ON ESTIMATING A DENSITY WHICH IS MEASURABLE WITH RESPECT
TO A o-LATTICE!

By Tim RoBERTSON
Unaversity of Towa

1. Introduction and summary. This paper is concerned with the problem of
estimating a probability density which is known to be measurable with respect to
a o-lattice of subsets of the space on which it is defined. Our solution is represented
as a conditional expectation. (Generally in the literature “conditional expecta-
tion” refers to ‘“‘conditional expectation given a o-field.”” However since we shall
be concerned exclusively with “conditional expectation given a o-lattice’” we shall
use this abbreviated terminology for the latter, more general concept.) Brunk
[2] discusses conditional expectations and many of the extremum problems for
which they provide solutions.

We shall consider the case where the measure space, (2, @, u), on which the
density is defined is totally finite. Let £ denote a o-lattice of subsets of (£ C @).
A o-lattice, by definition, is closed under countable unions and intersections and
contains both 2 and the null set &. Let w1, ws, -+, wn be a sample of independ-
ent observations chosen in @ according to the unknown, £-measurable density
f. We say that a point is chosen in @ according to f if the probability that it will
lie in any set A in @ is given by f 4 f du. The function f is £-measurable if the set
[f > a] is in £ for each real number a.

We shall use the maximum likelihood criterion for choosing an estimate. In
other words we wish to find an £-measurable density f such that the product of
the values of f at the observed points is at least as large as the product of the
values of any other £-measurable density at those points. Such a function will
be called a maximizing function.

Clearly the o-lattice £ must satisfy some restrictions in order for the problem
to be of any interest at all. For example if (2, @, u) is a finite subinterval of the
real line together with Borel subsets and Lebesgue measure and if £ = @ then
there are many obvious solutions if the density is bounded, and none at all if it
is not bounded. The second section of this paper is devoted to the restrictions
that we impose and to showing that these restrictions are satisfied in some prob-
lems which are of interest.

The fourth section of this paper is devoted to some results on the asymptotic
properties of our estimates in three speoial cases. The methods used are similar
to those used by Marshall and Proschan [4]. The final section contains some ob-
servations on the problem of estimating a density on a non-totally finite measure
space.
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Let L, denote the set of square integrable random variables and L.(£) the
collection of all those members of L, which are £-measurable. Let R(£) denote the
collection of all £-measurable random variables. Let ® denote the collection of
Borel subsets of the real line. We shall adopt the following definition for the
conditional expectation, E,(f | £), of a random variable given a o-lattice.

DrriNtTION 1.1. If f £ L; then g € Ly(£) is equal to E,(f | £) if and only if ¢
has both of the following properties:

(1.1) [(f—g)hdu <0 forall helLxL)
and
(1.2) [s(f—g)du =0 forall Beg'(®).

(Brunk [1] shows that there is such a random variable g associated with each
f e Ly and that ¢ is unique in the sense that if ¢’ is any other member of Ly(£)
having these properties then g = ¢'[u].)

In order to motivate the consideration of a problem such as the one we take
up in this paper we introduce the following examples. The first example is dis-
cussed in [5].

ExamprLE 1.1. Suppose @ is a finite set and we denote its elements by 1, 2,
-+, k. Let @ be the collection of all subsets of @ and suppose u assigns positive
mass to each point in Q. Suppose £ is an arbitrary o-lattice of subsets of Q. Let
n; denote the number of times the point ¢ is observed. We wish to find an £-meas-

urable density f on @ such that

I£=1]?(i)"" = i R(D)™
for every other £-measurable density h. It is shown in [5] that a solution is given
by f = Eu(g | £) where g(3) = niln-u(3)] .

The problem posed in the next example was solved by Pyke (personal com-
munication with Professor Brunk) and for a monotone density by Grenander
[3].

ExampLE 1.2. Suppose @ is a closed subinterval of the real line (@ = [c, d]),
@ is the collection of Borel subsets of @ and u is Lebesque measure. We wish to
estimate the density f which is known to be unimodal at some unknown point in
Q. Suppose that our observations are ordered: w; < wp < -+ < W, .

If h is any unimodal density with mode at @ and w; < @ < w;11 then define the
function g by:

g(z) = h(w;) (wj =z < a)
= h(wjt1) (¢ £z = wjn)
= h(zx) otherwise.

It is easily seen that the density f = [[ g du]™-g is unimodal with mode at w;
or w41 and that the product of the values of f at the observed points is at least
as large as the product of the corresponding values of k. Hence our problem re-
duces to finding an estimate which has mode at one of the observed points.
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Similarly we can show that any maximizing estimate must be constant on
every open interval joining two consecutive observed values. The next remark is
easy to verify.

ReMARK 1.1. Let £ be the o-lattice of subsets of Q consisting of all those in-
tervals containing the point a. A function f on © is unimodal at a if and only if
f is £-measurable.

If we can estimate the density subject to the restriction that it is unimodal at
a fixed point then we can select an estimate by comparing the ones we get by
assuming the mode is at particular observations. We see thus that the problem of
estimating a unimodal density reduces to estimating a density which is measurable
with respect to a o-lattice and constant on intervals joining consecutive observa-
tions. We shall see that these results for a unimodal density are typical of a larger
class of problems.

Now consider the problem of estimating a unimodal density on the reals to-
gether with Lebesgue measure. Clearly any estimate must be zero outside of the
smallest closed interval containing all the observed points. Hence this problem
reduces to the one discussed above.

2. o-lattices and partial orderings. Recall that we are given a totally finite
measure space (£, @, u) and a o-lattice £ of subsets of Q. Define the relation < on
Q by:

w&K« ifandonlyif weLe £ imply that o e L.

This relation gives an “almost’ partial ordering of  in the sense that it is transi-
tive and reflexive but not necessarily symmetric. To see that it is not necessarily
symmetric consider: @ = {z, y} and £ = {J, 0}.

We say that a o-lattice is complete if it is closed under arbitrary unions and
intersections. A function F on Q is isotone with respect to << provided that
w; K wp implies that F(w;) < F(w.).

TuEOREM 2.1. If the o-lattice £ is complete then a necessary and sufficient con-
dition for a function f on Q to be £-measurable is that it be isotone with respect to the
almost partial ordering induced by £.

Proor. The necessity is easy to show. To prove the sufficiency suppose f is
isotone with respect to the partlal ordering and a is any real number Then for
each w in the set [f > a] and o’ not in that set there is a set L(w, ') in £ which
contains w and does not contain «. Since £ is complete the set [f > a] is in&
because

[f > a] = th[f>a] nw’e[f>a]° L(‘*’» ‘*’,)-

We now make the following assumptions about the o-lattice £

(i) £1is complete and (ii) corresponding to each pair » and o of elements of
Q there is a unique element v of @ such that 0K, o Kv,andif o <K yand o K y
then » < y. (We denote v by max (w, ').)

In many situations we begin with a partial ordering of the space 2 and wish to
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estimate a density which is known to be isotone with respect to this partial order-
ing. Suppose the relation which gives this partial ordering is denoted by <. Let
the o-lattice £ be the collection of all subsets L of @ with the property that when-
ever L contains a point w then it contains all points ' such that » < «'. This
o-lattice £ in turn induces the relation <. It is easy to show that this o-lattice is
complete and that the two relations, = and <, are equivalent. Hence if < has
property (ii) then so does <. Using assumptions (i) and (ii) the following re-
marks are easy to verify.

REMARK 2.1. Corresponding to each point w in Q there is a unique member of
£, denoted by L(w), with the property that L(w) is a subset of each member of £
which contains w.

ReMARK 2.2. Suppose L is a member of £ which contains the point w. L is
equal to L(w) if and only if w < «” for each o’ & L.

ReMmark 2.3. For any two points w and « in @ we have

L(max (0, »')) = L(w) n L(w').

3. Estimation of an £-measurable density. In this section we derive an ex-
pression for a maximizing function. It can be shown that any maximizing function
is simple and assumes at most n values different from zero. However, if we can
find any collection of sets on which a maximizing function must be constant then
our problem can be reduced to the one discussed in Example 1.1. Recall that
L(w;) denotes the smallest member of £ containing the 7th observed point. Form
the sets B; (¢ = 0, 1, 2, --- , H) by taking all possible intersections of the sets
L(w), L(ws), -+, L(w,) in the following way:

By = Nia L(wi),  Bi = Nign L(wi), By = ina L(wi), -+,
By = Nia L(wi),  Bapr = Migna,n L(wi), <+, Ba = L(wa).

Alsolet Ao = Boand A; = B; — U,.;B; = B; — D ;i Ajfori=1,2, -+ H.

Since each B; is a finite intersection of the sets L(w;) it follows from Remark
2.3 and our second assumption that there is a point ¢; in B; such that B; = L(s;).
Further from Remark 2.2 it follows that if any A ;is non-null then it must contain
the corresponding point o; . Suppose that k of the sets Ao, 41, - -+ , Ax are non-
null and that we label them A;, As, ---, Ax. Also relabel the corresponding
sets B; and points o; so that we have o, ¢ A; € B; = L(s;). Note that the sets
Ay, Ay, -+, Ay are pairwise disjoint and that Y iy 4; = Uk, L(w;).

In many interesting cases we will, with probability one, draw a sample such
that the numbers u(A:), u(Az), - - - , u(Ayx) are all positive. We shall assume that
this is the case for the remainder of this paper.

THEOREM 3.1. If there is a maximizing function then there is a maximizing
Sfunction which is constant on each of the sets Ay, Ay, -+, Ay .

Proor. Suppose f is a maximizing function and let b = D iy (s:) 14, .
We first show that 4 is £-measurable. By Theorem 2.1 it suffices to show that h is
isotone with respect to <<. Suppose w < ’. We may assume that wis in ) s—1 A;
for if not then 0 = A(w) < h(w').
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Suppose the subscripts m; and m. are chosen so that we A, and o € 4,,, .
Let Bn, = Nier, L(wi), and Bm, = icr, L(w:). Now wé Bn, and we B; for
i < my . Similarly o’ £ Bn, and w’ g B; for ¢ < m, . Since o < it follows from
the order in which we defined the B’s that 7> D T; and hence that om, << om, .
Since f is £-measurable we conclude that

h(w) = f(om) = flom) = R(o).

Now ¢; K wforall win 4,50 that 0 < [ hdu < [ fdu = 1. Further if any ob-
servation w; is in A4; then f(w;) = f(o:) since f is £-measurable and in this case
A; C B; C L(w;). It follows easily from these remarks that the function
h = [[ hdu]™ h which is constant on A, , As, - -+ , Az is a maximizing function.

Let n; denote the number of observations in 4;, (¢ = 1,2, -- -, k). Further,
let @* = {1, 2, ---, k} and form the o-lattice £* of subsets of * as follows:
Fee* and Te£* if and only if X urdie&L.

ReMARK 3.1. A non-negative function f* = (21, 22, ---, @) on 0% is £*
measurable if and only if ) 5— x;-I,, is £-measurable.

Our problem is then to find an £¥-measurable, non-negative function
7=, ., -, ) on Q" such that >ty y;-u(A;) = 1 and

Hlf=1 Yyt = H?=1 2

for every other function A* = (21,2, - - - , 2) having these properties. The solu-
tion of this problem is given in Example 1.1. We state the solution in the fol-
lowing theorem.

THEOREM 3.2. A maximizing function is given by

f= 2yl
where f* = (y1,92, -+, yx) 15 equal to Bue(g* | £), u*(4) = u(A4:), and g*(3) =
ni'[n'l“(Ai)]_l, (t=1,2,---,k).

We shall for the remainder of this paper denote this maximizing function by f
or by f, in the section on consistency. Let £, be the o-lattice of subsets con-
sisting of @, & and all sets of the form 4, 4+ 4,, + --- 4+ A4, which are in £.
It is shown in [5] that an equivalent definition for E,(f| £) = g can be obtained
by substituting

(3.1) Ja(f —g)du <0 foreach Aeeg

for (1.1) in the definition. Using this result the following theorem is easy to verify.
TuroREM 3.3. f = E.(§| £,) where

9= 2ianinu(A)™ 1L, .

In certain special cases we have been able to show that f = E,(§ | £). One of
these cases was introduced in Example 1.2.

THEOREM 3.4. In the special case described in Example 1.2 we havef = E, (¢ | £).

Proor. The only difficulty involved is in showing that if h e L:(£) then
J (¢ — )hdu =< 0. Since both f and ¢ are constant on each of the sets 4; , A,
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-+« , Ay and are both zero on the complement of ZL; A; we can write
J@—=hdu=[@—1-Hdu

where %’ is constant on the sets Ay, Ay, - -+, A, and [D_ 5y AJl°, its value on
A; being [u(A4)] ™ f 4; h dp and its value on Dk A being less than the mini-
mum of these values. It is now easy to complete the argument by showing that
R’ is £,-measurable.

4. Consistency. In this section we present some results on the asymptotic
properties of our estimate. We consider Example 1.1, a special case of Example
1.2 and a third example which we introduce in this section.

ExampLE 1.1. Recall that @ = {1, 2, - -+ , k}, @ is the collection of all subsets of
2 and p is a measure on @ which assigns positive mass to each point in Q. £is an
arbitrary o-lattice of subsets of @ and n; denotes the number of times ¢ was ob-
served (¢ = 1,2, --- , k). Our estimate is given by f, = E,(gx | £) where g.(z) =
ni-[n-u()]". It follows from the Borel strong law of large numbers that
lim, ¢g.(2) = f(7) with probability one. Brunk [1] observes that

f(gn —Ndu = f(fn — ) du.

It follows from these observations that for each ,lim, f,(¢) = f(¢) with proba-
bility one.

We now consider the problem of estimating a density which is known to be
unimodal at a predetermined point in a finite subinterval of the real line. In this
discussion and the discussion of Example 4.1 we shall use a representation for the
conditional expectation which is given in [6].

Our estimate in both cases is given by fu = E,(gn | £.). Suppose », is an arbi-
trary point in @ and ¢ = fu(v). Let P, = [fn > t] and %(P,) = {L; Le£,,
w(L — P;) > 0}. The result in [6] then gives us

jn(VO) = SUPLegy(P;) [w(L — P_t)]_l'fz.—m gn du.

Let @ be the collection of all Borel subsets of @ = [¢, d] and let u be Lebesgue
measure. The o-lattice £ is the collection of all subintervals of 2 containing the
point a(c < a = d).

We wish to estimate the £-measurable density f on the basis of the ordered
sample w1 < wy < --+ < w,. Suppose that g(n) is the subscript of the largest

observation less than a. The sets A1, Az, - - -, Ax on which the estimate must be
constant are given by :
4, = [“«’1 ’ wZ): A, = [w27 w3): Y AQ(") = [wQ(n) ’ a)’
A‘I("H-l = [a: wlI(")+1]7 Tty Ak = An = (wn-l ) wn]-

Our estimate is given by:
' fn = p(gn I £7D) = Ell(g" I £)
where g, = Dt ni-[n-u(A:)] 14, .
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The proof of the next theorem uses methods similar to those used by Marshall

and Proschan [4].
THEOREM 4.1. If f 1s £-measurable then for every vy < a,

f(vo—) = limy inf fu(v0) < lim, sup fa(ve) < f(vo+)
with probability one. Furthermore for every vy > a
f(vo—) = lim, sup fu(ve) = lim, inf fu(ve) = f(ro+)

with probability one.

Proor. The proofs of the various parts are similar although they may use
different forms of the representation theorem given in [6]. We shall prove that if
vy < a, then

f(ro—) = lim, inf fu(v)

with probability one. If f(xo—) = 0 then the desired result is obvious since f, is a
non-negative function. Suppose »; < v and f(») > 0. Let s(n) be the subscript
of the largest observed value less than or equal to v and let 7(n) be the subscript
of the smallest observed value greater than or equal to 1 .
Consider the above mentioned representation for f, = E,(gn|£.). Let

t = fn( Vo) and P; = [wj(,,) y wi(,,)]. Then](n) > s(n) so that [w,m) s w,-(,.)] & E)b(Pt)
for sufficiently large n with probability one. Hence

Ja(m0) Z [wjt) — @rw] ™ [ty (ny 05 a1 G Bl
with probability one for sufficiently large n. However

f[wr(n)-wj(n)] gndp = (1/n)-[j(n) — r(n)]
so that

Jawo) 2 (1/n)-[i(n) — r(n)](wjm — wrm)

If welet F(z) = f[m]fdu and Z; = [f(»)] - F(w;) (i = 1,2, --- ,n) then since
f is non-decreasing on [c, a],

Zjmy — Zirtny Z Wity — Wr(n)

so that
Far) 2 (1/n)-[i(n) — r(0){(Zjmy — Zeewy) ™

It is well known that Z;, Z,, - -- , Z, represents an ordered sample from the
uniform [0, 1/f(»,)] distribution. Let G denote the distribution function associated
with this distribution and @, the empirical distribution function determined by
Zy,Zs, -+ ,Zy.Then

(1/n)lj(n) — r(n)] = Gu(Zjm) — Gu(Zrny)
so that
Fa(n0) 2 [Gu(Ziw)) — Gl Ze))(Zsny — Zvewy) ™
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It follows from the Borel strong law of large numbers that lim, Z,., =
[f(#1)]7" F(») with the probability one so that

hmn lnf [Zj(n) —_ Zr(n)] > O
with probability one. Using this and the Glivenko-Cantelli theorem we infer that
im, [Gn(Ziey) — Gu(Zr))(Zimy — Zoe) ™ = f(11)

with probability one. We can now draw the desired conclusion.

Clearly if f is continuous at »o then this theorem implies that lim, f.(vo) = f(»o)
with probability one. Using this observation and methods similar to those used
in proving the Glivenko-Cantelli theorem we can prove the following corollary.

COROLLARY 4.1. If f is continuous on [ay , az] C [c, d] then

1im, SUPzefay a0 [fu(z) — f(2)] = 0

with probability one.
If we let Fo(z) = f te,21 Jn du then we get the following corollary.

CoROLLARY 4.2. If f is continuous on [c, d] then
lim, sup. |Fo(z) — F(z)] =0

with probability one.

ExamrLE 4.1. Let @ = [0,1) X [0, 1), @ be the collection of Borel subsets of
and u be Lebesgue measure. Define a partial ordering of @ by: (21, 1) < (22, y2)
if and only if z; < x, and 1 < y.. Suppose we wish to estimate the density f

which is known to be isotone with respect to this partial ordering.

Denote our observations by (21, y1), (2, ¥2), - , (Za, Y»). Recall that when
we derived our estimate of f all that was required was to have a finite number of
sets of non-zero measure on which the estimate is known to be constant. If we
draw the linesx = z;and y = y: (¢ = 1,2, --- , n) then these lines partition Q
into (n + 1) sets By, By, - -+, B, which give a refinement of the partition
Ay Ay, oo Ay, (D_%_, A.)° on which the estimate must be constant. Clearly the
estimate must also be constant on these sets.

Now let n; denote the number of observations in B; and

o = 2teani-[n-w(B) ™ Is, .

If we let £ denote the o-lattice induced by the partial ordering then our estimate
of fis given by f, = E.(g | £.) where £, consists of @ and & together with all
those sets of the form B;, + B, + --- + B,, which are in £.

THuEOREM 4.2. If g, and f, are the functions described above then

fn = BE,(gn ! £).

Proor. As in the proof of Theorem 3.4 the only difficulty involved is in showing
that if A is £-measurable then the function . defined by

B o= 24 [U(Bi)]—l‘[fs,- hdu]-Ig,,

is £,-measurable. However a function is £,-measurable if and only if it is constant
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on each of the sets By, B;, -+, B, and is isotone with respect to the partial
ordering. To see that it is isotone with respect to the partial ordering we compare
its value on adjacent sets B; and B; . First consider the case where B; and B;
have exactly one boundary point v in common and »; < vy < », for »; € B; and
ve € B; . Next consider the case where B; and Bj; are.separated by one of the lines
z = z; . Partition B; and B; by equally spaced horizontal lines, use the first result
and take the limit as the distance between these lines goes to zero. The third case
follows in the same way.

For each positive integer m partition @ into 2° squares each having the width
27", Let 5, be the o-field of subsets of Q generated by these 2 squares.

LeEmMA 4.1. For any L € £ there are sets Eyand Ey in F,, such that Ec C L C E,
and both L — Ey and Ey — L have u measure less than 2/2™.

Proor. Let E, be the union of all those members of the partition generating &,
which are entirely contained in L. Let £} be the union of all those members of the
partition which have a non-null intersection with L. Note that whenever L con-
tains a point in @ it must contain all points greater than or equal to that point so
that the set F; — Ej can contain at most 2-2™ — 1 members of the partition. The
desired conclusion follows from this observation.

Recall that the probability that any one observation will be in a set 4 in @ is
given by f 4+ f dp. Define the probability measure v on @ by v(4) = [ 4 f du. For
each positive number § let D s (8) be the collection of all those sets in @ of the
form L — L’ where both L and L’ are in £ and v(L — L’) = 4. For a given
sequence of observations let N,(A) denote the number of the first n observations
which are in A.

TureoreM 4.3. If f is bounded then for each 6 > 0

lim, supaez,@ |(1/n) - Na(A)(v(4))™ — 1] = 0,

with probability one.
Proor. Let R be the set of all sample sequences for which the above limit is
zero. Let T be the set of all sample sequences for which

lim, (1/n) -Na(8)(v(8))™ =1

for every set S which is a member of some F,, and has positive vy measure. It can be
shown, using the Borel strong law of large numbers, that 7" has probability one.
We shall show that T is a subset of R.

Let £ be an upper bound on the values of f. Suppose that we are dealing with a
sample sequence in T' and that 5 is an arbitrary positive number. We may, with-
out loss of generality, assume that n < £.

Choose m so that (3)™ < (n-6)/(48-£) and (%)™ < 6(/8-4£.) Since F,, is finite we
can choose N such that n = N implies that

[(1/n) -Na(8)(x(8))™ — 1| < /6

for all S in F,, such that v(8) > 0.
Now suppose 4 ¢ > s (). Using Lemma 3.1 we can choose Sy and S; in F,, such
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that So © A < S; and such that both u(S; — A) and u(4 — S,) are less than
or equal to 4/2™. It follows that v(Si — S;) < (8-4)/2" < (5-8)/6. Further it
follows from the second restriction on (4)™ that both v(S8;) and v(.S,) are greater
than §/2. Now

(1/n) - Na(S0) (¥(80)) ™+ v(80) (v(81)) ™" = (1/n)-Na(A)(v(4))™
= (1/n) -Na(S1)(v(81)) ™ v (S1) (v(8e)) .
Hence
(1 —9/6)-(1 — 2/3) = (1/n)-Na(A)(v(4))™ = (1 + 0/6)(1 + n/3).

The desired conclusion follows from this result.
Let (21,%1) < (22,y:) if and only if z; < 2z, and y; < ¥ . Since f is isotone with
respect to the partial ordering we can define

f(wo—) = Supucs, f(w)
and
f(w0+) = infa>aof(w)'

TurEOREM 4.4. If the density f is £-measurable and bounded above then for every
vo € @ we have

f(w—) = lim, inf fa(v0) < lima sup fu(ve) < f(vot)

with probability one.
Proor. We shall show that

f(Vo—') § hmn 1nff,,( Vo)

with probability one. If f(vo—) = 0 the conclusion is obvious so suppose »n < »o
and f(») > 0. For each n let w,u) be one of the first n observations and suppose
that it is chosen so that it is greater than »; and so that there are no observations
greater than » and less than w,u) . Since f(»;) > 0 it follows from the Borel
strong law of large numbers that lim, w.sy = »; with probability one.

Let L(w;m) be the smallest member of £ containing w,my and let P =
{w; fa(w) > fu(wo)}. Asin the proof of Theorem 4.1 we can use the representation
theorem in [6] to conclude that

fa(w) 2 (1/n)NalL(rmw) = PI([L(wrm) — PIY7f(n)

with probability one. Using Theorem 4.3 we infer that limit of the term on the
right hand side of the above inequality is f(»1) with probability one. The desired
conclusion follows easily.

CoROLLARY 4.3. If besides satisfying the hypotheses of Theorem 4.4, f is continuous

at vo then
lim, fa(v) = f(v)
with probability one.
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6. On estimating a density on a non-totally finite measure space. We now
suppose that (2, @, p) is an arbitrary measure space (not necessarily totally
finite). We shall assume that the o-lattice £ satisfies Assumptions (i) and (ii) of
Section 2 so that a function f is £-measurable if and only if it is isotone with
respect to the almost partial ordering induced by £. Let Lo denote the smallest
member of £ which contains all of the observed points (Lo = Ul L(w;)). We
consider three possibilities.

First, if u(L,) = 0 then given any set L in £ of positive but finite measure we
could define an £-measurable density g which is as large as we want at the ob-
served points. Define ¢ as follows:

9(w) =k > 1/u(L), we L,
= 1/u(L), weL — Ly,
=0, otherwise.

Next, suppose u(L¢) = . Then u(L(w;)) = o for some 7. Now any function
which is £-measurable and positive at w; cannot be integrable since w; << w for
each w in L(w:). Hence any estimate must be zero at one of the observed points.

Finally if 0 < u(Lo) < oo then it is easy to see that any estimate must be zero
on @ — L, . Using this observation it can be shown that our problem reduces to
estimating an £*-measurable density on the totally finite measure space
(o Ct:, 1) where @* = Lo and u*, @* and £* are the restrictions of u, @, and
£ to Q.

Our estimate f is then the extension to @ of the function /* = E,«(¢* | £.%) ob-
tained by defining it to be zero on Q@ — L, . Now let £, be the o-lattice of subsets of
© obtained by adding 2 to £,* and let g be the extension of g* to 2 obtained by de-
fining it to be zero on @ — Lo . It can then be shown that our estimate f is equal
to E,(g | £.) by simply verifying that f has all the properties of such a conditional
expectation. Note that the definition for a conditional expectation on a non-
totally finite measure space is different from the definition given in this paper for a
totally finite measure space (cf. [1]).

In the special case where @ is the real line, @ is the collection of Borel sets, u is
Lebesgue measure and £ is such that £-measurability is equivalent to being
unimodal at the real number a, our consistency theorem still holds. For example
we can say that if f is £-measurable and if »o < a then

f(vo—) < lim, inf fo(ve) < lim, sup fu(ve) < f(vet),
with probability one.
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