MODELS FOR CATALOGUING PROBLEMS

By MARTIN KNOTT

London School of Economics

1. Introduction and summary. Suppose that the members of a population fall
into an unknown number of classes of various sizes. A random sample of N ob-
servations is taken and from the information in the sample must be estimated
the parameters of the population; roughly speaking these are the number of
classes of a given size. This description is deliberately vague because there are
two models available in the literature for this problem.

Good (1953), Good and Toulmin (1956), Harris (1959), and Trybula (1959)
use an infinite population and investigate estimators for useful functions of the
population parameters. Examples of applications are given.

Goodman (1949) uses a finite population and obtains rather more restricted
results. Des Raj (1961) also treats a very special case of this model.

Such problems have been called cataloguing problems, see Harris (1959), which
is the reason for the title.

It is the object of this paper to show that the second model, that with finite
population, is more suitable for these problems, and to extend the results of
Goodman to match those available for the model with infinite population.

The unbiassed estimators obtained would be modified for practical use, and
the main contribution of the paper is thought to lie in the simplification of the
theory connected with the problem.

2. Model with infinite population. Following a remark by Harris (1959) the
identifiability of the model will be investigated. It will be supposed that estimates
must be made from observed values of the random variables N;,7 = 1,2, --- | N,
where N; takes as its value for a particular sample, n; = the number of classes
represented there ¢ times. This means that any known ordering of the population
classes is ignored. Suppose that there is a constant probability p; > 0 for an ob-
servation from the population to be in class j for the k& population classes
j =1,2,-7-, k, where k is unknown. The population parameters are thus
{p1, - -+, p}. These are identifiable up to a permutation if they are a reordering
of any other system of parameters {q, -+, g»'} giving the same probabilities
for every sample as the first.

For the same probability of every sample, N, = n,, under both systems

(201) (NY@AH™(2H™ - (N)™)(A™ -+ N,
= (N/(1)™(@2n™ - (N)")(A" - N"™) g,

for all possible sets 7y , - - - , ny such that 1= in; = N. The monomial sym-
metric functions are taken over the sets {p;} and {g;} as indicated, and if any
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n: = 0 that part is understood to be omitted. For instance, (1°2)(p,.ps.p5.00 =
2 2 2 o . .

D1 P2Ps + P1p2 Ps + Pipeps” + similar terms with pspsps , Pipspe , Prp2ps . It follows

from (2.01) that either

(a) k=K <N

or
(b) N £ min [k, k).

If case (a) applies put H = k = k', and if case (b) put H = N. Then

(2.02) (1™ oo N™) 5 = (1" -« N™)qqp
when Y in; = N, and this is equivalent to
(203) (13)“,,.; = (18)(%) , 8§ = 1, 2, te ,H.

In case (a), (2.03) implies that {p,} is a permutation of {g;}, and this is as much
identifiability as one can hope for. In case (b) it may be seen that only functions
of the symmetric functions (1°) ;) , s = 1,2, - - - , H are indentifiable, so that if
k = k' = N then the system is identifiable up to a permutation. This is not
necessarily true when such information is not given.

To summarise the results: if it is known that N = the number of population
classes, then {p;} is identifiable up to a permutation; if this is not known, then
many systems of population parameters will give the same probabilities, for all
possible samples.

For instance given sample size two, the sets {3, 3}, {#, %, 3} are not distinguish-
able, neither are the sets {}, §, §, 8}, {3, 5, %, % #, (§, 5 & % & §}. It isthought
that in practice the system will rarely be identifiable up to a permutation, and
this leads one to think of other possible models.

The most interesting functions to estimate are the number of classes and the
population coverage. If D(M, r) is the random variable that takes as its value for
each sample of M observations the number of classes represented r times in the
sample, then a useful quantity to estimate on the basis of a sample of N observa-
tions is the expected value of D(M, r). The other basic function of interest is the
expected value of C(M, r), a random variable taking as its value for each sample
of M observations the total population probability of classes represented r times
in the sample. The value of C(M, r) for a sample is called the population coverage
in species represented r times in the sample.

Tt is easily shown that

(2.04) EID(M, )] = 25 (Npf (1 — p)™ ™, see Good (1953),
and
(2.05) EIC(M, )] = > ()pi™ (1 — pi)™ 7, see Harris (1959).

One can see that neither of these is identifiable on the basis of a sample of N
observations unless M < N. Good (1953), and Good and Toulmin (1956) were
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interested in the estimation of these quantities for M -= N. This suggests that the
basic model might well be changed, in spite of the efforts of Harris (1959) to
put bounds round this lack of identifiability.
Before leaving this model it is instructive to look for an estimator of that
portion of, say, (2.04) which is identifiable. Now,

E Y (CHCE)/ )N
= 2 (CHEEN/E) Xt (N1 = p)™™,
= 2 L (OO et 2= (e (= 1),
= ZJ‘:I w=r (M)pj Z’f’ N—M)(‘(N_W_H)
= 2k 2 (N TR,
= 2 5 (MNpf 2= (M) (=1)"p",
which is that part of E[D(M, r)] which is identifiable when this is expanded in
powers of p; . This means that

(2.06) 2= (CHEZD/ )N

is unbiassed for the identifiable part of E[D(M, r)]. This estimator is the one
suggested by Good and Toulmin, though their derivation was not rigorous and
they were forced to assume all p; < 3. It is Equation (14) of their paper, and was
intended as an estimator for E[D(M, r)]. The same technique can be used on the
identifiable part of E[C(M, r)]. The unbiassed estimator for this is

(2.07) T (GOSN /GING

Notice that if M < N these estimators are exactly unbiassed for E[D(M, r)],
E[C(M, r)] respectively. Putting r = 0, (2.07) reduces to

(2.08) 2 ((ETY /)N,

which closely approximates the latter part of Good and Toulmin equation (22),
this being the estimator used there for E[C(M,0)]. If M = N in (2.08), one has

(2.09) 2 (=))W,

as an exactly unbiassed estimator of the average population probability of all
classes not represented in a sample of N observations. In Good (1953) the esti-
mator (N;/N) was suggested for this.

3. Model with finite population. It is assumed that the population is of a

known size L, and that there are K; classes with j elements, j = 1,2, -+ , N
so that
2.5-1jK; = L.

This means that it is known that no class has more than N elements. Samples will
be taken without replacement.
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If one samples without replacement, then the results of Goodman (1949) show
that the parameters K; are identifiable because there exists a unique unbiassed
estimator for each K; .

When the restriction on the number of elements in a class is not given there is
quite possibly no identifiability. The population with L = 6, K, = 3, and that
with L = 6, K; = 3, K; = 1, cannot be distinguished by a sample of two observa-
tions. On the other hand, a population of fewer than six elements is always identi-
fiable for a sample of two; even if we do not know L, the only case of indistinguish-
ability for a sample of two is the pair L = 3, K; = 1, K, = 1; L = 4, K, = 2.

Goodman obtained an explicit unbiassed estimator for 1= K; , but did not
give an explicit form for an unbiassed estimator of K;, or for the interesting
parameters corresponding to E[D(M, r)], E[C(M, r)], which have the same mean-
ing as before except that C(M, r) takes now the value of the total frequency
of classes represented r times in the sample.

First the estimator for E[D(M, r)] is established, and to do this a lemma is
required.

LemMa. Forj = N

(3.01) 220 CHETH/M) x DG/ = DG/,

forall M. (Asusual (5) = 0forb < 0.)
Proor. For M =0,1,2, --- , N, the left hand side is
2= OGED/G) X DG/ ().
The second part of the term summed gives the probability of obtaining ¢ successes
in a random sample of size N drawn from a population of size L. The first part is
the probability of obtaining j successes in a random sample of size M drawn from

the size N sample just mentioned. The summation is thus equal to (G2 /G,
which is the right hand side of the lemma. This is equal to

CHEED/ .

The relation is thus basically between polynomials in M of degree not greater
than N, and so the result is true generally, for all M.

It is easily established that E[D(M, )] = D 2= [())(52)/(3)IK;, and so the
expected value of

(3.02) DA (CHICID VICHYI 2
which is
LG9/ 2 1) G2/ BIK;
= 2N YL (NN /M) X DG/ B,
= T OGP /K,

by the Lemma, which is equal to E[D(M, r)]. It has thus been proved that(3.02)
is an unbiassed estimator for E[D(M, r)], and this result holds for all M. Putting
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M = L, the explicit unbiassed estimator for K, is
(3.03) 2 (N /OIN

An unbiassed estimator of the average number of classes in a sample of M ob-
servations is, from (3 02)

(304) 2L 2L (HCZ)/MN: = 21— (/I
OI}vce Il{nore putting M = L one obtains Goodman’s unbiassed estimator for
-1 1,
(3.05) == /MIN
Using the same approach it is fairly easy to prove that for an unbiassed esti-
mator of E[C(M, r)] one has
(306) (L — M)(r + 1)/(M + 1) 2201 [(F) (5N /(DN
+ 7 2 [CH N/ DIN:.

Putting r = 0, the unbiassed estimator of the average population frequency of
all classes not represented in a sample of size M, is

(3.07) (L = M) 2 (3257 /(DN

If M = N in (3.06) one has an unbiassed estimator of the average total popu-
lation frequency of classes represented r times in the sample of size N,

(3.08) (L — N) 20 (=1 /()IN: + 7N,

Putting » = 0 once more, one has the unbiassed estimator for the average total
population frequency of all classes not represented in the sample of size N,

(3.09) (L—N) 2L (=) /(IN:.

Des Raj (1961) obtained the unbiassed estimator for K, when it is known that
r < N,and K,y = K,y = --- = Ky = 0. From (3.03) this is clearly
(3.10) ()/GN,,

and (3.06), (3.08) also simplify a lot in this special case.

4. Comments. Section 2 has shown that there is a lack of identifiability in
practice for parameters estimated in this model by the several authors mentioned
in the introduction. The estimators they suggested are in many cases closely ap-
proximated by unbiassed estimators for the identifiable parts of the population
parameters in question. Section 3 shows that for the alternative finite population
model it is easy to find exactly unbiassed estimators for all useful functions of
population parameters, under far less stringent conditions for identifiability.

Although the estimators in Section 3 may give absurd results, this was also a
fault of those suggested for the infinite population model. Good and Toulmin
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(1956) suggested smoothing techniques to overcome this difficulty, and they also
could be used for the estimators of Section 3.

In conclusion, the finite population is neater in its theory, and has exactly
unbiassed estimators instead of approximately unbiassed ones.

The author is grateful to Professor A. Stuart for supervising this work, which
partially fulfilled the requirements for a Ph.D. degree at the University of
London.
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