ON STATIONARY MARKOV PROCESSES!

By RicuARD Isaac
Hunter College

1. Introduction. Consider Markov processes (X, , n = 0) with given station-
ary transition probabilities and (eo-finite) stationary measure a. The state space
Q is arbitrary; 2 is a o-field of measurable subsets of Q. First, we prove that the
strictly stationary process (X,, n = 0) is embeddable in a strictly stationary
Markov process (X,, — < n < o) which we call the extended process (see
[5]). This was a fact assumed true in [5], but no proof was given. We also examine
the invariant random variables for these processes in Theorem 2. Also briefly
discussed is the reversed Markov process. In the event that Q is the real or com-
plex field, Theorem 1 is known ([1], p. 456) and if « is finite Theorem 2 is known
([1], pp. 458-460). However, counterexamples are offered illustrating the diffi-
culties arising when « is infinite.

This note is a sequel to [5]. Besides the gap there mentioned above, the language
of [5] suggested that Theorem 2 is true in general, i.e., without condition (A).
Section 4 of this note will set matters straight.

2. Main results.

LEMMA. Let = be separable, that is, Z is generated by a countable family of sets.
Then the strictly stationary Markov process (X., n = 0) may be embedded in an
extended process (Xn, —0 < n < ).

Proor. Consider bilateral sequence space @ with elements o =
(++«w_1,w,w, ). Let Ag and oA be the o-fields generated by cylinders in
, with non-negative coordinates and non-positive coordinates respectively. Using
the transition probabilities, for each z a conditional probability measure
P(- | X, = z) may be constructed on A according to [1], p. 614. With « as initial
measure on Xy-space, it is easily seen that a shift-invariant measure oo may be de-
fined on Ao by putting ap(U) = [ P(U | X, = z)a(dz) for U & Ao (see Lemma 1
of [5]). Proceed as in [1], p. 456, to assign a mass a; to cylinder sets in @; by
setting 01(C) = ao(T°C) where T °C € Ao, T is the shift, and C is a cylinder of
@ . To prove that oy determines a measure on the o-field 2, of Q; determined by
the cylinder sets (and hence that (X, ,n = 0) is embedded in (X5, — e <n < «))
it is necessary to prove a; countably additive on the cylinders.

Kolmogorov’s extension theorem fails because @ here is arbitrary. It is already
known that oy restricted to Ao is countably additive and equal to ao . Now we
check a; restricted to oA is countably additive. To see this, observe that since
Xy, X1, --- is a Markov process with initial distribution «, the process
v+ Xn, Xna, -+, Xo is also Markovian (see [1], p. 83; the restriction to real
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or complex-valued processes there is mnot essential). Let Qun.1(E, x) =
P(X.1¢E|X. = ). Since 2 is separable, there is a version of this conditional
probability a.e. (a); the proof follows the real case, [1], p. 30, by using the
selection principle on a countable field of generators for =. Moreover, the sta-
tionarity of o easily shows @ = Qn .1 is independent of n, and a is stationary for
Q, that is, the reversed Markov process has stationary transition probabilities and
is strictly stationary with stationary measure . Therefore the reversed Markov
process has, for each z, a conditional probability Q( - | Xo = =) defined on ¢A. The
proof of this fact is identical with [1], p. 614, except that we consider non-positive
rather than non-negative coordinates. The formula

a(U) = [ QU | Xo = z)a(ds),

as in the case of ap, defines a measure, this time on oA, and ea(U) = aa(U) for
U € oA. This proves oy countably additive on cA. Consider now a countable col-
lection of arbitrary disjoint cylinders {C} whose union C is a cylinder. We must
show X a1(C:) = ai(C). e is o-finite so that there exists an expanding sequence
of sets Ay = [Xoe A,] where A, T @ and a(4;) < . Let Cin Ay = i and
CnAd, = C%. Putting C*® — Ui c® = D,.("), one has D, | ¢ for each
fixed k. Since D,* = N,® n P,* where N ® oA and P,® e Ao, it follows
that, for fixed k, either N,* | ¢ or P,*® | o. To fix ideas, suppose k = 1 and
Na® | o. ais countably additive on A and oy (N»") < ax( A1) =a(4Ay) < @, 50
that ea(D,") < oa(N,¥) — 0, and so > a(C?) = as(C?) or, more generally,
Sia(C®) = 01(C®) for each k. c® 1 C;and ¢® 1 €, so the monotone
convergence theorem yields ai(C) = limg au(C ®y = limg )i aa(C Py =
> :01(C;), and the proof is concluded.

THEOREM 1. The process (X, ,n = 0) may be embedded in an extended process
(Xn, —0 <m < o).

Proor. The theorem merely asserts the truth of the lemma even if Z is not sup-
posed separable. o is still finitely additive on cylinders, and again we wish to
show &y countably additive. That a; may be defined on cylinders at all is a conse-
quence of the existence of given transition probabilities; if these are not given the
theorem is not necessarily true. See [1], p. 614. Suppose a; not countably additive;
then there exists a sequence of disjoint cylinders {4} with UA: = 4, a cylinder,
and Y a1(A;) # au(A). Now observe that there is a sequence of sets By in 2
such that each set A is defined only in terms of the sets B, . For, each set A:is a
union of “rectangles” (sets of form [X;, £ Cy, - -+ , Xy, € Cj]), and since A, is de-
fined in terms of at most a countable collection of = sets and there are a countable
number of sets A;, the result follows. There is then an admissible subfield
$ C 3, i.e., £ is separable and P( -, E) is measurable with respect to Z for each
E e 3 and {B,} C S (see [1], p. 209 and [8]). The process may now be restricted
to E, and one may check that o restricted to $ is stationary for the restricted
process. Thus the mass «; is countably additive on the cylinders generated by sets
in $ by the lemma; since the A4 are cylinders of this type, a contradiction results.
Hence o is countably additive on the cylinders, and the proof is concluded.
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The lemma has the following immediate

CoroLLARY. If 2 ¢s separable, the stationary Markov process (X, ,n = 0)(or
equivalently (X., —o < n < o)) has associated with it a Markov process
(Yo, —0 <n < ) where Y, = X_, . This process, the reversed X,-process,
has stationary transition probabilities and is strictly stationary with stationary meas-
ure a.

“Reversing the chain” is a useful device in the case of discrete state spaces (cf.
[2], p. 373). Most recently the concept has proved valuable in the potential theory
of Markov chains and the analysis of the Martin boundary. The corollary is a
generalization of this standard reversal procedure and may be of interest in the
potential theory of general Markov processes.

a is said to satisfy condition (A) if, for every E ¢ Z, P(X, ¢ E infinitely often
| Xo = z) = 1a.e. (a) for z ¢ E (see [6] and [7]).

THEOREM 2. Let « satisfy condition (A). Then the process (X, ,n = 0) and the
extended process have the same invariant random variables and any invariant random
variable is measurable with respect to X, .

This generalizes results in [1], pp. 458-460, proved for finite measures a. To see
this, observe that condition (A) is automatically valid for « finite; this is merely
the Poincaré recurrence theorem [3], p. 10, in a probability setting.

As a tool in the proof of Theorem 2 we employ the process on A (see[4]). Since
possibly P,(z, A) < 1 for some points z ¢ A, the process on A cannot be defined
exactly as Harris does. But because condition (A) holds, by excluding an a-null
set, we may define the process on B, B C A, where Pz(x, B) = 1 for all z ¢ B.
Thus, without loss of generality, assume P4(z, A) = 1forallz e A.

LeEMMA. Let o be a stationary measure for (X, ,n = 0) satisfying condition (A)
and let A be a set with 0 < a(A) < . Then a restricted to A is a finite stationary
measure for the process on A.

Proor. In [4] a finite stationary measure « on A was extended to a o-finite
measure on the entire space. The argument there works in the opposite direction
as well, as is easily checked (see [4], p. 116, (4.4)), and this proves the lemma.

Proor or THEOREM 2. To prove the first assertion, let

w= (""", 01,w,w, ")

with wy ¢ 4, and define the transformation 7' 40 = T w where r > 0 is the first index
to satisfy w, ¢ A and w; 2 A for 0 < ¢ < r. Here T is the usual shift for the original
process, and T'4 corresponds to the shift for the process on A. T4 is measurable
and invertible. We are now ready to adapt Doob’s proof [1], p. 458. It is only re-
quired to prove that a function y invariant with respect to the extended process
(Xn, — < n < ) is measurable with respect to the X,’s with n = 0. Let
A C Q be chosen with 0 < a(4) < «. To every positive integer k there is a
random variable y; , measurable with respect to the s-field determined by a finite
number of X,’s, such that

(a) (A n(ly(0) = ye(@)] > k7] < 27
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where A C @y and 4 = (w: Xo(w) € A). There exists a positive integer Jj such that
T’y is measurable on the space of X, , n = 0; certainly then T 4’yi(w) = yi(T Jw)
is also measurable relative to this sample space. Now employ the facts that
TJiAd = Aand T (M aN) = To’M a TN for any positive integer 7 and sets
M and N in the domain of T'4 . The second relation follows from the invertibility
of T, . Thus, (a) yields, using the lemma

(b) a4 n[[y(Tiw) — y(Tiw)| > k7)) < 27
But y(T40) = y(T"“w) = y(w) a.e. (a1) by the invariance of ¥, so that y is

invariant under T',°. Therefore (b) holds where y(w) may be substituted for
Y(T4w). Thus (b) says

limk..w TA’yk=y a.e. (al) on g

so that y on 4 is the limit of functions measurable with respect to X, , n = 0.
Since the entire space is the union of such sets 4, the proof is concluded by piecing
together a countable number of functions corresponding to sets A. This con-
cludes the proof of the first assertion. The second follows by adapting the proof
of Theorem 1.1 [1], p. 460, using the preceding method and similar arguments.
a is called ergodic for a process if the only invariant sets are trivial up to sets

of measure zero.

COROLLARY. a s ergodic for the process (Xn» ,n = 0) if and only if « is ergodic for
the extended process.

3. Some examples.

ExampLE 1. Theorem 2 is not generally true without condition (A). Consider
the state space @ = (a1,a2, -+ ;b1,bs, ---;0,1,2, --+) with p(an , an_y1) =
P(bn, ba1) = p(a1,0) = p(b1,0) = 1forn > 1;p(n,n + 1) = 1forn = 0.

Let o be the stationary measure assigning mass 1 to each of the points a. and
b, and mass 2 to each ‘“number” point. The process (X,, n = 0) has trivial
invariant field since the only bounded regular functions f (i.e., Pf = f) are the
constants (see [6]). On the other hand, the sets

A={w:w=T("",0,0,01,2 --+) forsome integer k}
and
B={ww="T(",bp,b,0,1,2 ---) forsome integer k}

are invariant sets, each with o; measure «.

ExaMPLE 2. An invariant function may not be X, measurable if the process has
an infinite stationary measure o for which condition (A) fails to hold. Consider
the same state space as in Example 1, but set p(a, , @Gnp1) = p(bn, bay1) = 1,
nz=l;p(n,n—1) =1,n=1;p(0,a) = p(0,b;) = L. Let o assign mass as in
Example 1. Then «a is stationary. If z2(w) = 1forw = (wg, w1, - - -) containing an
infinite number of a.’s and 2(w) = 0 if w contains an infinite number of b.’s, z is
defined a.e. and is invariant. But z is not a function of X , for if 2(w) = h(Xo(w))
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a.e. (a;) for some function h, then w; = (0,01, 02, --+) andwe = (0,b1,b2, - - )
each have ao measure 1, and z(w1) = 2(wz), which is false by definition of z.

4. Conclusion. All page references to follow apply to [5]. On page 1782, top,
it was stated that the (X, ,n = 0) process and the extended process are simul-
taneously ergodic. As we have seen (Example 1) this is not necessarily true unless
condition (A) is valid. Thus, for the validity of Theorem 1 on p. 1782, it is
necessary to restrict attention to processes such that the original and extended
processes have the same invariant random variables. To see that Theorem 1[5]
may fail otherwise, consider Example 1 where 8 assigns mass 1 to each point
a. and each “number”’ point and mass 0 to the points b, . 8 is stationary, yet 8 is
not a constant multiple of @, the stationary measure described in Example 1.

Call « strongly ergodic for (X. ,n = 0) if @ is ergodic for the extended process.
Then strong ergodicity implies ergodicity, but not conversely. Theorem 2 asserts
the equivalence of strong ergodicity and ergodicity under condition (A). In the
example on p. 1783 the non-constant bounded function k; was erroneously as-
serted to be a solution to a certain equation of regularity, whereas it only satisfies
the equation for 7 = 1. The only bounded regular functions for this process are
the constants, hence ergodicity follows for every stationary measure. Thus & + 8
is ergodic but not strongly ergodic, whereas both « and g are ergodic, contrary
to the statement there.

A final comment: On p. 1784, for P(V/X, = t) = 1 for every t € @ to hold (line
6), V must be strictly invariant, i.e., T"'V = V. However, for the other con-
clusions there it suffices for V to be ap-invariant, i.e., T~V and V differ by an
ap-null set.
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