proor. The lemma is immediate from these three observations: (i) According
to (1), U is the sup of linear functions of  with nonnegative slopes. (ii) For
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¢t = 0, the linear function evaluated at z is z; except for this ¢, the slope of the
linear function does not exceed E(8) < 1; (iii) U(0) > 0.

Here is the formulation of “the principle of optimality”’ [1] appropriate to the
problem of this note:

LemMA 3. For all «,

(8) U(z) 2 E(BU(z + X)).

Proor. The proof of (5) is straightforward if X is discrete (for example, as
in the proof of Theorem 2.14.1 in [5]). Since U is nondecreasing and continuous,
there is no difficulty in modifying the proof for discrete X so as to apply to any X.

Here is an immediate consequence of Lemma 3.

Lemma 4. For all z,

(6) U(z), BU(z + 8), FU(z + 8), - -
18 a nonnegative, expectation decreasing semimartingale. Consequently,
(7) U(z) =2 BE(BU(z + 8)) 2 E(B'(z + 81)),

for all stopping timest = 1.

Lemma 5. Forz < s, U(z) = E(BU(z + X)).

Proor. If z < s, then, by (3), z < U(z). Consequently, U(z) is the sup of
E(B'(z + S:)) over stop times ¢ = 1. So (7) implies

(8) U(z) = E(BU(z + &)) = BE(BU(z + X)).

By continuity, equality holds for z = s also.

Intuitively, Lemma 5 implies that if the process U(z), 8'U(x + Sy),
B'U(xz + 8;), - - - is observed only until the first n such that z + S, > s, then
the observed process is a martingale. More formally, for each y = 0, let +(y)
be the first n, if any, such that S, > y. Forz < s, let ¢(n, ) be the minimum of n
and 7(s — z).

LEmMA 6. For each x < s,

(9) {ﬁt(n'z)U(x + St(n,I)), n = 0) 1) ° '}

18 a uniformly integrable martingale.

Proor. Since each {(n, x) is a bounded stopping time, Lemma 4 implies that
each term in (9) has an expectation. Lemma 5 implies that the process is a
martingale. To see that it is uniformly integrable notice that, for x > 0, U(z)
is majorized by a linear function of z, as (3) and (4) imply. So Lemma, 1 implies
that for each x there is a single random variable with a finite expectation that
majorizes every term of (9). This certainly implies uniform integrability.

TurorEM 1. For each x < s, 7(s — z) is optimal for x. Equivalently,

(10) U(z) = E(B™(x + Sren))-

Proor. Since ¢(n, z) converges to 7(s — x), and U is continuous, the martingale
in Lemma 6 certainly converges to 7/ ®U(z + S,u_z), call it ¥, wherever
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7(s — ) < =, and even where 7(s — ) = . The uniform integrability of the
martingale implies that its first term, namely the constant U(z), is the expected
value of Y. Moreover, since £ 4+ S;—2) > 8, U(x + S;—v) equals £ + S;¢-o) -
This completes the proof.

If the entire sequence 81, X1, 82, X2, --- are independent, then in (10), ‘5’
may be replaced by ‘B’, where § is the mean value of 3.

The two special cases of Theorem 1 in which z = sand z = 0 yield

(11) s = E(s + Sw)),
and
(12) U0) = E(B"8yw)-

Of course, (11) is linear in s and reduces the evaluation of s to the determina-
tion of the joint distribution of 8 and S, . (For information about the joint
distribution of the ladder variables 7(0) and S« see, for example, [7].)

Since s has been evaluated by (11) and 7(s — z) is optimal for z, according
to Theorem 1, the main purpose of this note has been achieved.

3. Other optimal stopping times.
TaroreEM 2. Let x < s. The conjunction of these two conditions is necessary and

sufficient for t to be optimal at x:

(13) Plz 4+ S, <s] =0
and
(14) Pl(An)(n < t,and x + Su > s)] = 0.

Proor. That (13) together with (14) is sufficient for the optimality of ¢ is a
simple consequence of Theorem 1 together with thefact that s = E(BU(s + X)).
That (13) is necessary follows from the implication: z < simpliesz < U(x).
That (14) is also necessary is a relatively routine consequence of this lemx=ia.

LemMma 7. Forall z > s,z > E(BU(z + X)).
Proor oF LeEMMma: Plainly, for z > s,

(15) z—s2 U@+ X) — Uis + X),
SO
r— s> EBU(x + X)) — E(BU(s + X))
(16) = E(BU(xz + X)) — U(s)
= E(BU(z + X)) — s.

CoroLLARY. Suppose x is less than s. Then, unless there is positive probability
that S, = s — x for some n, 7(s — x) 1s the only stopping time that is optimal for .

4. The elementary case. This section shows that Theorem 1 has a particularly
simple form if 8 is a constant and X is elementary, that is, X is almost surely an
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integer less than or equal to 1. Let R be the generating function of —X. Of course,
(17) R(y) = E(y™),

and, as is easily verified and well known, R is convex, continuous, and strictly

decreasing for 0 < y < 1.
TurorEM 3. If X is elementary and B is constant, (0 <B<1), then s satisfies:

(18) BR(s/(s+ 1)) = 1.

The proof of Theorem 3 depends upon a lemma in which it is convenient to

abbreviate E(8?) to o(B).
Lemma 8. If the X’s have an elementary distribution, and B is a positive constant

less than 1, then

(19) BR(e(B)) = 1.

Proor. The conditional distribution of 7(0) given X; = —F is the same as the
distribution of 1 4 7, + -+ 4 7441 where the r; are independent and each 7;
has the same distribution that 7(0) has. Consequently,

(20) EB? | X1l = B (B).

Taking expectations of both sides of (20), gives
o(8) = E(8"”)
(21) = Be(B)E(¢™(B))
= Be(B)R(e(B)).

Lemma 8, which is a version of Wald’s fundamental identity, permits the
calculation of ¢ implicitly in terms of R. For the demonstration given, we are
indebted to David Blackwell, David Gilat, Soren Johansen, and Roger Purves.
We are indebted to J. Kemperman for pointing out to us that, in different nota-
tion, it was established in [8], p. 82; the appendix of [2]; and in [9], p. 47.

Proor or TuEOREM 3. Under the hypotheses of Theorem 3, (11) implies

(22) s = (s + 1)e(B).

Lemma 8 now applies.

Theorem 3 permits an explicit calculation of 7(s) from R, as can be seen thus.
7(s) is the same as 7(j — 1) where j is the integer determined by ;7 — 1 < s < j.
Since R is decreasing for 0 < y < 1 and

(23) G=DGss/(s+1) <j/G+ 1),
(24) R((G = 1)/i) 2 B(s/(s + 1)) > R(j/(j + 1)).

Consequently, in view of Theorem 3, to find j, it is only necessary to calculate
R(%), R(%), - - - successively until the first 5 such that

(25) R@G/G + 1)) <1/8.
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Asis easily seen, 7(j — 1) has the same distribution as the sum of j independent
copies of 7(0). Consequently, E(8™) = ¢’(8). Since 7(j — 1) = (s) and
S,-(j_l) = j, (12) 1mplies

(26) U(0) = jo'(B).
In view of (22), (23) and (26),
(27) i@ — 1)/ = U0) <ji@G/G + 1))

Of course, (27) implies that for large j, the optimal return U(0) depends
mainly on j, and otherwise very little on 8 and even very little on the distribu-
tion of X.
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