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1. Introduction. Let F,(x) be the sumpolygon (empirical distribution function)
of a sample of size n from a continuous distribution function F (z). Let K (x),
Gi(z), Gy (z), Hi(z), Hy(x) be functions of x, such that for all z,

Gi(x) = Gy(z); H,(x) = Hi(x).
The object of the present paper is to prove the following inequalities
(1) Plinf, (F, — K) 20]|inf, (G, — F,) 2 0, inf, (F, — H,) = 0]
2 Plinf, (F, — K) 2 0|inf, (G2 — F,) 2 0, inf, (F, — Hy) = 0],
(2) Plinf, (K — F,) 2 0]inf, (G, — F,) 20, inf, (F, — Hs) 2 0]
< Plinf, (K — F,) 2 0| inf, (G: — F,) =2 0, inf, (F. — H,) 2 0],

where all probabilities are supposed to exist. Since these inequalities are sym-
metrical, it suffices to prove one of them.

These inequalities provide an approximation for the distribution of two-sided
statistics of the Kolmogorov-Smirnov type. Such a distribution is written

Psup, n}|F.(x) — F (@)WIF ()] < N
or more generally
3) P, = Plinf, (G. — F,) 2 0, inf, (F. — Hs) 2 0]

In order to approximate P, , take H;(x) and Hy(xz) in (1) smaller than zero
for all « and replace K (z) in (1) by H,(z); similarly take Gi(z) and Gy(x) in
(2) larger than 1 for all z and replace K (z) in (2) by G;(z). One then easily
obtains the upper bound

(4) P, £ P, Plinf, (G; — F,) = 0]- Plinf, (F, — H,) = 0]
{Plinf, (G, — F,) = 0]-Plinf, (F, — H,) = 0}}"

where P,’ = Plinf, (G, — F,) = 0, inf, (F, — H;) = 0]. If now G, and H,
are chosen close to G resp. Hs , but such that P, is more easily calculable than
P, , then (4) provides an interesting approximation of (3). A lower bound can
be found in a similar way.

Wald and Wolfowitz [3] and [4] have given the following two bounds for /°,

5) P, < Plinf, (G, — F,) = 0]-Plinf, (F, — H;) = 0],
P, = Plinf, (G — F,) = 0] + Plinf, (F, — Hy) = 0] — 1.
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However they did not prove (5) but only conjectured it. As a matter of fact (5)
constitutes the particular form of (4) corresponding to Gy(z) = 1and Hy(z) < 0
for all z. These bounds constitute good approximations for large values of P, ,
which are the more interesting for purposes of testing. Furthermore they have
the advantage of reducing the two-sided case to the one-sided case. On the
other hand any other choice of G1(z) and H;(z) in (4) provides a closer upper
bound than (5).

As Professor W. Hoeffding pointed out to the authors, (5) also is a consequence
of a theorem of Lehmann [2]. Moreover he observed that the same theorem
implies an analogous inequality for the distribution of the two-sample statistics
of the Kolmogorov-Smirnov type. More details will be given in Section 4.
Sections 2 and 3 are devoted to the proof of (1).

2. Lemma.

LeMMA. Let X be a many-dimensional random variable and S and T two meas-
urable subsets of the range space of X. Let Y be a one-dimensional random variable.
If for all y such thata < y < b

PIXeS|(XeT)n (Y = y)]
18 a non-increasing function of y, then
PXeS|(XeT)n (o £Y £yl

s a non-increasing function of yo and Yy whena < yo £y < b.
Proor. Let (X', Y’) have the conditional distribution of (X, ¥) under the
condition X ¢ T and let

h(y) =P X eS| XeT)n (Y =y)]=PX e8S|Y =yl
Then
PXeS|(XeT)n (o =Y = w)l
(6) =PX' eS|y =Y =yl
= Jwosvsu h(@W) - dFy W)/ [vo sv 50 dFv (¥)

where Fy+ denotes the distribution function of ¥’. Under the assumption that
h(y) is non-increasing in [a, b], it has to be shown that (6) is a non-increasing
function of y, and y; for a < yo < y1 < b, which is obviously true.

This proof has been suggested by Professor W. Hoeffding who pointed out
that this lemma is closely related to Lemma 4 of Lehmann [2].

3. Proof of the inequality (1). Without loss of generality it will be supposed
that F(z) = zfor0 £ 2 < 1. Let X; £ Xy £ --- £ X, be the order statistics of
a size n sample from F (z). The requirement that

is equivalent to the requirement that every X; should not be larger than some
well defined numberk; ,ie. X; < k;,j=1,---,n,with0 <k <k < --- =
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k. £ 1. Similarly inf, [F,(x) — H(x)] 2 Oisequivalentto X; < h;,7=1, --- , n,
with0 < by £ hy £ -+ £ h, £ 1. On the other hand inf, [G(z) — F.(z)] = 0
isequivalentto X; = ¢g;,7=1,--- ,n,with0 £ g1 < g. £ --+ = ¢ga = 1. Prov-

ing the inequality (1) then is equivalent to proving the following theorem.
THEOREM. If g; < h; for all j, then

PlNi= (X; = k) | Ni=1 (g, = X; = hy)]

18 a non-increasing function of g1, ++ - , gn, b1, ++ 5 B .

Proor. The theorem holds if, for some 7, g; > k; ; in the sequel we suppose
g; = le for ally

The theorem is evidently true for sample size 1. For proving it in general we
will proceed by complete induction, supposing it is true for sample sizes 1, 2, - - -,
n — 1.

Let 7 be any integer in [1, n]. We introduce the following vectors;

X= (X1, -, X, Xis1, -+, Xn);
X = (X, Xia);
X" = (Xip, -, Xu);

k= (ki, -, ki, kiga, =ooy kn);
Eo= Gy kia);

E' = (ki -0 5 ka);

d=1(-,¢c) (¢ — 1 components);
"= (- ,¢) (n — ¢ components).

In a similar way we define g, ¢, ¢”, h, B’ and h”. An inequality of two vectors
will mean the simultaneous inequality of all corresponding components, e.g.:
X' < b means

X <h)n (X2 Sh)n---n (Xiag £ hig).
Let gix < ¢ = hiy (it is understood that go = 0 and k.4 = 1) and
Q=PX<k|(@=X=h)n(X:=0c)l
If i = 1andz # n,
Q=PX' =k)nX"=k)|(g =X =M)n(" = X" = 1")n(X;
=qQ-q,
with
Q =PX K| =X =k)n(@ X" £h)n X:=0)],
Q" =PX" sk | (X' =)@ =X =H)n(g” £ X" < W)n(Xi = ¢)l

c)]

IA
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Since g; < k; forall §, Q” is defined. Since X’ and X” are independent under the

hypothesis X; = ¢ (see e.g. Hajos and Rényi [1]), one has
Q =PX =K|@¢ =X =h)nXi=0),
Q‘// — P[X” é k//l (gll é XII § hll) n (Xz — C)]

Let Y = (Y1, Ye, -+, Yiy) be the order statistic of a size ({ — 1) sample
from a rectangular distribution within [0, 1]. Under the hypothesis Y =, is
distributed as the order statistic from a rectangular distribution within [0, c].
The same may be said of X’ under the hypothesis X; = ¢ (see e.g. Hajos and
Rényi [1]). We thus have

Q =PY =k|@ =Y =h)n X =)
Similarly let Y” be the order statistic of a size (n — 7) sample from a rectangular
distribution within [0, 1]. We then obtain
Q" = PlY” £ k//l (g// SY'SK)a (Y 2 C”)].

According to the present theorem applied to sample sizes smaller than =, Q' and
Q” are non-increasing functions of ¢ when g,y £ ¢ £ hin . If 2 = 1 or 7 = n,
we arrive easily at the same conclusion. Thus the same holds for Q.

Let

R=PX=k|(@=X=h)n(g: £ X: = hy)).

According to the lemma, R is a non-increasing function of ¢g; and h; when g, =

gi é hi é hi+] . Let now
S=PX:.=k|X=Zk)n(@=X=h)n(g: = X: = hy)],
T=P(X=k)nX:=k)|(@g=X=h)n(g: = Xi = hi)]

The probability S evidently is a non-increasing function of g; and h;. Since

T = R-8, T has the same property. As ¢ is any integer in [1, n], the theorem is

proved.

4. Two corollaries of a theorem of Lehmann (Hoeffding). Two real-valued
functions r and s of n arguments are called by Lehmann discordant for the ith
coordinate if, considered as functions of the ¢th coordinate (with all other co-

ordinates held fixed), they are monotone in opposite directions, i.e. either 7 non-
decreasing and s non-increasing or the inverse.

Let (Ty, Uy), -++, (T, U,) be independent pairs of random variables such
that
(7) P(T: £t U;=u) 2 P(T:=t)-P(U; = u)

for all « and ¢, and let
T=T(T1,"’,Tn), U=S(U1;"'7Uﬂ)'
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Lehmann proves that, if 7 and s are discordant for all 7, then
PTztUzu)=PT21t)-PU2wu)

for all % and ¢.

We now show that this theorem implies inequality (5). Let Ty, ---, T, be n
independent random variables and let F, (z) be their sumpolygon. Let U; = T';.
Define

T = T(le Tty Tn) = inf, [Fn(x) - H(IL‘)],
U = S(U], crey Un) = infz [G(x) - Fn(x)])

where G (z) and H (z) are arbitrary functions of z. Then condition (7) is fulfilled
and r and s are discordant for all z. This proves inequality (5) even in the case of
discontinuous variables.

The same theorem of Lehmann implies an analogous inequality for the two-
sample case. Let Ty, - -+, T, be independent random variables with sumpolygon
Fi(z) and let Tyy1, - - -, T be independent random variables with sumpolygon
Fy(z). Let U; = T, and define

D(z) = Fi(z) — Fa(2),
T =r(Ty, -, T, = inf, [D(x) — H(z)],
U= .S‘(U], ctty Un) = infz [G(x) - D(Z)],

where G (z) and H (z) are arbitrary functions of z. Again condition (7) is fulfilled
and r and s are discordant for all 7. In particular when G(z) = —H (z) = a > 0,
one has

Plsup, |D(z)| < a] £ {P[sup, D(z) < a]}”.

Acknowledgments. We wish to thank Professor V. Belevitch and Professor
J. Teghem for encouragement and reading the manuscript. We also thank Pro-
fessor W. Hoeffding to whom we are indebted for his remarks.

REFERENCES

[1] HaJos, G. and RENYI, A. (1954). Elementary proofs of some basic facts concerning order
statistics. Acta Math. Acad. Sct. Hungary 5 1-6.

[2] LEamANN, E. L. (1966). Some concepts of dependence. Ann. Math. Statist. 37 1137-1153.

[3] WaLp, A. and Wovrrowitz, J. (1939). Confidence limits for continuous distribution
functions. Ann. Math. Statist. 10 105-118.

[4] WaLp, A. and WorrowiTz, J. (1941). Note on confidence limits for continuous distribu-
tion functions. Ann. Math. Statist. 12 118-119.



