THE DISTRIBUTION FUNCTIONS OF TSAO’S TRUNCATED
SMIRNOV STATISTICS!

By W. J..CoNOVER

Kansas State University

1. Introduction and summary. Tsao (1954) defined two new statistics and
thereby established two methods of using a truncated Smirnov test. This paper
gives the distribution functions for a special case of those statistics.

Let X; < X < --- < X, represent an ordered random sample from the con-
tinuous distribution function F(z), with the empirical cumulative distribution
function S,(x) = k/n if Xy £ v < X, where Xo = — o and X,y = .
Let Y, < Y, < :++ < Y, represent an ordered random sample from the con-
tinuous distribution function G(x), with the empirical cumulative distribution
function S, (z). As test statistics for testing Ho: F(z) = G(x) against Hy:F(x)
# ((x), Tsao (1954) proposed

d, = max,<x, [S.(z) — S, (2)], r <,

IIA

and d, = MAaXz <max(x,,v,) |Sa(2) — S,,.'(x)], r < min (m, n).

It seems natural to consider also the test statistic
dr” = INAaXz <min(X,,Y,) |Sn(x) - Sm’(l')l, r = min (m” n)

Tsao described a counting procedure to obtain the probabilities associated
with the distribution functions of d, and d,’, and illustrated this procedure in the
relatively simple case where m = n. Tables were compiled using the procedure
for various values of r» and m(= n).

In this paper the asymptotic distributions of N*d, , N*d,’, and N *d,” are given,
where N = mn/(m + n). Also, for m = n, the exact closed form of the distribu-
tion functions of d, , d,’, and d,” are derived under the null hypothesis. Also shown
are the relationships

P(d, £ z) = }P(d, < z) + }P(d," £ z);
P, " =z) = P(d,_. £ z), for ¢ < r, where ¢ = [nz],
=1,forc=r,
and therefore
P(d, £ z) = P(d, £ ) + LP(d_. £ ), for ¢ < r,

= 1P(d, £ z) + i, forc=r,
illustrating that tables for P(d, £ z) and P(d,” £ z) are superfluous while
tables for P(d,” < z) exist.
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Epstein (1955) compared the power of Tsao’s d, with three other nonpara-
metric statistics on the basis of 200 pairs of random samples of size 10 drawn
from tables of normal random numbers. Rao, Savage, and Sobel (1960) considered
d,’ as a special case in the general scheme of censored rank order statistics.

9. Preliminaries. It is useful to establish the following identity: Let (A4);
denote the falling factorial A(A — 1)(4 —2) --- (A —j+1).
LeMmMa 1.

(s+ ) (u+ D (v —u— DN 2527 (=17 (s —v — 1 = j)!
(2.1) (w+14+)0@—-—u+)Et+v+1+7) e

el Gl iAo (G WY G )

= g(s, t, u, v), say.
Proor. Consider the identity
(22) 5= (—D)F T s — 0 — 1= I
= 2"y — ayz) " (s — v — N

which is easily obtained using the binomial expansion. Integrate both sides of
(2.2) first with respect to z from 0 to 1, then with respect to y from 0 to 1, and
successively with respect to x from 0 to 1, 21 from 0 tozz, -« + , Teyu—o from 0 to 1.
These t + w — v + 3 integrations, and multiplication by (s + ¢)!(u + 1)/v!
(v — u — 1), readily transform the left side of (2.2) to the left side of (2.1).
The right side of (2.2) is not so easily transformed. However, if the identity

(2.3) [ow'(l — cw)ldw = 2 ied™(1 — @) d)i /(b + 1 + )i
(obtained through successive integration by parts) is used for each integration,
the right side of (2.2) is transformed into an expression involving ¢ +u — v + 3
summations. Because the final integration is from 0 to 1, the final summation
involves only one nonzero term, and the previous ¢ + %4 — v summations merely
indicate that each nonzero term from the first two summations is repeated
('”,‘l“{f,}’;{"ﬂ) times, where « and 8 are the indices of the first and second sum-
mations, respectively. Thus the sucessive integrations result in the expression

Sy T T Y —w — DI+ ) (20 — u 4+« + B)!
(v —u+a)(v+1+a+B8)!(s+ )]

which, by letting 8 = j — «, rearranging the order of summation, applying the

identity

(2.4) 2he () = (i) = ()

from Feller (1957), p. 61, and multiplying by (s +t)! (v + 1)/v! (v —u — 1)},
becomes the right side of (2.1), and the proof is complete.
Lemma 2. Let X1 < -+ < X,and Yy < --- < Y, be ordered random samples
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from the same continuous distribution function F(x). Then
(25) P(Y] < Xu+1, Y2 < Xu+2, DY Yv—u < Xv)
=1- [(8:1_11) - g(s, t) U, v)](s+t)—1

for integersu and v, 0 = u < v < 5, and v — u = t; and where ¢(s, t, u, v) 1s given
by (2.1).

Proor. For simplicity of expression, let w; = F(z;), and z; = F(y;). Then the
probability expressed in (2.5) is given by the integral

J’l oo [Eo-usz fgv—u+l 11’—“ g’:—“ .. 120:4-“2 1::4-1‘1 fzv—u
. J'gs J‘;vzuw fgz J‘;”lun f’g’u+l . J‘w * sit! duwy du
© dw, dwysr dzg dwyte dze +++ d2y—y— dw,, dw,+1 )
<o dWe—1 AWs d2Zy—y A2p—yt1 * * * A2 d2; .
The integrals with respect to wy, we, -+, W, Wut1, 21, Wusz, 22, *** , Zo—ui,

w, are straightforward, and result in the integrand

slthwsze s !l (v — u — D" — stélzi_ it (v — u — 1)I7N
By induction, and with the identity
(2.6) e (=) "[al(k — a)l1(A — )] = (A)ih

from Conover (1965), it can be shown that the integral of w; for 7 = », v + 1,
-, s, gives the integrand

sttlwipze s il (v — u — DY — sl it ol (5 — w — 1)1
+ 2= sl (u o+ D) (=1 R i
P —u—DI@+1+)@—u+)ilGE—v—1— )"

where the convention w11 = 1 is used. The integrand of interest is the one where
¢ = 8. The remaining integrals are with respect t0 2y—u, Zo—ut1, =+, -1, 2t
and result directly in the right side of (2.5), completing the proof.

Consider a system of paths in the (z, y) plane, where each path originates at
(0, 0), terminates at (s, t), and is composed of unit increments in the positive z
or positive y direction. Let f(s, ¢, u, ») equal the number of paths from (0, 0)
to (s, t) that touch the linex = y 4+ u + 1 on or before touching the line x = ».

LEMMA 3.

(27) f(s, t) U, 7)) = (si:t—l) - g(s) t) U, 1))

for integersu and v,0 = u < v = s,v — u = t, where g(s, t, u, v) is given by (2.1).

Proor. Let X; < --- < Xyand Y, < - -- < Y,beordered random samples from
the same continuous distribution function F(z), and let Z; < --- < Zg, be
the combined ordering of the two random samples. Let each arrangement of the
X’s and Y’s in the combined sample correspond to the path from (0, 0) to
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(s, t) whose ith increment is in the positive x direction or the positive y direction
according to whether Z, is an X or a Y, respectively. Then there is a one-to-one
correspondence between the different ways the two samples may be combined
and the paths from (0, 0) to (s, ¢). Further, since the two random samples have
the same continuous distribution function, all different arrangements of the
combined sample are equally likely. Since the total number of paths from (0, 0)
to (s, t) is (*3"),

(2.8) f(s,t,u, 0)(°¥N) T =1 — P(Yy < X, Vo < Xuga, -+, You < Xo).
The use of Lemma 2 yields (2.7).

3. The distributions of d,’, d,”, and d, . The method of deriving the distribu-
tion function of d,’ is similar in some respects to the method of reflected paths used
by Gnedenko and Koroluk (1951), also described by Fisz (1963), for finding the
distribution of the Smirnov statistic sup, [S.(z) — S.'(z)|. Simple probability
concepts are then used to find the distribution functions of d,” and d, .

TaeEoreM 1. P(d, £ 2) =0 forx <0
(3.1) =142 0L(-1)N/(W)  forzz0
where ¢ = [nz), ¢ = min ([(r + ¢)/(c + )], [n/(c + 1)]), and

Ne= G2 = o (P (R) — (L))
i=0

Proor. The theorem is trivially true for x < 0 and for x = 1, by definition of
d,. For0 < z < 1 consider the two samples X; < --- < X,and ¥; < --- < Y,
from the same continuous distribution function, and let Z; < - - - < Z,, represent
the combined sample. Consider the (%') paths in the (z, ) plane from (0, 0) to
(n,n), where each path consists of 2n increments of unit length, the 7th increment
being in the positive z or y direction according to whether Z;is an X or Y. Then
there is a one-to-one correspondence between the possible orderings of the com-
bined sample and the paths from (0, 0) to (n, n). Since all possible orderings of
the combined sample are equally likely, probabilities involving the arrangement
of the combined sample may be found by counting appropriate paths. In par-
ticular

(32) P,/ =z) = P(Yy < Xepr, Yo < Xegay o+, Vo < X,
Xl < Yc+l; ”';Xr< Yc+7‘) = 1 - A/(2:)

where A represents the number of paths that touch either the line segment L,
from (¢ + 1,0) to (r 4 ¢,r — 1), or the line segment L from (0,¢ 4+ 1) to (r — 1,
r+ c¢).

Let A, denote the number of paths that touch L, at least once; let 4, denote
the number of paths that touch, at least once, L, and then L, ; let A; denote the
number of paths that touch L, and L, in the order LiL.L; at least once; and in
general let 4; denote the number of paths that touch L, and L, in the order L,L,



1212 W. J. CONOVER

-+« , alternating for a total of ¢ terms, at least once. Similarly let B; denote the
number of paths that touch L; and L in the order LIy Ls - - - , alternating for a
total of 7 terms, at least once. Then it may be shown that

= TL(=D7(Ac+ B = 258 (-1,
(because B; = A, due to symmetry, and because 4; = 0 for i > 7).

Substitute (3.3) into (3.2). It remains to show that A; = N;.

The method of reflected paths is used to show 4; = N.. If p represents an
arbitrary path from (0, 0) to (n, n) passing through an arbitrary point (a, b),
the reflection of p relative to (a, b) is the path that is identical with p from (0, 0)
to (a, b), but after reaching (a, b) the reflected path moves in the positive x
direction whenever p moves in the positive y direction, and vice versa. Thus the
reflected path goes from (0, 0) to (¢ +n — b,b +n — a).

A, equals the number of paths from (0, 0) to (n, n) that touch L, ; that is,
that touch the line x = y + ¢ + 1 on or before touching the line x = r + c.
From Lemma 3,

(34) A1=f(n,n,c,'r+c) =N;.

The reflections of the paths from (0, 0) to (n, n) that touch the line z = y +
¢ + 1, reflected relative to the point of first contact withxz = y + ¢ + 1, go from
(0,0) to (n + ¢+ 1,n — ¢ — 1). Further, the paths from (0, 0) to (n, n) that
touch, at least once, the line x = y + ¢ + 1 are in one-to-one correspondence
with the paths from (0, 0) to (» 4+ ¢ + 1, n — ¢ — 1), and the paths from
(0, 0) to (n, n) that touch, at least once, L, and then L, correspond to the paths
from (0,0) to (n + ¢+ 1,7 — ¢ — 1) that touchz = y + 3(¢c + 1) on or before
touching x = r + 2¢ — 1, that is, that touch the reflection of the points in L, .
Again from Lemma 3,

(3.5) As=f(n+c+1,n—c—1,3c+ 2,7+ 2c+ 1) = N,.

4; is obtained by considering doubly reflected paths, reflected first when they
touch the line x = y + ¢ + 1, and again when they first touch the reflection of
y =z + ¢+ 1,namely ¢ = y + 3(c 4+ 1). The doubly reflected paths go from
(0,0) to (n + 2(¢ + 1), n — 2(c + 1)), and the paths counted by A; are the
doubly reflected ones that touch the double reflection of L;, the segment from
(c+4(c+1),0)to(r +c+2(c+1),r —2(c+ 1)). Thatis,
(36) Az=f(n+2(c+1),n —2(c+ 1),
c+4(c+1),r+c+2(c+ 1)) = N;.
To find A, consider the (¢ — 1)st reflections of the paths from (0, 0) to (n, n),
reflected first about * = y + ¢ + 1, then about the reflection of y = 2 + ¢ + 1,
namely x = y + 3(c¢ 4 1), then about the double reflection of x = y + ¢ + 1,

namely 2 = y + 5(¢ + 1), and so on, with the (¢ — 1)st reflection being about
the (7 — 2)nd reflection of y = v 4+ ¢ + lifdisodd,orz = y + ¢ + 1if ¢ is

(3.3)
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even; namely * = y + (2¢ — 3)(¢ + 1). Then A4; counts those paths that go
from (0,0) to (n + (¢ — 1)(¢ + 1), n — (¢ — 1)(¢c + 1)) that touch the
(z — 1)st reflection of L, if 7 is odd; L, if 7 is even. Equivalently,

(37) Ai=fn+ (@ —=1)(c+1),n—(GE—1)(c+1),c+2(i—1)(c+1),
r+c+ (¢—1)(c+1)) =N;

from Lemma 2, and the proof is complete.

IIA
S

CoROLLARY. Let d,' = max,<maxcx, v,[Sn(z) — 8./ (2)], r
Then
d" = max,ex,,.[Sa(z) — 8J(2)], end P(d" = 2) = 1 — NJ(%).

Proor. For either way of defining d.*, the event “d," < z” corresponds to
the event ‘“a path from (0, 0) to (n, n) does not touch L,”’; therefore,

(3.8) P(d, " 2 x) =1— AJ/()
which, with (3.4), completes the proof.
TueoREM 2. P(d,” < 2) =0 forx <0
= 1+ 2235 (-1)P/() foraz = 0
where ¢ = [nx), i’ = [r/(c + 1)), and
Pi= () = (IR ) — (D)

Proor. Just as the event “d,’ < 2” corresponded to the event “a path from
(0,0) to (n, n) does not touch either L; or L, ,”” the event “d,” < z’ corresponds
to the event ‘““a path from (0, 0) to (n, n) does not touch either the line segment
from (¢ + 1, 0) to (r, 7 — ¢ — 1) or the line segment from (0, ¢ + 1) to
(r — ¢ — 1,7),” and thus corresponds to the event “d,_, < a”. Therefore

(3.9) P(d,” £ z) = P(di—. £ ) for r—c>1

=1 for r < ec.

Substituting » — ¢ for r in Theorem 1 provides Theorem 2.
Tsao (1954) also defines the statistic

(3.10) d,” = mingx, [Sa(z) — S (2)]
if the two samples are of equal size.

COROLLARY d;” = MaXacminex, vy [0 (2) — Sa(2)],
and

P, 2z)=1—Py/%) = P(di-. £ ).
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Proor. For either way of defining d., the event “d,” < z”’ corresponds to the
event “a path from (0, 0) to (n, n) does not touch the line segment from (0, ¢ +1)
to (r — ¢ — 1, r),” which by symmetry corresponds to the event “di, <z

TaeoreM 3. P(d, = z) =0 for <0
=14 2L (=1)N/C) + 2L (=1)'P/(7) for z 20,

where ©, 3", ¢, N, and P; are given by Theorems 1 and 2.
Proor. Theorem 3 follows from the relationship

P(d, < z) = P(d, < z| X, > ¥,)-P(X, > Y.)

(3.11) + P, £ z|X, < Y,)-P(X.<Y,)
=P, £z)-P(X,>Y,) +Pd" =2)PX, <Y,
= 1P(d, £ z) + 1P(d," < ).

Because Tsao (1954) presents tables for both d, and d,’, the following corolla,ry,
relating the two statistics, is of interest.

CoroLLARY. P(d, < z) = 3P(d, < ) + 3P(dr— < ) for r> ¢
=1P(d, <z)+ 3% for r = c.
Proor. The corollary follows directly from (3.9) and (3.11).

4. The asymptotic distribution functions. A referee mentioned that the asymp-
totic distribution functions may be obtained from known results as follows.

TaeoreEM 4. Let Z be the standardized normal random variable, and let
N = mn/(m + n). If m, n, r — «© in such a way that r/n — b, and r/m — v,
then

(i) lim P(N*d, < z) = P(0, b, 2),

(i) imP(N*d,’ < 2) = P(0, max (b, b’ ),2)

(iii) lim P(N*d,” < 2) = P(0, min (b, b"), 2)
where P(0,b,2) = 3 oo (—1) ‘WP( 1Z — 252((1 — b)/b)}| < 2(b — b2)—*)

OUTLINE oF Proor. The distribution functions of the random variables N* d,
and N* SUDF() <b |Sa(Z) — Sm '(x)| converge to the same limiting distribution func-
tion because F(X,) — b and P(0, F(X,), z) = P(0, b, z) Also, in the same  way
that Doob (1949) showed the distribution functions of Ntsup, |Sa(z) — Sn'(2)]
and n! sup, |S.(z) — F(z)| converge to the same limiting distribution function,
the random variables

N} sup re) <5 |Sa(2) — S/ (z)| and n!supre <o [Sa(z) — F(2)|

may be shown to have the same limiting distribution. However, the latter dis-
tribution was given by Anderson and Darling (1952), pp. 209-210, as P(0, b, z).
The proofs of (ii) and (iii) are similar.

5. Acknowledgement. The author is grateful to a referee for providing the
asymptotic distributions.
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