SOME SHARP MULTIVARIATE TCHEBYCHEFF INEQUALITIES

By Govinp S. MupuorLkAR' anxp Popurr S. R. S. Rao
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1. Introduction and summary. If X is a random variable with EX = 0,
var (X) = o, then the inequalities

(1.1) PlX| = { = ¢*/¢,
(1.2) P[X = ] £ /(& + o),

where ¢ > 0, are known as, respectively, the Tchebycheff and the one-sided
Tchebycheff inequalities. It may be noted that under the stated conditions
(1.2) can always be attained and (1.1) can be attained if e* < €. Let X = (X3,
X, -+, X,) be arandom vector with EX = 0, EXX = =, T, be a closed con-
vex region in R", andT = T, U {X| —X & T}. In [3], Marshall and Olkin
have obtained sharp upper bounds on P[X ¢ T] and P[X ¢ T,] as multivari-
ate generalizations of (1.1) and (1.2). They have used these bounds to ob-
tain explicit sharp bounds on P[min X; = 1], P[min |X. = 1], P[| ] X,i

=1, P[[[X:=1,X.:>0,i=1,2, ---, n] etc., when only the variances o
of X;,2=1,2, .-+, n, are known.
Let Y = (Y1, Y,, ---, Y,) be a vector of n nonnegative random variables

with EY = uand ¢ = 0 be a homogeneous concave function on the nonnegative
orthant R," of R". In Section 2 we have proved the main inequality of this

paper,
Plo(Y) = €] £ o(u)/e, e> 0,

which is attainably sharp if ¢(u) =< e In Section 3 this result has been used to
obtain various generalizations of (1.1) and (1.2) to n jointly distributed random
variables or random vectors, which are also generalizations of the inequalities
due to Marshall and Olkin for the case where only variances are known. In
Section 4 we have obtained some sharp probability inequalities for some func-
tions of symmetric psd (positive semidefinite) random matrices and have dis-

cussed their relation to inequalities due to Mudholkar [4].

2. The main inequality. We shall obtain the main inequality and establish
its sharpness through the following two lemmas.

Lemma 2.1. Let Y = (Y1, Y2, ---, Y,) be a random vector with EY = u =
(p1, M2, = *+  ka), and f = 0 be a concave function defined on R". Then for ¢ > 0,

PIf(Y) 2 ¢ = f(u)/e
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Proor. By the standard argument for the Tchebycheff-type inequalities we
have

PIf(Y) 2 €] = Ef(Y)/e = f(EY)/e.

The latter inequality follows from Jensen’s inequality since f is concave. It is
obvious from the proof that the conclusion of the lemma is valid for any f =

0 such that Ef(Y) < f(w).
Lemma 2.2. For every homogeneous function g = 0 on R™ and ¢ > 0 there exists

a random vector Yo such that EY, = u and
Plg(Yo) = €] = g(u)/e,

provided g(u)/e < 1.
Proor. The distribution of the random vector Y, is given by

P(Yo = (¢/g(v)) vl = g(w)/e
P[Yo = 0] = 1 — g(u)/e
Then EY, = u, and because of the homogeneity of g,
Plg(Yo) = ¢] = P[Yo = (¢/g(w))-ul = g(u)/e

The main inequality, and its attainability, contained in Theorem 2.1, is
an immediate consequence of the above two lemmas.

TuaeoreMm 2.1. Let Y = (Y1, Ys, -+, Y,) be a random vector of jointly dis-
tributed nonnegative random variables Y; with EY = w. Then for any nonnegative,
concave, homogeneous function ¢ on the nonnegative orthant R." of R. , and ¢ > 0,
we have

(2.1) Plp(Y) = €| = o(u)/e,

and the equality can be attained if o(u)/e < 1.

DEFINITION. An inequality P(Y ¢ T) £ K, valid for all the random variables
in a family Y of random variables is said to be sharp if it cannot be improved.
That is, for any 6 > 0 there exists a random variable Y, € Y such that P(Yoe T')
< K — § is violated, i.e., P(Yoe T) > K — 4. If the sharp inequality can be
attained we shall call it attainably sharp.

TuareoreM 2.2. Under the conditions of Theorem 2.1 the inequality

(22) Plp(Y) > ¢ = o(u)/e

18 sharp.
Proor. Since {Y | o(Y) > ¢ < {Y|¢o(Y) = ¢ the inequality is true. If it is
not sharp, it can be improved. That is, there exists a number ¢, > ¢ such that
Plp(Y) > ¢ = o(v)/e

for all random vectors Y with EY = u. Let ¢ be a real number such that e, >
& > e. Then by Theorem 2.1, there is a random vector Y; , EY; = g, such that
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o(u)/a = Plp(Y1) Z «]
= Plp(Y1) > ¢ = ¢(u)/e-

This is a contradiction since ¢(u)/e0 < ¢(u)/ex . Hence (2.2) is sharp.

Theorem 2.1 and Theorem 2.2 may be used to generate new probability
inequalities, by taking for Y various nonnegative random variables and for ¢
different nonnegative homogeneous concave functions on R.". In Section 3 we
shall obtain various generalizations of the Tchebycheff inequality and one-
sided Tchebycheff inequality in this manner. At this stage it will be convenient
to discuss some relevant examples of nonnegative homogeneous concave func-
tions on R,".

ExampPLES oF NONNEGATIVE, HoMoGENEOUS, CoNCAVE FuNcriONs ON R.".

Lett = (4, &, ---, t») be an n-tuple of nonnegative real numbers and let
a1, as, *++ , @, be n nonnegative real numbers such that > a; = 1. Then
(2.3) er(t) = (Zr“l aitir)llff r=1,

known as a Hoélder-Minkowski function [2], is a nonnegative, homogeneous
concave function. Some interesting particular cases of ¢.(t), where t is an n-tuple
of nonnegative reals, are

(2.4) O_wo(t) = limy,_won(t) = min (& ,8, -+, ),

(2.5) oa(t) = (XFat™)7,

(2.6) eo(t) = limpsoer(t) = (JIF &),

(2.7) eat) = D7 adi.

Ifag=a = -+ = a, = 1/n then ¢_4(t), vo(t) and ¢1(t) are, respectively, the
harmonic mean, the geometric mean and the arithmetic mean of the numbers
t1, %, -+, tn . The well known inequalities between the three means are par-
ticular cases of the inequality

(2.8) or(t) S @t) if r<s,

for the Holder-Minkowski functions.

Let tqy < t@ < --+ = i@ denote the ordered values and Ei(t), k = 1, 2,
- -+, m, the kth elementary symmetric function of the nonnegative numbers ¢,
ta, -+, ts. Then

(2.9) o(t) = 2T, a2 2620,
(2.10) o(t) = E*(t), k=12 - ,mn,
(2.11) e(t) = Ew(t)/Era(t), k=23 :,n,

are nonnegative, homogeneous, concave functions of #, &, -+, ta.
Let

T(f,k)(t) = Z‘1+iz+"'+'}.—f( H?”l 6i'jt:i‘j)) i:' = 0;.7 = 17 2’ N (2) k> O;
and k > n — 1if k is not an integer, 6;; = (%;).
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Then
(2.12) o(t) = Tt (t)
is a nonnegative, homogeneous and concave function of &, , &y, -+ , ¢, . If kb = 1

then T(,-,k)(t) = E,(t).

3. Generalizations of the Tchebycheff and the one-sided Tchebycheff in-
equalities. Theorem 3.1 provides a generalization of the Tchebycheff inequality
to » jointly distributed random variables.

TrEOREM 3.1. Let X:, Xs, -+, Xa be n jointly distributed random variables
with EX =6, 1=1,2,--- ,n,and ¢ = 0 be a homogeneous concave function
on R.". Then for ¢ > 0,

(31) P[<P(X12, X22, Tt an) = 6] = ‘P(alzy 0227 ] aﬂz)/e,

and the equality can be attained if ¢(oi’, 0", - -+ , 0n’) = €. The inequality remains
attainably sharp even if the random variables are required to satisfy an additional
oondition EX; = 0.

Proor. The first part of this theorem follows from Theorem 2.1 with Y; = X7,
1= 1,2, .-+, n. The inequality remains trivially valid even if X,’s are required
to satisfy some additional conditions. Its attainability follows from the random
variables Xo:, % = 1,2, - - - , n, with joint distribution given by P[Xo; = =a:/8},
1t =12 ---,n] = 6/2, P X = 0,7 =1,2, ---, n] =1 — B, where
B = ‘P(alzy 022’ T 0"2)/6 =1

Exampres. By taking for ¢ different nonnegative homogeneous functions
discussed in Section 2 one can obtain various explicit generalizations of (1.1).
The following are four of these attainably sharp inequalities:

2 2
(3.2) P2 adXdf" 2 = (X7 a7/,
where a1 , a2, - -+ , a, are positive, D a; = 1,7 < 1;

2 2

(3.3) P[>l aiXty = | = D7 awln/e,

2 2
where X{) < Xy < -+ = Xtm and o1y < ol < -+ =< o(n denote, respec-
tively, the ordered values of X;*, X5, -+ , X, and oy, 0", --+ , o), and a; =
= 2020

(34) P[Ek(Xlz, X22, ceey an) g é] = Ekl/k(o'lzr 622: ) Unz)/ellky

where Ei(ai, 025 ++ -, 0a’) is the kth elementary symmetric function of a,%, o3%
cee o, k=1,2, .-+ n,and

(3.5)  PE(XY, X7, -, Xa') 2 eBua( XY, X, -, X))l
é Ek(o'lzy 0'227 MY O'nz)/GEk_l(o'lz, 0'227 ceey, o’nz)’ k =1 , 2 y ttt , T

REMARK 1. It is clear from Theorem 2.2 that the statement o(X,’, X7,
.o, X.') = ein (3.1) may be replaced by o(X:%, Xo’, -+, X.2) > e without
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affecting the sharpness of (3.1). Also, in view of the example of the random
variables Xo;,7 = 1,2, - -+ , n, for which (3.1) is attained it is evident that the
inequality

(3.6) Plo(X3, X%, -+, X)) 2 X > 00rX < 0] < ¢(ar, 00, -+, 00)/6,

where X > 0 denotes X; > 0,¢ = 1,2, --- , n, is attainably sharp. Using this
fact and specializing inequalities (3.2), (3.3), (3.4), and (3.5) we can get the
inequalities (5.1), (5.3), (5.5), (5.6) and (5.7) of Marshall and Olkin [3].

We shall need the following result due to Marshall and Olkin [3] to obtain a
generalization of the one-sided Tchebycheff inequality when only the variances
of n jointly distributed random variables are known.

TueoreM 3.2 (Marshall and Olkin). Let X = (Xi, Xo, -+-, Xa) bea
random vector with EX = 0, EX'X = =. Let T = T, U {X| =X & T,}, where
T, C R" is a closed convex set. If @ = {a|acR", aX' = 1 forall X e T}, then

(3.7) P(XeT) < inf,qaZa’,
(3.8) P[X e T,] £ inf, {aZa’/(1 + axa’)}.

The equality can be attained in (3.7) whenever inf,.q aXa’ < 1;the equality can
always be attained in (3.8).

REMARK 2. If only variances ¢’ of X;,7 = 1,2, --+ , n, are known we can
write £ = o105 - - - 0 P, where P ¢ @ is the unknown correlation matrix, ® being
the set of all (n X n) correlation matrices. In this situation it is clear that (3.7)
and (3.8) can be modified as, respectively,

(3.9) P[X & T] < supg inf, aZa’,

(3.10) PX e T,] < supg infg {(aza’)/(1 + aza’)}.

Both (3.9) and (3.10) are sharp
TueorEM 3.3. Let X1 , Xo N

with EX; = 0 and EX? = o, 1 =

1,0, " ,Qn, Z:oz1 =landr =

(311) P[Z o lX.er > €, X > 0] < ( aiai2r)1/r/(€1/r + (Z aiO'izr)”T),

and the equality can always be attained in (3.11).
Proor. If r < %, (D o |X ?|")*" is a concave function of (X1, X5, «-+, Xa).
Hence T, = {X (2 | X)) = 1, X = 0} is a closed convex set in B". There-

fore, by Rema,rk 2 the bound
P(XeT) = P[Yima:i|X¥21,X>0 or X< 0] = supp inf, aZa’

is sharp. But o(X:*, Xo*, - -, X5 = (2 ai X" is nonnegative, homoge-
neous and concave. Therefore using the inequality (3.6) we get

X.ben ]omtly distributed random variables
1,2, - -+, n. Then for nonnegative numbers
1
2

1/r

(3.12) supp inf, a%a’ = (2 awi
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Again, using (3.10) and Theorem 3.2, and noting that aXa’ = 0, we get
P[> a:X# 2 1,X > 0] < supg inf, {a%a’/(1 + aZa')}
= (Z Q05 )llr/[l + (E 22 t l/r]~

Therefore, using a simple transformation we get the bound

PIX o |Xid" 2 X > 0 = (2 aird)"/[" + (X awwi)™].

The equality in this bound is attained for the random variables X,
i=1,2, --- ,n, with joint distribution given by

P[XOi=0'i/B*,i=1,2)"'7n]=ﬁ/(1+ﬁ)1
P[Xoi = —ai/B,i=1,2,---,n] = 1/(1 + 8),

where 8 = (D o) /é!". Hence (3.11) is attainably sharp.

Remark 3. The above proof is valid if (D |X: |2')1’ " is replaced by any
nonnegative, homogeneous, concave function o( X, X4, -, Xa) of
X7, X, --+, X,” which is also a nonnegative power of a concave function of
(X17X2, 7Xn)'

Examrpres. Using the properties of the Hélder-Minkowski function, discussed
in Section 2, one can obtain the following sharp bounds which may be considered
as generalizations of one-sided Tchebycheff inequality:

(3.13) Plmin X; = €] < min ol/(é + min o),
(314) P(XaXi)' 26X >0 S (Xaw )7/ (d+ (Xawi)
(3.15) PII X" = ¢ X > 0] < [To™/(¢ + I] o),
(3.16) P aX:i2 X >0 = (2 aiw)'/(é + (X o).

Now let X; , Xz, --- , X, ben ]omtly distributed (1 X p) random vectors Wlth
EX; = 0, EX/X; = 2,,1 =1,2--,n Lets, = XX/ andtrz, =, =i
positive definite, ¢ = 1,2, -+ , n. Then Esz =¢f,i=1,2,--,n,and we have

the following generalization of Theorem 3.1 to jointly dlstrlbuted random vectors.
TuroreM 3.4. For any concave, homogeneous function ¢ = 0 on R.", the in-
equality

(317) P[‘P(812’ 322: R ) = G] (p(0'1 ’ '72 y "y 0n )/e e> 0,

can be attained if o(oi’, 02, -+ ,00) S €
Proor. The validity of the inequality is an immediate consequence of Theorem
2 1. To show that 11; can be attained we note that there exist orthogonal matrices

T, such that T2, = D(d%,), whereo?; ,j = 1,2, --- , p, are the charactenstlc
roots of X, and D(s?};) is the diagonal matrix Wlth elements Gh, O, e, Oip,
i=1,2, -+ ,p.Consider n jointly distributed vectors Y1 ,Yz, --- ,¥n such that

P(YiYil = O'iz,i = 1, 2, e n] = ﬁ,

PYY/ =0,i=1,2---,n] =1-—8,
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where B = (o7, 02", -+ ,04) /¢, EY; = 0, EY/Y; = D(d%,),i = 1,2, -+ , n.
Such marginally uncorrelated random vectors may be constructed by spreading
the probability mass symmetrically about the origin and the coordinates planes.
Now let Xo; = Y/T:,7 = 1,2, .-+, n. Then s; = XoXos = Y.Y/, EXoi = 0,
EXoXoi = £;,i=1,2, ---, n, and for the jointly distributed random vectors
X, Xoz, -, Xon equality (3.17) is attained.

Explicit inequalities for the jointly distributed random vectors may be obtained
from Theorem 3.4 by using various explicit forms of ¢ as before.

4. Some sharp inequalities for random matrices. Let Z(p X p) be a symmetric

psd random matrix with EZ = =. Let g(Z) = 0 be a homogeneous concave func-
tion on the space of (p X p) symmetric psd matrices. Then we have, for e > 0,

Plg(Z) = €] = Eg(Z)/e = g(2)/,

by arguments similar to the proof of Lemma 2.1 (for a matrix-version of Jensen’s
inequality see [1]). Suppose that g(£) =< e and consider random matrix Z, with
distribution,

P[Zy = (¢/9(2))E] = g(=)/e,
P[Zy=0]=1—g(=)/e
It is easy to see that EZ, = = and Plg(Zo) = €] = g(=)/e. Therefore we have the
following:
TeEOREM 4.1. Let Z be a (p X p) symmetric psd random matriz with EZ = £,
and g(Z) = 0 be a homogeneous, concave function of Z. Then, the inequality
(41) Plg(Z) 2 ¢ = g(=)/e,

e > 0, can be attained if g(X) = e
ExamprEs. Letzy <2, < -+ S 2zpande; £ 02 £ -+ < 0, denote the ordered

characteristic roots of, respectively, Z and =. Then the following sharp in-
equalities can be obtained from Theorem 4.1 as examples:

(4.2) Pldet (Z) = €] < det'” (xz)/'”,
(4.3) PO e = e < D7 cioife,
where s =2 2= - 2 ¢, 20,

(44) PlBz, 2, -, 2) = €

< BM™or, 00, -, 0p)/E7, k=12 p
(4.5) PlBuzr, 20, ,29) = eBya(er, 22, - 5 2)]

< Buor, 02, o) /leBia(or, 00, -+, 0}, k=23, ,p;
(4.6) P2 f-izl = ¢

< (X o)r/ers
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(47) PIEM™(21,22, -+ ,2) = ¢

< EM*o1, 00,00, 05) /e l=sk=j=np;
(4.8) PlEw(z1,22, " ,2) = Bz, 22, -+, 25)]

< Eior, 02, ,0))/{eBra(or, 02, ,0;), 1 Sk <7 =0p.
For a reference to the concavity of functions Ei*(z, 2, -+, 2;) and

Bz ,20, -+ ,2)/Eea(2i,22, -0+ ,2),1 Sk =j = pseell].

Let X3, X, ---, X, be independently distributed random vectors with
EX;=0EX/X;=%;,i=12 --- ,p.LetX'(p X n) = XX, --- , X,/] and
Z = X'X. Then Z is a (p X p) symmetric psd random matrix with EZ = £, + =,
+ -+, =% say.Letzi 2= - S2,andoy S0 = -+ = g,denote, as
before, the characteristic roots of Z and X respectively and let f = 0 be a sym-
metric concave function on R.". Then Mudholkar [4] proved the inequality

(49) P[f(21,22, ,zp) 2 ¢ = flor,00, - 70'1’)/57

and illustrated it by the inequalities (4.2) to (4.6) above. Mudholkar [4] con-
jectured that many of these inequalities are sharp. It can be seen that, even
though inequalities (4.2) to (4.6) are sharp in the context of Theorem 4.1, they
may or may not be sharp in the context of [4]. It may be interesting to know
whether inequality (4.9) is a particular case of inequality (4.1).

Acknowledgment. The authors wish to express thanks to Professor J. H. B.
Kemperman for many helpful discussions, and to the referee and Professor

Hoeffding for valuable suggestions.

REFERENCES

[1] Cacourros, T. and OLkIN, I. (1965). On the bias of functions of characteristic roots of a
random matrix. Biometrika 52 87-94.

[2] DingHAsS, A. (1961). Minkowskische summen und integrale superadditive mengenfunc-
tionale. Isoperimetrische ungliechungen. Memorial des Sciences Mathematiques,
CXLIX, Gauthier-Villars, Paris.

[3] MarsHALL, A. W. and Orkin, I. (1960). Multivariate Chebychev inequalities. Ann.
Math. Statist. 31 1001-1014.

[4] MupHOLKAR, G. S. (1961). Some Tchebychefi-type inequalities for matrix-valued random
variables. To appear in the Roy Memorial Volume, University of North Carolina
at Chapel Hill, Chapel Hill.



