ON THE MAXIMUM DEVIATION OF THE SAMPLE DENSITY

By MicHAEL WOODROOFE!

Carnegie Institute of Technology

1. Introduction and summary. Let X;, X., --- denote independent random
variables having a common density f. The present paper considers estimates of
f of the following form ([8] and [10]):

(1.1) fa(z) = 7 [ G(z, 7(z — y)) dF.(y)
= (7/n) X% G(, 7(x — X))
where ¥, denotes the sample distribution functionof X3, -+ , X, ,7 = 7(n) — =

and r = o(n) asn — «, and G is a non-negative function defined on R’ satisfying
regularity conditions to be listed in Section 2. More precisely, it considers the
asymptotic behavior as n — « of the maximum deviation of f.(z) from f(z)
where z varies in a compact interval which without loss of generality we take to
be [—1, 1]. The main result, Theorem 3.1, states that under regularity condi-
tions

(1.2) p liMpsw maxigz (/27 log )} (fa(x) — f(2))/[|Gel2(f(2))}]| = 1

where G, denotes an z-section of G—i.e. Go(y) = G(=z, y), y ¢ R"—and I1l»
denotes the norm in L, = L,(R', Lebesgue measure). Also, a limiting distribution
related to (1.2) is computed, and some sufficient conditions are given for the
almost sure convergence of max, <1 [fa(z) — f(z)| to zero asn — .

Since under mild regularity conditions f.(z) and f.(y), * # y, are asymp-
totically, independently, normally distributed when suitably normalized ([5]),
one might expect (1.2) to follow from its analogue for normal random variables
([2]) by an argument involving the weak convergence of stochastic processes.
However, having been unable to verify the necessary compactness conditions
([9]) with respect to any topology which makes the maximum functional in
(1.2) continuous, we have adopted a more elementary approach. This approach
uses a theorem on the large deviations of sums of independent, identically dis-
tributed random vectors to estimate the relevant probabilities directly. In order
to develop the primary topic of the paper as quickly as possible, we have post-
poned the proof of the theorem on large deviations until Section 5, while using it
in Sections 3 and 4 to prove our main theorems. Section 2 presents some pre-
liminary material.

We are aware of only two other papers which have considered the uniform
convergence of f, to f, namely [8] and [7].
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2. Preliminaries. Throughout Sections 2, 3, and 4, f and G will be assumed to
satisfy the conditions listed below. f is bounded on R' and is positive and con-
tinuous on some neighborhood of [—1, 1]. G is a non-negative, bounded, measur-
able function on R* for which

(2.1a) f Gz, y)dy = 1, ze R,
(2.1b) SUDzert f|y|gt ly| Gz, y) dy — 0 as t— .

These assumptions obviously imply that the family of functions (@, : z ¢ R'}
form a norm-bounded subset of L, for every p ¢ [1, »] and that

SUPzert f iyl G(x; y) dy < .

For 0 < a, 8 = 1 we will write f ¢ Lip («) and G ¢ Lip (B) respectively when we
wish to assume that f satisfies a uniform Lipschitz condition of order « on some
neighborhood of [—1, 1] and that G satisfies a uniform Lipschitz condition of
order 8 on R’.

The mean and variance of f,(z) are

(2.2a) w(z) = 7 [ Gz, r(x — y))f(y) dy,
(2.2b) (7/n)a.’(x) = (r/n)(7 [ G*(z,7(x — y))f(y) dy — 7 "pa(x)?),

respectively, as is obvious from (1.1). Their asymptotic behavior as n — o« is
described by the following, easily verified lemma:
LemMA 2.1. There is ann > 1 such that for all p € [1, )

L] G, tx — y))f(y) dy = f(@)G]l} + o(1)
umformaly (inx) on [—1, 7l ast — . If fe Lip (a), then o(1) may be replaced
by'I(‘)}Eés, )t.here exist > 1 and no for which o,() is bounded away from zero on
[—1,9]forn = ny. Let
(232)  Xu(x) = (n/r)'((Ju(2) = pa(2)) /oa(2)) = 07 2is Za (),
(23b) Zni(z) = 7((G(z, 7(x = X)) — 7 wa(@))/ou()), i =1,---,n,
for =1 = = nandn = no . The covariance r,(z, y) = E(X,(z)X,.(y)) is
(24) [r [ Gz, (& — )Gy, 7(y — w)f(u) du — 17 pn(@) ()] /on(2)0n(y),
and it is an easy consequence of (2.1) and Lemma 2.1 that
(2.5) sup [ra(z, )| = o((log7)™) as n—
where the supremum is taken over the set 7, consisting of all (x, y) for which

—1 <a,9 £nand |zt — y| = 2r " log 7. Moreover, if G(z, y) = 0 whenever
ly| = %, then (2.5) holds with O(+ ") replacing o((log 7)™") when the supremum

is taken over all (z, y) for which —1 < z,y < gand |z — y| = 7 .

The following lemma is an easy consequence of Theorem 5.1 and (2.5); in it
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we have let T,, be the set of x = (1, -+, z,) ¢ R? for which |z =< 1,
i=1,---,p,and ming; |z; — z;| = 7, and we have denoted by ® and &, the
standardized, univariate normal distribution function and the standardized, bi-
variate normal distribution function with parameter r respectively.

LemMa 2.2. Let w = w, — o withw = o(log 7) and 77 = o(n),v > 1l,asn— =
and let e = +1 or —1;then asn — «

(i) P(eXa(z) 2 w) ~ (1 — ®(w)),

(ii) P(Xn(z) = w, Xa(y) = w) ~ [o [ d®.(u, v) where r = ra(x, y) uni-
formly on [—1, 9] and T, respectively. If, in addition, G(z, y) = 0 whenever
lyl = %, then

(iii) P(eiXn(z:s) 2 w,2=1,---,p) ~ (1 — ®(w))® as n — o uniformly
onT,,.

3. Convergence in probability.

TuEOREM 3.1. Let f £ Lip (a) and G ¢ Lip (B),0 < o, 8 = 1, and let 7" = o(n)
andn = o(r*) asn — o with1 < v < § < 1 + 2a; then (1.2) holds.

Proor. Since (1n/7)! |un(z) — f(x)] — 0 and o(z) — ||Gall2(f(2))* uniformly
on [—1, 1] asn — « by Lemma 2.1, it will suffice to show that for every posi-

tive e
(3.1a) P(maxpz <1 Xa(z) = (1 — €)(2log r)}) — 0,
(3.1b) P(max, maxo<z<1 | Xno(2)| 2 (1 + €)(2log 7)}) — 0

as n — o where the X, ,(x) processes are defined as follows: for n so large that

< n—1,sayn = m = ng,andforp = 0, -+, [27] where [-] denotes the
greatest integer function, let z, , = —1 + pr ', and let

(3.2a) Onp(2) = on(Tnp ¥ 27 1) /00a(Tnp), 0=z =1,
(3.2b) X0 o(2) = 00 p(2)Xn(Z0,p + 27 1), 0<z=1

Using Lemma 2.2 and (2.5), one may establish (3.1a) by essentially the same
argument that is used to establish the corresponding assertion in [4]. To establish
(3.1b), we have first to find a sequence of finite subsets of [0, 1] on which the
maxima will essentially be attained with probability approaching one.

Lemma 3.1. If G ¢ Lip (B8), 0 < B < 1, then there is a constant C for which

E(exp (|(Xnp(2) — Xan(y))/le — y*)) = C

foradll0 =z, y=1,p=0,---,2r],andn = n, .

Proor. For fixed x, y, n, and p, let M denote the moment generating function of
U = (02p(2)Z0y(Tnp + 27 ") — 00.5(¥)Zn1(Tnp + yr *)); then by (2.3) and
(3.2)

(33)  E(exp ((Xap(z) — Xnp(®))/le — yI™) = (1 + M"(0)/2n |z — y|*)"

where M” denotes the second derivative of M and 0 <t < (1/n lz — y|#)!. Now
G ¢ Lip (B) implies |U| < Cir* |z — y|® wp one and Var (U) < C, |r — y|® with
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C: and C; independent, of z, y, n, and p. Therefore, M”(t) = Cs |x — y|*, so that
the right side of (3.3) does not exceed exp (C3/2). Since the roles of z and y may
be exchanged, the lemma follows.

If g is a continuous function on [0, 1], let ¢* denote the continuous broken line
with vertices at (127*,9(127%)),2 =0, - - - , 2% i.e. ¢® assumes the values g(:27")
at the points 27,7 = 0, - - - , 2", and varies linearly between them.

LemMA 3.2. Let G ¢ Lip (8), 0 < B = 1, then there exist constants d and D for
which

P(maxogost | Xnp(z) — Xip(2)| 2 u27) = D exp (—du2®")

forallp =0, -+, [27,n=n1,u > 0,and k = 1.

Proor. The proof of Lemma 3.2 is nearly a verbatim repetition of the
discussion in [9] on pp. 178-179. Simply use Lemma 3.1 in place of equation
(2.8) of [9].

Now if € = 3¢ is given and we let 2 ~ (log ) asn — o andw, = (1+ 2¢)
(2log 7)}, n = 1, then for n sufficiently large the left side of (3.1b) will not
exceed

(3.4) L 3% P(|Xap(127F)| = wa) + 2Dr exp (—2062%%)
= o(r %) 4+ O(+ %) = o(1) as n— ». QED

If ¢ = §, then (3.4) is the nth term of a summable series. Since we did notuse
the hypothesis that f & Lip (a) to establish (3.4), the following theorem is an
easy consequence of Lemma 2.1 and the Borel-Cantelli lemmas.

TuEOREM 3.2. Let G e Lip (8),0 < B < 1, and let 77 = o(n) and n = o(7°) as
n— o with1 < v < 8. Then max. <1 |fa(z) — f(x)| — 0 asn — « wp one. If
felip(a), < a £ 1,and if v > 2, then max;s <1 [fa(z) — f(@)] = o(+7) as
n — © wp one.

4. A limiting distribution. In this section we will use the technique of Watson
([11]) to compute the asymptotic distribution as n — o« of

(41) M. = a, '(maxp < (/1) |(Falms) — F(2))/Gaille F2))] — ba)
where for |i| < randn 2 1,2; = i ' and

(4.22) @, = (2logdr)7,

(4.2b) b, = (2log4r)} — (3)(2log 4r)(log log 47 + log 2r).

THEOREM 4.1. Let f ¢ Lip (), 0 < a < 1; let G(x, y) = 0 whenever |y| = 3,
and let ¥ = o(n) andn = o(7") asn — o withl < v < § < 1 + 2a. Then
limpw P(M, < ) = exp (—exp (—z)) for x & R'.

Proor. By Lemma 2.1, it will suffice to prove the theorem with
M.,* = a,”'(max,i <, | Xa(2:)| — ba) replacing M, . (See Theorem 3.1, first line
of the proof.) Forn = ng,p = 1,and z ¢ R', let w, = a.x + b, and

(4.3) Sup = 2 P Xu(Gr ™) Z wa,j=1,--+,p)
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where D) denotes summation over all subsets of size p drawn from
{—I[7], -+, [s]}. Then it is an easy consequence of Lemma 2.2 that S, , —
(1/p!) exp (—=) asn — o for each fixed p, so that the theorem follows, as in
[11], from the inequalities on pp. 99-100 of [6]. QED

We remark that no generality would be gained by requiring @ to vanish only for
lyl = A, for a factor of 24 may be absorbed in the sequence 7.

5. Large deviations. We will now present the theorem on large deviations
from which Lemma 2.2 follows. Since the proof is a variation on that given in
[3], it will only be sketched.

We will regard points in R” as column vectors x = (z;, - - - , z,)" where ' de-
notes transpose and will write x'y = D% za; for x, y £ R”. &(-:A) will denote
the p-dimensional, normal distribution function with mean 0 and covariance
matrix A, |A| will denote the determinant of the matrix A, and [ [5 will ab-
breviate [5, --- [ =, - Finally, we will call a vector v admissible with respect to a
positive definite matrix Aiffu = A™'v > 0 in the sense that u; > 0,
i=1-,p.

TurEOREM 5.1. Let (X®®:k =1, [ ky,n =1,2, - -} be a triangular array
of p-dimensional random vectors which are independent and identically distributed
in each row. Suppose that (1) E(X™") = 0,n = 1, and A, = B(X"PX™V’) 5 A,
asn — « where Ay, is positive definite for n 2 0; (2) maXi,... , | X" £ ¢, wp
one,n 2 1;(3) 0 < w, — ® and ¢,'w,”® = o(k,) asn — © where g = max {p, 3};
and (4) v s admissible with respect to Ay . Then asn — o

Pl i X 2 v, 0 = 1, -+, p) ~ [ -+ [, dB(x:A,).

Proor. For n = 11let M™ denote the moment generating function of X™—
ie. M™(t) = E(exp (tX™")), t ¢ R"—and let ©™ and B™ denote respectively
the vector and matrix functions of first and second order partial derivatives of
L™ =1og M™. Nextu, = Aa 'V, ta = (wokn )ta,0a = 0™ (ta), Ba = B™(tn),
and L, = L™ (t,). Finally, define H, and G, by

(5.1a) Gu(x) = exp (—Ly) [ -+ [Zw exp (t.'y) dF.(y),
(5.1b) Ha(x) = Gu™(xk,™ + knon)

where F, denotes the distribution function of X™* and * denotes convolution.
We observe that by hypothesis (2)

(5.2) maXy  <c,~2 MaxXi,j i |(0°/83:08,08.) L™ (8) |smt| < Dea

Il

where D is independent of . We also observe that if Q, — Ag as n — «, then by

the admissibility of v and the dominated convergence theorem
Gy I Jo exp (— wax'u,) do(x:Qn)

5.
— (|8 7/ ) (T2 u0) ™ as n— o

-1 ’
where up = Ay v = (uo1, -+, %o,p) -
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If one now introduces the Esscher transformation ([3]) and applies the multi-
variate normal approximation theorem ([1]) to H, , one finds, after some routine
analysis using (5.2), (5.3), hypothesis (3), and Taylor’s theorem, that

P(kn—% ZII:LI Xi(",k) = ViWn ;/L. = 1) R p)

(5.4) = exp (ka(Ln — ta0a)) | - [0 exp (—waXts) dH.(X)
~ exp (kn(Ln — ta'ea)) [ -+ [7 exp (—wnx'ta) d®(x:B,)
= exp (kn(Ln - tn,‘gn + %tn,Bntn)) f e f:lwn dCI’(X:Bn)

asn — ® where z, = vw, — @uk,’ and vo = Buu, . Now by (5.2), hypothesis
(3), and Taylor’s theorem (L, — ta'@n + 3ta Bata) = o(k, ') as n — «. More-
over, it follows from (5.3) that

(5.5a) [ o [ewn dB(x:An) ~ C(v,Ag)w, ? exp ((—w.'/2) (VA V),
(5.5b) [ -+ [, dB(x:Ba) ~ C(v, A)wa ” exp ((—wa'/2)(va'By 'Va))

as n — o with C(v, Agy) equal to the right side of (5.3). Since finally
VA,V — vo'Ba'va| = |u'(As — Bo)u| = o(w,?) as n — o, the theorem
follows. QED

We remark that in the presence of bounded higher moments or moment
generating functions, Theorem 5.1 may be used to obtain large deviation results
for unbounded random vectors as may be seen by a truncation argument. The
details are omitted.

The first assertion in Lemma 2.2 (with e = 41) follows from an application of
Theorem 5.1 to the triangular array {Z, i (z.): k= 1,--- ,n,n = 1,2, -}
where z, is chosen to maximize |P(X,(z) = w) — (1 — &(w))|for —1 < 2 < n.
Since (1, 1)" is clearly admissible with respect to the identity matrix, the second
part follows similarly. For the third, one also needs to use (5.5a) and the dis-
cussion immediately following (2.5).
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