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Preface. The results of Part I and Part III were obtained by the second author
(cf. Puri (1962)) and those of Part I and Part II by the first author by following
different methods (cf. Mehra (1963)). The authors wish to express their sincere
thanks to Professors Erich L. Lehmann, Jaroslav H4jek and Edward Paulson
for very helpful suggestions and criticisms.

PART I

1.1. Introduction and summary. Consider K treatments in an experiment
which yields paired observations, namely (Xu,X;), I=1,.---,Ny;
1 £ 7 < j £ K, obtained by N,; independent paired comparisons for each pair
(4, j) of treatments and assume that N; difference scores Z,"” = X — X1,
l=1,---,N;, have a common continuous cdf (cumulative distribution func-
tion) I1;;(z). This is the situation, for example, if in the analysis of an incomplete
blocks experiment with each block of size two, one makes the assumption of
additivity in the usual analysis of variance model. Then for testing the
hypothesis

H,: IL-J-(z) + ]L-J-(—z) =1 and H,-,-(z) = l'I,v,-r(z)

for any two pairs (%, 7) and (¢, ;') [which states that each of the distributions
I1,; of the differences Z;j; = Xu — X;1,l =1, --- , Ny, is symmetric with respect
to the origin, and furthermore all distributions II;; are identical] some rank tests
based on the generalizations of the one-sample Chernoff-Savage-Héjek type tests
(cf. [9] and [3]) are proposed, their limiting distributions are derived, and their
efficiency properties with respect to one another and some of their competitors,
viz. the Bradley-Terry test [1], the Durbin test [6] and the classical F test are
studied. (For alternative formulations of the null hypothesis, and the study of
the special case of the generalization of the one-sample Wilcoxon test, the reader
is referred to [16].)

Let {Jyx; k=1, -+, N}, be adouble sequence of numbers satisfying certain
conditions to be stated below (Section 2) and let RS"” be the rank of |Z l(“j)l,
when the N = D %, D ;»: N absolute values of the observed differences
|Z,%?,1=1,2, --- ,Ni,1 £¢<j = K, are arranged in the ascending order of
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magnitude in a combined ranking. Define
(1.1) w? = A IN(BY/(N + 1)) sign 2,7,

where Jy(u) is a step function defined over (0, 1) taking constant values Jx
over the interval ((k — 1)/N, k/N], i.e., Jy(u) = Jvp = J(k/N + 1) for
k —1/N < u < k/N. (Note that 7x*? = —7y?); 747 is also expressible as

(4,9 + -
(1'2) ™~ = Tij + Tij
where
-+ N * — N * %k
Tij = Zk=l IN ik, Tij = Zk=1 Iy ik,

with alj . = 1(aix = —1) if the kth smallest absolute Z in the combined rank-
ing corresponds to a positive (negative) Z,“? 1 = 1, 2, --., Ny, otherwise
alix = 0 (a% = 0). Consider now, for testing the hypothesis H, , the statistics

of the form
(1.3) Ly = 251 { 2iws (rd P N/ (N7 2L Ta i),

with the test consisting in rejecting H, at level « if Ly exceeds a predetermined
number ¢y o Where Py [Ly = cv.o] = a. The limit distributions of these statistics
as N — «, under Hy and “contiguous’ translation alternatives, are derived in
Part I under two sets of sufficient conditions—under (a).the assumptions of
Hijek [9] and (b) under those of Chernoff and Savage [3] (Section 2). This enables
us to determine (Section 3) the asymptotic (Pitman) efficiency of any two sta-
tistics belonging to this class relative to each other and, for that matter, relative
to any other competing statistic for which the limit distribution is of the same
form e.g., Bradley-Terry statistic, the classical F-statistic and the class of statis-
tics Ly* described by (1.4).

It turns out, however, that given any statistic belonging to this family, the
statistic constructed in exactly the same manner but with 74*” now based on
separate-rankings of the absolute Z’s for each pair (7,7) (1 =7 < 7 < K) is, in the
Pitman sense, as efficient as the given statistic. This latter family of statistics is
represented by

(1.4) Ly* = 25 Zj;éi (¥ /(K d%fij)%)}z
Where di’ii = lecv;i J?V.'j.k ) and
T = 2 T (BRGD/(N + 1) -sign 2057,

R,"G(:i) being the rank of |Z,”| when the N, absolute values |Z,""|,
l=1,2 ---, Ny, are ranked separately for each pair (¢,7) (1 =7 <j = K).
The form of the hypothesis H, suggests that it is the ‘“joint-ranking” procedure
which is more appropriate. However, if we apply the Pitman criterion, the
question as to which of the two procedures—the joint-ranking or the separate-
rankings—is preferable remains unresolved. This question is partially investi-

gated in Part II by considering the local ‘“asymptotic” efficiency as the number of
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treatments tends to infinity. The results obtained suggest, that for testing against
shift in location, a “joint-ranking” statistic Ly is preferable to its counterpart
Ly™ based on “separate rankings” except for alternatives for which the Durbin-
statistic is relatively Pitman-efficient than the given statistic Ly . It is also shown
that for testing against a specified alternative, the “best” rank-order statistic (in
the sense of local power) is the one based on the joint ranking procedure.

Part III contains the proof of the asymptotic joint-normality, as N — o« of
the variables 74*” (1 £ ¢ < j < K) under fixed alternatives from which then
one can easily derive the limit distribution of L for ‘“‘contiguous” translation
alternatives.

I.2. Limit distributions. Consider the problem of testing H, against the alterna-
tives of shift in location. To investigate the asymptotic efficiency of any Ly or
Ly™ (or F-statistic), we obtain in this section their limit distributions, assuming a
sequence Ky (defined below) of translation alternatives which approach H,, as
N — «, viz.,

(2.1) Ky :Hy(z) = U(z 4+ p;N ) foreachpair (4,5), (1 <4 <j =< K),

where II(z) is a continuous cdf satisfying the symmetry condition II(z)
+ II(—2) = 1 and u; are certain constants, not all zero and satisfying
wi; = —puj; . Consider now the following two sets of sufficient conditions:

H gjek conditions:

Q; : Assume the existence of a function J(u) defined over (0, 1) such that

Q, : II(2) possesses a differentiable density 7(z) such that the function
Y(u) = —a'[IT((1 4 u)/2))/x[M((1 + u)/2)], 0<u<]1,

satisfies [§ ¢ (u) du < o.

Chernoff-Savage type conditions: We introduce some notation. Let
¢ = K(K — 1)/2 denote the number of all possible pairs and label them
a=1,2 ---,c Let my, n, be the number of positive and negative Z g (then
Ma , Na are random but ma + ne = N, is non-random). Let F*“(z)(F~“(z))
stand for the conditional distributions of the |Z‘”| given Z” > 0 (Z” < 0) and
FIa(x)(F;a(x)) the sample cdf’s of the absolute values of the positive (nega-
tive) Z‘’s. Further let N = 7a/N, o = Na/N.

(2.2) Hy(z) = D omi NaF () + paFrg(2)]
and
(2.2a) H(z) = 2 ea NF T (2) + paF ™ (2)]

and denote by Q5 and Q4 the conditions
Q: (1) J(u) = limy,,Jx(u) exists for 0 < u < 1 and is not constant;

(ii) Jrw Un(Hy(2)) — J(Hx(2))] dFn(2) = 0)(N ),
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Jiw Un(Hy(2)) — J(Ha(2))]dFH(2) = 0p(N7H),

where Iy = {z:0 < Hy(z) < 1}.
(iii) Jw(1) = o(N*)

(iv) W (w)| € tu(l — )],
O] = [dT/du’] < tu(l — u)]™",

for z = 1, 2, for some ¢ and § > 0.

Q4 : (i) The distribution II(z) admits a unimodal density w(z) which is

bounded in the neighbourhood of the origin.
(ii) J'[M(z)]r(x) is bounded.

Let x.2(8") stand for the non-central x*-variable with ¢ degrees of freedom and
the non-centrality parameter §°; and let x;* stand for the corresponding central
x’-variable. We now state

THaEOREM 2.1. Assume for each N the truth of Ky and that either (a) the conditions
(Q, Q) or (b) the conditions (Q, Q) are satisfied. Assume further that
pij = liMy.e {Ni/N} exists and is positive for each pair (7, j) (1 £ ¢ < j £ K).
Then the statistic Ly is distributed in the limit, as N — o, as a xx-1(8") variable
with

(2.3) 8 = (B/K) 251 { 2w (phmii) )
where
(2.4) B = (s JJ(w)(uw) dw)®/(f3J*(u) du)

under (Q , ) and
(2.4a) B = 16([7 J'(2l(z) — 1){wx(2)}* dzx)*/([o J*(u) du)

under (s, Q).

It is easily verified that when both the conditions (2, Q) and (23, Q) are
satisfied, the two expressions for B above coincide. This holds for most situations
of applicational interest (Section 3).

For the special case when u,;; = 6; — 6; where not all §’s are equal and N;; = n
for each pair (¢, j), the non-centrality parameter (2.3) takes the form

(25) # = (2B/(K — 1)) Xk (6: — 0

where § = D 0./K.

The proof of part (a) is based on the following two lemmas, the first of which
is an extension of the main theorem of H4jek, based on the notion of “‘contiguity.”
This lemma, which enables us to conclude the joint-normality of the variables
P (1 £ ¢ < j £ K) under (2, %), is also needed for the results of Part II.
The proof of part (b) is based on the more general Theorem 3.1 of Part III.

The statement of Lemma, 2.1 concerns a slightly more general model described
below: Let (Z,1 -+ Zw,), 1 < » < o, be a sequence of random vectors, where
N,— o asy — o and Z’s are independent, and denote by R,: the rank of |Z,| as
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the totality of |Z|’s are ranked in ascending order of magnitude. Further, let
(2.6) 8, = 220 dy (Ru/ (N, + 1)) -sign Z;

where d,x , 1 < k < N, , are certain constants satisfying

(2.7) lim, e {(max; <ren, d%)/( 2obn d2)} = 0,

and assume that

(2.8) P(Zy = 2/8, 0] = T((z — Bew) /o),

where II(2) is as defined in (2.1), —o < 8 < «, ¢ > 0, are unknown param-
eters and c¢,; are again certain constants satisfying the condition (2.7) with d’s
replaced by ¢’s and

(2.8a) sup, (Do &) < .

Let £(Y,/P,) — N(a,, b,’) denote that the distribution of b, (Y, — a,) con-
verges, as v — o, to N(0, 1) distribution.

LEmmA 2.1. Suppose that the conditions (R, Q) are satisfied. Then under the
model (2.8), the statistic (2.6) satisfies £(S,) — N(n, , t,°) where

(2.9) = (B/0)(JoJ (w)¥(u) du) - 2oi% ducu
' = (Jo I (u) du) 28 di .

Proor. Consider a particular distribution II and let @, and P, stand for the
probability distributions under 8 = By, 0 = goand 8 = 0, ¢ = o respectively.
The proof below is simply a reconstruction of certain essential steps in Hajek’s
proof. Let 7', denote

T, = 2.0 dyod [T(|Vo])] sign Zoa

where Y, = (Zw — Bo)/oo and T'(z) = 2I(z) — 1,ifx = 0, and T(z) = 0
otherwise. Then, as in [9], one obtains that if after proper normalization, one
of the limit exists,

(210) lim, e £(SV/Q) = lim,e °G( Tv/Q)

To apply Lemma 4.2 of [9] we have to show now that £(7,, L,/P,) converges
to some bivariate normal distribution. The equation (2.10) and part (iii) of
Lemma, 4.2 [9] would then give the result forthwith. For this it suffices, on account
of the arguments of Section 7 of Wald-Wolfowitz [24], to prove the asymptotic
normality of an arbitrary linear combination of 7', and L, , where L, is as defined
by (4.16) of [9], viz.,

(2.11) ,U,1T,, + ,U.zLy .

From equation (5.21) of [9] we know that P, — lim,..{L + (+°d’/2)
— ¥8,% = 0, where v = (Bo/00), d,} is defined by (7.6) of [9], and S,* =
— > e (Vo) /m(Yor)}, so that (2.11) is asymptotically equivalent in dis-
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tribution, after proper normalization, to the statistic
(2.12) Do (ru + ) — Buy’ d)?

where ry. = w duJ{T(|Voi|)} -sign Zy and roe = —pscary-{n' (Vo) /m(Vi)}. It
is easy to see that the variance o,” of (2.12) is given (since the summands ry; and
2 have zero expectations under P,) by

o) = w’([o 5 (w) du) D8 di + wivi([A T (u) du) SN o
+ 2#1#27(f(1> J(u)P(u) du) ZII:;'I Cok Ao

We may assume that o,° is bounded away from zero (for otherwise the result

trivially holds).
Letting now I, denote the indicator function of the set 4, we have for every

e>0
5" Do Bl zeon(re + m2)%) < 0,70 Doy E{I 1111 230,171k}
(2.13) + 07" 204 Bl zientied + 007 202 BT 10,41 23e0175)
+ 0.7 228 B{T (171 200,075
where each summation on the right of (2.13) converges to zero on account of
conditions (1), @, (2.7) and (2.8). Thus the Lindeberg-Feller condition is

satisfied, which establishes the asymptotic normality of (2.11); and the proof is
complete.

Lemma 2.2. Under the conditions of Theorem 2.1 with either (a) (Qu, Q) or
(b) (Q,Q),thec = K(K — 1)/2 random variables {TN("’)/Nij}, 1=i<j=K),
are dustributed in the limit, as N — o, as independent N (n'"?, A*) variables, where
A = [[§J%(u) du)’ and
(2.14) 1“? = ol ui([3 J(w)(u) du) under (2, %),

1“7 = dpkip([§ T 20(2) — 1m(x) dli(z)) under (Qs, Q).

Proor. The proof of part (a) of this lemma is based on Lemma 2.1, and that
of part (b) is given in Part III. Under a labelling « = 1, 2, --- , ¢ of the

¢ = K(K — 1)/2 pairs (4,7) (1 £ 7 < j =< K), the statistic (2.6) can be ex-
pressed in the present context as
(2.15) Sy = 2t 2= d¥ W n(RS)/(N + 1)) -sign Z,

= 2 2 { 21 AN Tn(RED /(N 4 1)) -sign Z,5}.
For a given pair (7, ), the statistic x“? /N* is obtained from (2.15) by setting
dyd? = N1 =1, 2, -+, Ny, and all other d’s equal to zero. The condition
(2.7) for this choice of d’s is satisfied, so that by Lemma 2.1 £(7y"?/N}))
— N(3%?, A*) under Ky . Furthermore, a similar argument shows that any arbi-
trary linear combination of {ry“? /N1, , 1 £7 < j £ K} has normal distribution
in the limit. The proof follows.



MULTI-SAMPLE ANALOGUES OF SOME ONE-SAMPLE TESTS 529

Proor or TueoreEM 2.1. It follows from Lemma 2.1 that the variables
Wy, = [ 2w (Nipra®? — 4%P}]/AKY,

¢t =1,2, .-+, K, have in the limit a multivariate normal distribution N (0, A)
where A = || 8;» — 1/K ||. Now making the analysis of variance transformation
Uo = 25at (K Wi,

U'g = Z'K’=1 Aii’WN'i' > i = 1, 2, e ,K - 1,

where A’s are chosen to make the transformation orthogonal and proceeding
exactly as in [18], the proof follows.

The following theorem concerns the limiting distribution of the separate-
rankings statistic Ly* defined by (1.4).

TuaroreM 2.2. Under the assumptions of Theorem 2.1, the statistic Ly™ is dis-
tributed in the limit, as N — o, as a xx_1(8°) variable with 8° given by (2.3).

Proor. Similar to that of Theorem 2.1.

From Theorems 2.1 and 2.2 it follows by letting u;; = 0 for all pairs (z, 5)
that Ly and Ly are asymptotically distributed, under H, as xk_; variables.
This provides a large sample approximation to the critical points cy .. and cy.« )

1.3. Asymptotic efficiency. In this section we consider some interesting special
cases of the statistics Ly and Ly and discuss their asymptotic efficiencies rela-
tive to each other and the F-test. If we now let

(i) J(u) = u, 0 < u < 1, then Ly reduces to the rank-sum
version of Ly discussed in [16].

(ii) J(u) = x'(u), where x is the cdf of the chi-distribution
(3.1) with one degree of freedom, we get the multi-sample ana-
logues of the Fisher-Yates-Fraser and Van der Waerden

tests of symmetry respectively.

(iii) If we let J(u) = constant, Ly(Lx™) reduces to the Durbin-
statistic.

Let these statistics be denoted by Wy , Ly, 1, Ly, 2 and Dy respectively. Simi-
larly one obtains the counterparts of the above statistics from Ly*. Let these be
denoted by the corresponding starred letters.

Now it is well known [10] that in the situations we are considering the asymp-
totic efficiency of one test relative to the other is equal to the ratio of their non-
centrality parameters. Hence we have (e.g. when u;; = 6, — 6, and N;; = n)
the efficiencies of Ly1, Ly2, Wy, Dy and F-statistics as follows:

Er,s = Epps = on’[[ox 7 (u)¥(u) dul®

on’l[ 2w 7(2) da/g[®7 (1(x))]T;

Epw = Ep,w = [[20 7'(2) da/¢[® 7 (I(2)]/12[[ 2 7*(z) da]*
Epp = Ep,p = [[Zo7(2) dz/6[@7'(1(2))]]'/47(0).

(3.2)

Il

Il
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TABLE 1
Distribution Er, Ew, 1, Ep..p
Normal 1 3/ ~ .955 w/2 ~ 1.571
Uniform o 0 o
Double exponential 4/7 ~ 1.273 3r/8 ~ 1.18 2/m ~ .637

Table 1 gives the efficiency comparisons for different densities of the L, test, the
W test, the D test and the & test.

For distributions II(2) which are not covered under the conditions Q:, one
may define

E:‘I,Sz(n) = lim”*o Esl,sz(Hﬂ)y

if it exists, to be the asymptotic efficiency of S relative to S. , where II, denotes
the convolution of II(z) with N(0, ¢*). For IL,(z) the condition @, is satisfied.
This covers the case, for example, of uniform distribution over [—#, 6]. It is
also interesting to observe that if the form of II(2) is specified, one can be letting
J(u) = y¥(u) obtain from the family Ly (or Ly*) a statistic which is most
(Pitman) efficient for the given distribution II(z)—for example, by letting

J(u) = x (u) if II(z) is normal;
(3.3) J(u) = u if TI(z) is logistic;
J(u) = constant if II(z) is double exponential.

Finally, we observe on account of Theorems 2.1 and 2.2 that E, .« = 1.
Discussion. On account of the last remark above, the question of preference
between the joini-ranking and separate-ranking procedures remains unresolved.
It is worth observing that the Pitman efficiency, although satisfactory in most
situations, is a rather narrow criterion for comparing the expected performance
of two tests, being just a limiting number which compares only their local asymp-
totic powers as the number of observations tends to infinity. A more compre-
hensive definition of asymptotic efficiency is discussed by Hodges and Lehmann
[11]; but such a comprehensive comparison is often too difficult to carry out in
more complex situations. The considerations of Part II, however, based on a
comparison of the “asymptotic”’ efficiencies of the statistics Ly and Ly™ as the
number of treatments is allowed to increase, do throw some light on this question.

PART II

I1.1. Local “asymptotic” efficiency. In view of the result that the joint-ranking
statistic Ly and the separate-ranking statistic Ly* are equally efficient in the
Pitman sense (1.3), the question of the relative merits of these two statistics
remains undecided. This part is devoted to an investigation of this question.
For reasons stated in the last paragraph of Part I, however, we shall attempt to
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throw some light on this question by a comparison only of their local “asymp-
totic”” powers, as K, the number of treatments, is allowed to increase indefi-
nitely.

It is shown below that if the number of comparisons N;;( = n) is kept fixed for
each pair (7, j), but instead K tends to infinity, both the statistic Ly and the
statistic Ly*, after proper normalization, converge in distribution to the N (0, 1)
variable. This enables us to compare their local ‘“asymptotic” powers for each
fixed N. We observe that (since N = n(3)) as K — «, {Ky} again provides a
sequence of translation alternatives approaching H, . Let E(-) and ¢°( -) stand
in the sequel for the expectation and the variance, respectively, with any sub-
scripts indicating the conditions under which these quantities are obtained.

We need the following:
Levma 1.1. Let x,” = x°(A,) denote the non-central chi-square variable with

r df and the non-centrality parameter A, , and assume that A, = o(r), asr — .
Then, asr — =, &([x," — E(x,))/o(x")) = N(0, 1).

Proor. The density of x,” is given by pa, () = D neo pr(Ar)frrae(z), Where
pe(A) = (A,/2)" exp {—(A,/2}/k! and f.i(x) is the probability density of
the central xi o variable, so that the characteristic function of [x, — E(x)]1/
o(x,) is given by
f(t) = exp (—it(r + A)©2r + 44,)7) Do pu(A) (1 —23t(2r + 44,) 7~

~ {1 = a(2/r))) 7" exp (—it(r/2)))
rexp (—it(A(2r) ™) Do pa(An) (1 — it(2/r)")~*
= {(1 = a(2/r)") 7" exp (—it(r/2)}))
cexp { —2A(1 + at(2/r)) + 3A,(1 — 44(2/r)}) 7
where the first term converges to exp { —#*/2} and the second to unity, asr — o,
on account of the condition A, = o(r); the proof is complete.

RemaRk. In the statement of Lemma 1.1 above we may replace E(x.’) and
a( x) by r + A, and (2r 4+ A,)? respectively.

TueoreM 1.1. Assume, for each index N, the truth of Ky with uy; = 6; — 6;
(where not all ’s are equal) and N,; = n for all pairs (7,7) (1 £ 1< j = K).
Further, assume that
(1.1) supx K7D ici (6: — 6;)° < .

Then under the conditions @ and Q, of Part I, £(Ly) — N(3, 2(K — 1)) as
K — o, where
(1.2) 7= (K — 1)+ &,

with 8x° given by (2.5) of Part 1.

Proor. Let the C = K(K — 1)/2 pairs (z,7) (1 £ 17 < j = K) be labelled
a=1,2 ---,C (as in the proof of Lemma 2.2 of Part I) in some convenient
manner, where if a corresponds to the pair (4, 7), ge = ui; = 0; — 6; . Then, the
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N = nK(K — 1)/2 cx’s defined for each N and « by
vt = pa/Nt = (8; — 6;)/N?,

l=1,2, ---, n, satisfy the condition (2.7) I, as K — « (and consequently
N — ). This is easily seen by observing that, for the above cy’s, the left hand
side of (2.7)I reduces to

(1.3) limg.e {maxigici<x (0 — 01‘)2/71'Ei<i (6: — ‘9')2}

= (4/n) limg., {maxigicx (6: — 8) /KZ -1 (6; — 0) =
where § = £, 0./K. The last inequality follows since D .; (6; — 6,)°
K> %,(6; — 8)% On account of (1.1)II and (1.3)II, the conditions (2.7)I
and (2.8a)I are satisfied, so that by applying Lemma 2.1 of Part I one obtains

the asymptotic normality, after proper normalization, of any statistic of the
type (2.15)I (or (2.6)I) for which (2.7)1 is satisfied. Consider now any arbitrary

linear combination of the variables vy® = Z;;ﬂ 1% ’j, i =12 -, K;
viz.,
Sy = Z§=1 VY = ) (Zi;éi )\iVN(i.j))
= 2 D (N = M)V,
(using V4®? = —Vy%?), where not all N’s are equal and zero values are per-

missible. The statistic Sy is obtainable from (2.15)I. by letting for each
i=1,2 - K, dy? =N —N\forj>dandl = 1,2, -- -, n. With the above
choice of d’s the left hand side of (2.7)I takes the form

Mo {Max <ici<x (A — A)/0 Dici (i — A;)Y)

which equals zero by the same arguments as used in (1.3)II. Accordingly, by
applying Lemma 2.1 of Part I and using, for any K, however large, the same
arguments as in Section 7 of Wald and Wolfowitz [24], it follows that, for suf-

ficiently large K, the variables (nK) MV —m®}, i =1,2, ---, K, where
m® = {—(2n)*(8; — 8)*([§ J(w)¥(u) du)}, are approximately jointly normally
distributed with mean vector zero and the covariance matrix ¥ = || 8;» — (1/K ||

-(J§J*(u) du). Arguments similar to those used in the proof of Theorem 2.1 of
Part I, coupled with an application of Lemma 1.1 above and Theorem 5 of Mann
and Wald [24] gives the result forthwith; and the proof is complete.

A similar result also holds for the statistic Ly™ defined by (1.4)I:

TuEOREM 1.2. Assume, for each index N, the truth of Ky with p;; = 0; — 6;
and N = n for all pairs (1, j) (1 £ ¢ < j £ K). Then, under the conditions of
Theorem 1.1, £(Ly*) = N(n', 2(K — 1)), as K — o« where

(1.4) n = (K —1) + (5™/n du")

with 8x™* and d,’ are given by (1.8)I1 and (1.9)II respectively.
Proor. The proof of this theorem can be accomplished by using the central
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limit theorem for random vectors, Lemma 1.1 and arguments similar to those
used in the proof of Theorem 1.1 above.

Theorems 1.1 and 1.2 can be used to compare the local powers of the two sta-
tistics Ly and Ly™, as K — . Let 6 = (6;,6,, - - - , 6x) and let {lyo} and {I¥}
be two sequences of numbers determined such that limw.e Pu[Ly > Ive] =
limy.o Pro[Ly™ > Ie] = a. The local powers of the statistics Ly and Ly™ under
Ky at level «, are given respectively by

Bu(n, @, 0) = PrylLy > lva) ~ 1 — ®{(lva — n)/(2(K — 1))},
BL'(n) o, 0) = PKN[LN* > llta] ~ 1 - q:'{(l;;a - "7,)/(2(K - 1))%}7

for sufficiently large K, on account of Theorems 1.1 and 1.2 above, where ®(x)
represents the standard normal cdf, ¢(z) the corresponding density and the
symbol ~ denotes that the ratio of the two sides tends to one, as K — .
Accordingly, from Theorem 1.1 above it follows that

(15) Buln, o 0) ~ a + 2{([aJ(w)y(u) du)’/([o J*(u) du)}
K305 (0 — 0)"(ta)

for sufficiently large K, where £, is the upper a point of N(0, 1) distribution. To
obtain a similar expression for 8.+(n, a, 6), set

(1.6) 0.7 = limyw N By (V™7

then following the above reasoning again we obtain

(1.7) Bre(m, o, 0) ~ a + (8™ /n dn’)d(ta)

where

(1.8) 6™ = (2Y/KY) 2 { X (a7 /KDY,

and

(1.9) di’ = o (Va*C") = Sia Tk,

g =dJn(k/(n+ 1)),k =1,2, -, n, being the scores on which the definition

of the function £,(u), 0 < w < 1, is based. From (1.5) and (1.7), it follows that
for large K the local power for shift alternatives 8.(n, a, 8) will tend to be larger
than Bi+(N, «, 0) if and only if

e(z,',’)u = limxﬂ,{(ﬁl,(n, a, 0) - a)(BL.(n, a, 0) — a)_l}
(1.10) = limgao {([§ J(u)p(u) du)®/([5T5(u) du)} D i (6:; — 8)°
A { 2w (@ /KD Y T

is larger than unity. The expression ei"}+ may be called the local (“asymptotic”)
efficiency of Ly and Ly*, as K — «, and may be used to throw some light on the
question of comparison of Ly and Ly*. It may be pointed out, however, that for
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the ratio ef")+ a meaningful interpretation as in the case of Pitman’s formula
cannot be given.

I1.2. The explicit evaluation of e{"}». We shall derive in this section an
explicit expression for the local “asymptotic” efficiency ei*y+ by evaluating

4,0
ax®? = limy.e NEKN (Dt TR /(n + 1)) sign Z,%7)
= limyaw N D20 (nl/(k — 1)1 (n — k)DJns [5 [Tx"?(z)]F
1 = T (@) dlli(z — (0:; — 6)N ) — H(z + (6: — 6;)N )]
where Ty"?(z) = O(z — (6; — 6;)N}) — I(—z — (6: — 6)N ), if 2 2 0
and Tx“?(z) = 0if z < 0. In evaluating the above limit, it is permissible to
interchange the operations of limit and integration as is shown by the following:

Lemma 2.1. If the distribution II(x) possesses a dzﬁerentzable density w(zx)
and the condition Q is satisfied, then the expression a,” is given by
(21) @, = (6: — 6;) 2oi (nl/(k — 1)1 (n — k)1)
i Jo ()@ (1 — u)"du.
)

Proor. Since II(z) possesses a differentiable density w(z), @, *'” can be written

as
lima (6 = 6;) 2201 (nl/(k — 1)1 (n = k) DJup(Aiw + Biw)
where, setting ¢ty = (6; — 6,)N *(maxic; (ty) — 0, as K — ).
Ay = [T[Tn() 1 = Tu(2)]" M (m(z — tv) — m(2))(2n-7(2))” dT(x)
and
Biw = [¢ [Ta(2)"7[L = Tw(2)]" (n(2) — w(2 + tn)) (2w (2)) " dT(2);

(in A,y and By, y we have suppressed the index (7, 7) for convenience). The proof
of the lemma will be complete if we show that

limyse Ak,N = limy,e Bk,N
0@ = T(@)]""(=="(2)/x(2)) dT(z) = D (say)

where Dy, = f(l; Y)W (1 — w)* " du, and T(z) = 2I(x) — 1,if z = 0 and
T(xz) = 0if z < 0. To see this, note that

|Avy — Dyl < 3J7 [Tw(2)I [ — Tu(2)]"™

Alm(x = ty) = w(@)(tym(2))” — (—='(2)/m(2)} dT(x)
+ 3T AIT(2) T = Tu(@)]"™ — [T(@)]71L = T(2)]"™)
' () /m(z) dT(2)]
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where the second term on the right — 0, as N — o, using the dominated con-
vergence theorem and the condition @, . Consider now the first term, which cannot
exceed

HIT [(m(z — )} — (w(2)") ]ty w(2)) 7 dT(2)]

+ 1S (e — ) = (#(@)(—tu(x (@) — ' (2)/2n(2)} dT(z)]|

< il J5 I(m(= — tn))} = (x(2))'Ttw™)" da]

+ 217 {I(n(z — 1)) — (x(2)))(= &™) = 7'(2)/(2Ar(2))")}" da]
The last inequality follows by applying Schwartz inequality to the second term.
Both terms on the right tend to zero, as N — o, on account of Lemma 4.3 of
Hijek [9], since; the condition Q, implies the quadratic integrability of the deriva-
tive of (w(x))’. This establishes that limy.e A,y = D). The same argument
shows that limy., By,y = Di . The proof is complete.

Now substituting (2.1)II and the expression for d,’ in (1.10)II, we obtain
(2.2) ek = (JoJ(w)¥(u) du)’([3 I (u) du)™

(ke T (23 [o ()™ (1 = )™ du)* (™ 2 T ™1

One naturally expects the local efficiency " ,» to converge to the asymptotic
efficiency E. 1+ = 1, as n — «. However, despite the plausibility of the above
statement, we are able to prove it only for the case when £(u) is monotone.

TrEOREM 2.1. Suppose that the conditions Q. and @ of Part 1 are satisfied.
Then under the assumption of monotonicity of J(u), limn,e e = 1.

Proor. Clearly we need to prove the theorem for non-constant J(u), for other-

wise Ly and Ly™ are identical and the result is trivially true. First we observe
that, on account of the conditions @ ,

(2.3) Y = [ I (u) du— [§J5(u) du < oo,
as n — o. Further, if we let pu(u) = (7)™ (1 — )™,
(S5 () [t T apr(w)] du — [59(u)J (u) du)®
(24) = ([iv*wdu) (5 20 [Tas — I (w)'peu)du)
2[5 0% (w) du)([5 Xkaa [an(k/(n + 1)) — Ju(w)Ppi(w) du
+ [ [Ta(u) — J(w)] du,

by substituting J, x = J.(k/(n + 1)). The proof of the theorem will be complete
if we show that the right hand side of (2.4)II tends to zero as n — «, and use
(2.3)I1 and (2.4)II in (2.2)II. For this it suffices, on account of & and Q»,
to prove that

(2.5) liMpaw [6 2o [Ta(k/(n + 1)) — Ju(w)pe(w) du = 0.

In order to prove (2.5)II we observe that on account of monotonicity of J(u)

1
2

lIA
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and & , there is no loss of generality in assuming that J,1 € Jp2 < -+ £ Jpm .
Thus, using Lemma 2.1 of H4jek [9] it follows that left hand side of (2.5)II
does not exceed
(2.6) 2:27 maxician s — Jal[Dofr (Jup — Jn)¥/nlt
where J, = > 2 J,/n. Now the expression (2.6)IT tends to zero as n — o,
since
n—IZl;;l (Jak _jn)2 <n’ Z;:Ll Ji,kﬂfé J2(u) du < o

on account of (2.3) and

n_l maXj<k<n 'Jn,klz = IMaXi<k<n f[(k—l)/n,k/n] an(u) du — 0

as m — =, on account of uniform integrability of the functions J,*(u), a con-
sequence of the conditions € ; and the proof is complete.

For distribution functions II(z) not satisfying the differentiability conditions
of Theorem 2.1 of Part I, one may define the local efficiency of Ly relative to
Ly* (as K — «) in the same manner as the asymptotic relative efficiency
E;kh,gz(?l') was defined in Part I, viz.,

(2.7) e M) = limeag €8y (m,),

provided the limit exists. It is interesting to note that lim,_. e32i(r) may or
may not be equal to 1, as is illustrated by the case when =(z) is the edf of the
uniform distribution over (—t¢, t) (see II.3).

I1.3. Special cases. In this section, we shall evaluate the local efficiency e(L',‘)u
for some well known distributions and the special choices of the functions J,(u)
and J(u) considered in Section 1.3:

Wilcoxon-statistics. By substituting &(u) = w, 0 < w < 1, and J,, =
(k/(n + 1)),k =1,2, ---, n, in (2.2)I] we obtain
(3.1) e we(m) = 3(n + 1)(2n + 1)(f§ wh(u) du)’

(Jov(w(n — Du + 1) duw)™,
so that from (3.3)I it follows that
esw+(Normal) = (n 4+ 1)(2n + 1)/2(n — 1 4+ 2H)? > 1,
(3.2) eswe(Logistic) = (2n + 2)/(2n + 1) > 1,
ef{fﬁv.(Double exponential) = (2n + 1)/(2n + 2) < 1,
ew w«(Cauchy) = (2n 4+ 1)/(2n + 2) < 1.

For evaluating ej'%» (uniform), defined by (2.7)II, we note that the density
m,(2) of the distribution II,(z), the convolution of R(—3%, ) and N(0, 1) dis-
tributions, is given by

(3.3) mo(2) = ®((2z + 1)/20) — ((22 — 1)/20),
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where ® is the standard normal cdf, so that from (3.1)II
en™ (uniform) = lim,.o exwe(T)
= lim,so 3(n + 1)(2n + 1)([fo ude(u) du)’
(3.4) A Jowe(w)(n — Du + 1] du)’T”
= limeso 3(n + 1)(2n + 1)([Zu¥s'(2) dz)*
(m(0) + (n — 1) [Z0 7 (x) dz)™*
=(n+1)(2n+ 1)(20")7" > 1;

the last equality follows by interchanging the limit and integration, which is
permissible since |m,(z)| < 2 for —% < z < } and |n.(2)| is bounded by a
Lebesgue integrable function for x < —% and z > %. We note that the local
efficiency expressions (3.2)II and (3.4)II converge to 1, as n — .

Absolute-normal-score statistics. By letting J(u) = x (u), 0 < w < 1, in
(2.2)II we obtain the local efficiencies 3"’ ;,» and €3 1,» for the absolute-normal-
score statistics defined in Section 3I, namely,

(3.5) e (1) = n ™ 2op Jhx( [ x (u)y(u) du)?
W ra Taa (R J3 v (1 — w)" ™ du)’™

which yields eLl 1,+(II) if the scores J,, k = J(k/(n + 1)),k =1, - n, cor-
respond to the Fisher-Yates type and e} Lz, L,*(II), if these scores correspond to the
Van der Waerden type. From (3.3)II and (3.5)II we obtain

eL L*(Norma'l) = (( Zk—l Jn &)/n)( Zk—l Sk ey
JEa7((1 4+ w)/2)u (1 — w)™* du)™,
eiin(Logistic) = n(n + 1)*( Xi= J70)
(3.6) (i ki)
¢i"2+(Double Exponential) = 2n( 2 im 1) (r( 2= Jui)®) ™,
¢iix(Cauchy) = (i J0u/n)(JE87((1 + u)/2)
(sin ww) du)*( Dopa Jap(SE
f(l] (sin 7u)u* (1 — w)" ™ du) ™
For evaluating et % (Uniform), we note from (3.5)II that
3 (Uniform) = limg.o e2(11,)
(3.7) 2 limgao ([587((1 + w)/2)¥0(u) du)®
(' o do(w) du)®)™

where, on account of Fatou’s lemma,
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TABLE 2

e(lf:,)L; n=1 n =2 n =3 n =4 n=5 n=w
Normal 1.571 1.34 1.24 1.20 1.14 1
Logistic 1.273 1.152 1.102 1.075 1.058 1
Double exponential .637 .746 .803 .839 .862 1

€Ly}
Normal 1.571 1.34 1.24 1.20 1.14 1
Logistic 1.273 1.148 1.096 1.068 1.051 1
Double exponential .637 .730 781 .814 .835 1

limgo (Jo @7((1 4 u)/2)¢u(u) du)
(3.8) = lim infoao [§ (mo[TL 7 (w)]/6[@ " (u)) du
2 [} lim info.o (mo[IL 7 (u)]/8[@7 (w)]) du
L {ele7(u + D) du = .

Also, from (3.3)II we have
[o¥e(u) du = 2[®(1/20) — &(—1/20)] — 2

aso — . From (3.7), (3.8), and (3.9) of this section, it follows that ef,(,f'-)(Uni-

form) = o for both version Ly, and Ly » of the absolute-normal-score statistics.
The approximate numerical values of the local efficiency expressions (3.6) II

are tabled in Table 2 for both versions of the absolute-normal-score statistics.
We observe that for the cases considered in Table 2, the numerical values of

ei’,‘ﬁ'(ﬂ) seem to converge monotonically to 1, as n — .

IT.4. Conclusion. The local efficiency expressions and their numerical values
obtained in the preceding section indicate the superiority of the “joint-ranking”
procedure against shift alternatives with normal, uniform or logistic as the under-
lying distribution; whereas against a double exponential or Cauchy distribution
the “separate-ranking’ statistic Ly* seems to have better local power. These
observations however seem merely incidental to a presumably more basic pattern
suggested by the following: (a) First, we note that for n = 1 the local efficiency
"2+ reduces to EL p, the asymptotic efficiency of Ly relative to the Durbin
statistic, and (b) secondly, that for the special cases considered above the local
efficiency seems to converge monotonically to 1, as n — «. Thus if we consider,
. for a given choice of function Jx(u) and J(u), the class of all distributions satis-
fying (b), it follows that ei2« > 1 or < for all n, according as Fp p(II) > 1
or <1. These considérations suggest the following heuristic conclusion (for the
class of distributions satisfying the condition (b)): For a given functions J(u)
and Jy(u), the “joint-ranking statistic’” Ly(J, Jy) is preferable to its counterpart
Ly*(J, Jx) based on “separate-rankings’’, except for alternative distributions for
which the Durbin-statistic is relatively Pitman-efficient than the statistic Ly(J, Jy)
1.e., for which Eypy vy, p(II) > 1. It would be of interest to characterize for a
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given function J(u) the class of distributions satisfying the condition (b). For
example, for the Wilcoxon-statistics W and W*, a simple characterization of
such a class would be: The class of all edf’s II(z) for which

t(r) = 7(0)/[% 7*(2) de

is either <(12/7) or >(7/4). In fact, e decreases monotonically to 1 if
(r) < (12/7) (e.g., normal, logistic, uniform distributions) and increases
monotonically to 1 if ¢(x) > (7/4) (e.g. Cauchy and double exponential).
Accordingly, since v p = e+ , for this class of distributions the above heuristic
conclusion clearly holds for the Wilcoxon-statistics.

A strong argument in favour of the ‘‘joint-ranking’’ procedure, however, is the
Sollowing: Consider the problem of testing H, against the alternatives of shift in
location and assume that the underlying distribution II(z) is specified. Then,
one can select a most Pitman-efficient rank-order statistic by letting J (u) = ¢¥(u)
in Ly or Ly*. However, since Ep 1« = 1, the choice is still to be made between
the “joint-ranking” and the “separate-ranking” procedures. Now one can easily
show that, for the above choice of the function J(u),

(J5 ¥ (u) du) (™ 20 ¥ )
(o Y (2 3 () (L — w)" ™ du)
() /n) ([o 12 br YA (1 — w)" ™ P duw)™ = 1,

with equality sign only if J(u) = y¥(u) = const., 0 < u < 1, in which case ob-
viously the statistics Ly , Ly are identical. This leads us to the conclusion that,
against a specified alternative distribution II(z), the “best’’ rank-order statistic
(in the sense of local-power) is the one based on the “joint-ranking” procedure.

Finally, it seems worth mentioning that the form of the hypotheses H, favours
the “joint-ranking” procedure. The “separate-ranking’ statistic is essentially a
test of symmetry about zero for each of the distributions II;;(z) i.e., I;;(2z) +
II;(—2) =1, (1 £7<j = K). It does not take into consideration the second
part of the hypothesis Hy, namely, that II;;(2) = II»;(z) for any two pairs
(¢, 7) and (¢, 7'), whereas the “joint-ranking” statistic Ly does take this into
consideration.

e ()

%

PART III

III.1. Summary. Let (&z, 17,'1), l = 1, oy, N,,;j; 1=1< ] < K be inde-
pendent samples from populations with absolutely continuous cdf’s Dij(u, v).
Denote afj, = +1, if the rth smallest observation from the ordered absolute

values |Z;;| where Z;; = £a — ma, in the combined sample of size
N = > D ;N is from a positive Z; , and otherwise let afj, = 0. Denote
af}f, = —1, if the rth smallest observation from the ordered absolute values

|Z41| in the combined sample of size N is from a negative Z;; and otherwise
let alj = 0.
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Denote
(1.1) ' =1l 4
where
(1.2) 5 = miTH = 2 By,
and
(1.3) i = nigTe; = 20y Ex,rall .
The Ey,. are given numbers satisfying certain restrictions to be stated below;
and m;; and n; are the number of positive and negative Z’s among Z;, -« -,

Zijn;; - The purpose of this part is to find a set of sufficient conditions for the
joint asymptotic normality of the statistics 74", Various applications of these
statistics are given in Part I where the problem of testing the hypothesis of no
difference among several different treatments is considered for the case when the
comparison between the treatment is possible only in pairs. (However, in Part
I, the joint asymptotic normality of the statistics 7»*”’s which can be obtained
as a special case of the more general theorem (Theorem 3.1 below), is obtained by
following the methods of Héjek [9] so as to present a different approach to the
reader).

II1.2. Assumptions and notations. Let ¢ = (§) denote the number of all
possible pairs and label them « = 1, -- -, ¢. Let mq and n, be the number of
positive and negative Z’s respectively for the ath pair. m, and n, are random
but 74 + 7« = N, is non-random. For given m, , let Xt , - - - , X&m, denote the
positive Z’s and Xa, -+, Xan, denote the absolute values of negative Z’s
among Zei, ** , Zan, ;@ = 1, -+, c. Let F*®(z) and F~(z) denote the
edf’s of X."’s and X, s respectively. Let FIa(x) and F, (z) denote the sample
cdf’s of X,"’s and X, ’s respectively. Define

(21)  Hu(z) = 2amt paFr(2) + 2ect pava( Fr(z) — Frp(2))
and

(2.2) H(z) = 2% paf ™ (2) + D %1 pavala()

where

(2.3) pa = Nuo/N, va = ma/Na, Au(z) = F'2) — F ).

Denote

(2.4) H2) = 2em1pal ™ () + 2ot papadia()
where

(2.5) Pe = E(vo) and E denotes the expectation.

Let
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(2'6) M2,a = E(Va - pa)2; Sa = (Va _— pa)/#g'a .
Define
E(-) = E[(")]]s«] £ o), a=1 ¢

where w is a fixed positive constant, and similarly ¥#ar (-) and cov (-). Note that
( )|[ ] stands for ( ) given [ ]. Denote

(2.7) @a, = +1,

if the rth smallest observation from the ordered absolute values |Z.j,
j=1,-+-,Ny;a =1,---, ¢, is an X,  observation and otherwise denote
ar, = 0. Denote aX% = —1, if the rth smallest observation from the ordered
absolute values IZMI _7 =1, yNaj;a=1,---,¢ isan X, observation and
otherwise denote ayy = 0 Then [ef. (1. 1) (1 2) (1.3)], we can rewrite

(a) +
TN 5 Ta y Ta ,Ta , Toa as

(2.8) ™ =t e

where

(29) 1" = m T = DN Ex,ak,. = ma [ Jx[Hy(z)] dF; (2),

(210) 1o = naTo = 27 Exs0is = —ne [ JylHn(2)] dF7 (2),

and where

(2.11) Ey, = Jy(r/N), r=1,---,N.

While Jx need be defined only at 1/N, --- , N/N, it will be convenient to extend
its domain of definition to (0, 1] by letting it have constant value on
(r/N, (r + 1)/N]. Let

J(H(z)) = limy,o Jx(H(2)).
Denote
(2.12) a.t = [JH(2)]dF*(z), @ = —[JH(z)]dF(z);
(2.13) dot = E(maaa?), do” = E(nea.);
(2.14) L' = [JH*(2)]dF*“(z); Lo @ = [JH"(2)]dF“(z);
(215) LI = [ adz)J [H*(z)] dF @ (z);

J'[H*(z)] = dJ[H*(z)]/dH*();

(2.16) L™ = [ Afx)J [H*(z)] dF @ (z);
(2.17) det = Napalo"™®,  di” = —Nagalo @,  qa=1—pa;
(2.18)  dy® = do" + do”;
(219)  Tyarinn(z, y) = FY* @)1 — F*(y)|J'[H(2)J [H(y));
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I8 aitriin(z, y) = the expression for I(yatiu (2, y) with H changed
to HY;

(220) Utarinn = [ [oococuco Lerairion(, y) dFC () dF® (y);
Viaitin = f f —w<u<a<on L tas+i 0 (Y, T) AF +(0(x) ar +(k)(?/);
Uliaisisry = the expression of Ugpaits i with I changed to I*, and V{iaqin

= the expression for V(a;144% with I changed to I*.
Nbor = 2 25t ita NiUrivratar + 2 2t pilU Ciirarta
(2:21) + (2/Na) itina M Utasriven + (2/A) 2ia 5 Utai—imn
+ (1) 26 NN Gasiviny + (1/Aa) 2o it W cas—iiy
+ (2/A) 20 NV chaiin ; A = mi/N, upi=ni/N,

where (1) indicates the summation over all (z, k) with 7 > «, the (2) over all
(2, k) with< = k, and (3) overall (7,k) with? = k,7 # «, k # «, and where
W = U + V with U and V having the same subscripts as W.

(2.22)  Nbi- = the expression of N b%+ with N’s and u’s interchanged, and the
subscripts of U’s and V’s written with opposite signs.

(2.23) Nbia = — 26 MWiarivay + Weawiriay — Weritatan]
— 2t ilW aititan + Wearibita — Wcitartan]

and a similar expression for Nb,—,./—.

(2.24) Nbu+ .- = —(the right hand side of (2.23) with 4’ changed to —a'),

and similar expressions for Nba+ o— and Nbg + o .

(2.25) an® = Mmatat + Nata”
(226)  bx" = me’b’ + Naba’ + 2Manabut a-
(227) b = MmaMarbat o'+ + MaNarbat o= + MarMabar+ a= + Naftarba=,ar— -
Bat = 2NopaPa’ D i-t,ipia ppiU Chishartar
+ 2Napapa’ D imt piiU i tartar
(2.28) + 2Napa D ictia piDi Ulrairinn + 2NaPa Doica 905U trai—a—i
+ Napa 2@ piosp W Grastivity + Naba Do) piosqideW Cras—i,—b)
+ 2Nopa D piokD Qe W Chastiot
+ N(Lo™ ) hoatpa” 2ica pime (LEEV)" + 2papatiz.ala “Lii™]
where W* = U* 4+ V* with U* and V* having the same subscripts as W*.
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(2.29) 8%~ = the expression for g%+ with p’s and ¢’s interchanged; sub-
seripts of U™ and V* written with opposite signs; Ly™@
changed to —Lo “; L changed to L ®.

(2.30) W = Napapap% (the expression for b%e with Ni, u;, U and V
changed to pp:, pgi, U* and V* respectively), where
Po’ = Pa OF qo a8 T is + or —, and ph = Pur OF ur 8S Y I8
+ or —.

(2.31)  dat.a- = NapaPage (the expression for ba+ o~ with N;, ui, U and V
changed as in (2.30))

(2.32) da+.a- = NapaParqa (the expression for be:+ o~ with X;, p;and U and V
changed as in (2.30)).

(@) LO*(OK)

- +

(233) Ba"‘,a" = da"’,a_ + Na2#2,aL0+(a)L0 @ + Naz,u2,apaPaL1,a
— + —(

— N a2l-‘2,aQaPaLl,(aa)L0+(a) - N a2pa'Qa Zf=1 Pi2,“2,iLl,§a)L1,ia)~

Bat ar= = At g~ — NaNortizaGa'palte: L™
(2.34) + NaNapz,apaparLo LGS
— NoNaPagar D im pibe LEs VLT
Bart a= = A a= — NaNawtiza quparLie® Lot
(2.35) + NN opis,aparpali s Li™® — NoNorParga

> P LA L.
Baa— = daa- — NaNapiz,awpalra Lo
(2.36) — NuNap2,ar o L1e? Li
+ NoNoQagar Z$=1 Pi2l-"2.iLI:£'a)Ll_,$a,)~
Bat wrt = dat,ar+ + NaNwpp aParpalia Lo™®
(2.37) + NoNop2,aDapar L1 o3 Lot
+ NoNaPaPar 2 it piue JLESOLT0.

The methods used in the proofs for the asymptotic normality of ™' ’s are

mainly adaptations of the methods of [18] and [7]. It is assumed that the sample
sizes N, tend to infinity in such a way that No = po-N, N — .

II1.3. Joint asymptotic normality.
Taeorem 3.1. If
(i) E(va) = Da — Dag such that 0 < pqy < 1,
(i) p2a = E(va — pa)2 = O(1/N),
(iii) for me such that s« < w for some fixed > 0,

Pr (% = ma) = p(ma) = (Na(l&,a);)_ld)(sa) + O(I/N})
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where ¢ is the standard normal density function, and sa = (va — Do)/ 4.« and, if for
given FY(z), F~® () ; N\a , ta bounded away from zero and one,

(iv) the conditions Qs of Section 2, Part 1, are satisfied then the random vector
(™ — dx®, - @ — dx'?) has a limiting normal distribution with zero mean
vector and covariance matrix.

var (4 — dy®)
3.1) = By’ = for + Bam + 2dar o= + 2No'mraLot P Ls @
— 2N qatir apalr e’ L™ — 2N'paga Doics piua Ll L1i®
where B+ | Bi— , dut a— , pz2,i , Lo™® and Ly, LT® and L1i* are given by (2.28),
(2.29), (2.33), (2.6), (2.14), (2.15) and (2.16) respectively.
cov (@ — dy@, 1@ — 4y ™) = gy @
= dat o+ + dat o~ + dort o= + da=ar-
+ NoNopa'patizale LI + NoNarpapartiz.arLe™*LiG"
+ NoNopaPar Ef’=1 pizm,iL;r,:‘a)LIgal) - NaNa'Qa’Pa“‘Z.aL0+(a)L1_.Er&')
(3.2) + NoNapapartizarLi LTSS — NaNwpargar D ics plun, Lt L™
- NaNa"IaPa'Ll—,fﬁ)Loﬂa’)m,a' + NaNa’pa’Pal-"‘Z,aLO_(a)L-l’:gza,)
- NaNa'pa'Qa Zf=1 pfuz,iLf?“')Ll_.i“)
— NoNegapaLo “Lie tr,a — Nogal arparbiz.ar Lo * Lie®’
+ NaNeGagar D imt piue,iLns VLT

REMARKS. (a) The Theorem 3.1 remains valid if the assumption (iii) is re-
placed by the assumption

(iil)" p(ma) = (1/Napd.a)ld(se) + h(8(sa))] + o(1/N), where ¢ is the
standard normal, density, ~(¢) is a polynomial in ¢ whose coefficients involve
inverse powers of Ne , and sa = (va — Pa)/tib.a -

(b) The assumptions (ii) and (iii) of Theorem 3.1 are satisfied if the random
variable m, has a binomial distribution with parameters N, and p. such that
pa'_)paofo < Day <1

(¢) The assumptions (ii) and (iii) of Theorem 6.1 are also satisfied if m, has a
hypergeometric distribution, and the size of the population N «" and the size of
the sample N, , are such that N* = O(N**°) for k = 2 and some 6> 0, for then

(cf. [7]),
p(ma) = (m2)pacga= " + o(1/NJS7).

To prove this theorem, we first consider the case when the sample sizes M , Na;
a =1, .-+, ¢, are non-random instead of random. In such a case the random

variables (X%, ---, X%.,) and (Xa1, -+, Xan,) can be regarded as consti-
tuting 2¢ independent samples from the distribution functions F*®(z) and
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F~®(z) respectively, « = 1, - -+, ¢; and we have the following specializations
of the conditional analogues of Theorem 3.1, the proofs of which follow by pro-
ceeding exactly as in Theorem 6.1 of Puri (1964), and are therefore omitted.

(3A) Non-Ranpom CAsE.

Levma 3A.1. If assumption (iv) of Theorem 3.1 s satisfied, then the random
vector N (Ty" — a", -+, T.5 — a.b) where s and a®’s are defined by (2.9)
and (2.12) respectively, has a limiting normal distribution with zero mean vector
and variance-covariances given by Nbi+ and Nbg+ o+ where ba+ and ba+ o+ are de-
fined in (2.21) and (2.23) respectively.

“LEmMA 3A.2. If assumption (iv) of Theorem 3.1 is satisfied, then the random
vector N%( Ty —ay,- -+, Ts — a.) where T ’s and a”’s are defined by (2.10)
and (2.12) respectively, has a limiting normal distribution with zero mean vector
and variance-covariances given by Nbi- and Nbe— o where ba- and ba- .- are de-
fined in (2.22) and (2 .23) respectively.

TuroreM 3A.2. Under the assumptions of Lemma 3A.1, the random wvector
W =W, ... K W) where

(3.3) W = N Hmalat + naTe” — Mala’ — Nalla )

has a limiting normal distribution with zero mean vector and variance-covariances
given by N by@?* and N7y where by " and by™*” are defined in (2.26)
and (2.27) respectively.

We have thus established the joint asymptotic normality of the random vari-
ables 74’s when the sample sizes mq , e (e = 1, -+ - , ¢) are non-random. We
now drop the assumption that m. and n, are non-random. We assume that ma , na
are random variables which satisfy the assumptions (i) to (iii) of Theorem 3.1.

(3B) Ranpom Cask. We shall need the following lemmas:

LemMa 3B.1. Under the assumptions (ii) and (iii) of Theorem 3.1

(34) fra = E{(va — pa)| 5] £ @} = o(N7?)
(3.5) ls.a — fizal = O(we™ “*/N) + o(N7Y),

where foo = E{(ve — pa)’ | Isal < o).
The proof of this lemma is the same as in ([7], p. 37) and is therefore omitted
LemMa 3B.2. Let { Xy} be a sequence of random variables and {rx} a sequence of
numbers. If Xy = ry + Op(ty) where ty — 0 and ry —ras N — «, and h(x) isa
function admitting continuous (j + 1)st derivative in some interval containing r,
then

(3.6) W(Xy) = h(ry) + i hO(r) (X — r)*/d!
+ (Xy — r)™/G 4+ DIAY P (eX, + (1 — e)ry), 0<e<],
(3.7)  A(Xa) = h(ry) + 2 i AP (ra)(Xn — 1a) /il + 0p(tx").

Proor. (3.6) is just the Taylor expansion of h(Xy) and (3.7) follows as a
special case of the Corollary 3 of Mann and Wald [15].
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Lemma 3B.3. Under the assumption (ii) of Theorem 3.1
(3.8)  J(H) = J(H*) 4+ J'(H*) X 5u1 phi(z)(vi — ps) + 0p,(N7H),
(3.9) J'(H(2))J'(H(y)) = J'(H*(2)J (H*(y)) + 0,(1).

Proor. The proof follows by noting that H(z) = H*(z) + O0,(N7*), and
applying Lemma 3B.2.

Lemma 3B.4. If the assumptions (ii), (iii) and (iv) of Theorem 3.1 are satisfied,
then for large N

(3.10) "X = Nodolii™® + Na(va — pa) L&
+ Nata D_io1 pi(vi — po) LE? + O(N),
(3.11) be'X = BX — No'[(L™)uzia + do’ 251 pibiz, i LEV)?

+ 2patatiz.oLo” L] + O(N)
where
"X = Mallat, be X = mabit, du=ea=pa if Xis+;
0."X = Matte”, b*X = ni-bi-, do=ea=qu if Xis—.
(3.12) MaMarbat o+ = NaparPapar [the expression for Nbg+ o+ (cf. (2.23) with
Ni, pi, U and V changed to pp:, pigi, U* and V*
respectively] + o(N);

(8.13)  Malaba— o~ = NaparQegar [the expression for Nby- o - (cf. (2.23)) with
M OF U and V changed as in (3.12)] + o(N);
(3.14) MaNabar+ o~ = NopaDarge [the expression for Nbyr+ .- with Ns, us, U

and V changed as in (3.12)] + o(N);

(38.15)  Malarbat o~ = NaparDagar [the expression for Nbo+ o— with Ni, pi, U
and V changed as in (3.12)] + o(N);

(3.16)  MaNabat o~ = NapaPaga [the expression for Nbo+ o— with Ni, pi, U
and V changed as in (3.12)] + o(N).

Proor. Apply Lemma 3B.3 and make use of the facts that v,v; = pa’p: + o(1);
va(1 — »i) = p’gi + o(1) and similar expressions for v, va(l — »:)?
varivipa(l — v:) (1 — vi) and vavs(1 — »).

Lemma 3B.5. If the hypothesis of Lemma 3B.4 hold, then for large N,

a=1,---,¢
(3.17) (da — Malat)/Mabar = — D 51 swi/T; + o(1);
(3.18) Bat/Mabar = Iy/I1 + o(1);
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where

Napiza = Dagala’s ce = O(1);
vi = pa(pipapigi)ieLis®), 1=1,---,¢ T# a;
Ve = (Paa) (CaLis™ + Papatalie®;

I = 2p.,,p,,,2 ZLI.@}@ pipiU?‘-{-i;-}-a,-}-a) + 2papa2 Z$=1 piq:U Citanta)
+ 20 Dot ia piDi Ulhasivy + 2Pa D1 piqi U a—i— by
+ P Z(s) PipkpfpkWaaﬁi,—k) + Pa Z(z) PiPthﬂkW?+a;—i.—k)
+ 2pa 2o PP g W Crasri i
where W* is defined in (2.28). and I,' = I* + D i v,

The proof of this lemma involves straightforward algebraic computations and

is therefore omitted.
Lemma 3B.6. If

(1) 0 <N =M1,y oo, A £ 1 — N < 1 for someNo = 1/2c,
0< o=, ,pm=1—p <1 for someu < 1/2c,
(ii) the assumptions (ii), (iii), and (iv) of Theorem 3.1 hold,
Git) E(Tar [Ny -5 Ao)y E(Tam | M, -+, A, var (Tar [M, -+, Ao,
var (Ta- | M, - -+ , o) extst, then for large N o such that w(p20)! < Palle

(3.19) B(rax) = dur + o(N?);

(3.20) E(rx'®) = dy'® + o(N*);

(3.21) Jar (rax) = Bis + O(Nwe™ “**) + o(N);

(3.22) CoV (Tat , Ta=) = Bat,a= + O(Nwe™®) + o(N);

(3.23) var (rv®) = Bar + Ba- + 2Buta- + O(Nwe™ @)+ o(N);

(3.24) 60V (Ty(a), TN(a,)) = Ba+,a’+ + 6a+,ou— .+ Ba'+,a“ + Ba‘,a'_
+ O(Nwe™'*) + o(N).
Note. The quantities dut , da—, dv'®, Bat, Ba=, Bata—, Batar+, Batarm
Bar+.a— , Ba—ar— are all defined in Section 2.
The proof of the lemma follows by straightforward computations.

LemMa 3B.7. Under the assumptions of Theorem 3.1, the random vector
(nt — ™, -, 7.t — do.Y) has a limiting normal distribution with zero mean vec-

tor and covariance matrix
(3.25) var (ro+ — dot) = Bat, COV (Tat — dat, Tart — dar+) = Bat,ar+
where Bi+ and Ba+ o+ are given by (2.28) and (2.39) respectively.

The proof of this lemma follows from Theorem 3.1 of [7] as does Lemma
3A.1 (or Theorem 6.1 of [18]) from Theorem 1 of [3].
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Now proceeding as in Lemma 3B.7, we get the following lemma and the main
Theorem 3.1.

Lemma 3B.8. Under the assumptions of Theorem 3.1, the random vector
(i — di7y ---, 7 — d. ) has a limiting normal distribution with zero mean
vector and covariance matrix

(3.26) var (ra- — do-) = B-, COV (Ta= — da=, Tar— — dar=) = Pa—,a'~
where Ba- and Ba- o - are given by (2.29) and (2.38) respectively.

Now as a special case, assume that the random variables Z,, ,r =1, - -+ , Nq ;
a =1, -, ¢, are distributed with distributions II,(z) = (2 + weN ) where
IT is symmetric about zero. Then

Fr(z) = [I(z 4+ pN7?) — M(pNHIL — D(paNHT ifz 20

=0 otherwise;
Fz) = (N7} — (=2 + pN ) (pNH]™ ifzz0
=0 otherwise,

where po = pij = 6; — 6;.

Then the following corollary is an immediate consequence of Theorem 3.1.

CoroLLARY 3.1. If

(1) the conditions of Theorem 3.1 and the condition Qu of Section 2, Part I,
are satisfied,

(ii) Hu(2) = U(z + ;uaN_%), a =1, -, ¢, and II is symmetric aboul Zero,
then the c = K(K — 1) /2 random variables N, @ a =1, -, ¢ are distributed
in the limit, as N — o, as independent N(n'®, A*) where

(3.27) 1 = dplua([T T [21(2) — lln(z) dIi(z))

and

(3.28) A* = [§ % (w) du.
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