ON THE EXACT DISTRIBUTIONS OF LIKELIHOOD RATIO
CRITERIA FOR TESTING INDEPENDENCE OF SETS OF
VARIATES UNDER THE NULL HYPOTHESIS

By P. C. ConsuL
Unaversity of Libya, Tripols

1. Introduction. Let a p-component vector X, distributed according to
N(u, ) be partitioned into g sub-vectors with components p;, ps, -+, P
respectively. The vector of means ¢ and the covariance matrix £ are also par-
titioned similarly; i.e.

X(l) ”'(1)
11 x® @
(1.1) x =2 Cou= u
).((q) (q)
and
Zn e o+ 2y
(1.2)

s = ?21.222 .22q

ZaZg vt Zg

The null hypothesis H, to be tested, is whether the ¢ sets are mutually inde-
pendent, i.e. whether each variable in one set is uncorrelated with each variable
in the others. Thus

(1.3) H:n(x/u, Z) = H?=1 "(x(i)/ﬂ(i), Zi).

Now, if 2;, @, - -+, xy be a sample of N observations drawn from N(u, ),
where 2, , u and T are partitioned as in (1.1) and (1.2), then Wilks (1935) has
defined the likelihood ratio criterion ¥, that the ¢ sets are mutually independent,
by

14]
14 e
(14) E 1Yy
where A is defined by
(1.5) A= DN (20 — &) (2a — &)

and is partitioned in the same manner as 2 in (1.2). The corresponding matrix
A;; is defined and partitioned similarly.

It has been shown by Anderson (1958) that the likelihood ratio criterion V
can be expressed entirely in terms of sample correlation coefficients and that the
test based upon the criterion is invariant with respect to linear transformations
within each set.
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EXACT DISTRIBUTIONS OF LIKELIHOOD RATIO CRITERIA 1161

Daly (1940) and Narain (1950) have shown that, in the tests based on V,
the probability of rejecting the null hypothesis is greater than the significance
level if the hypothesis is not true; i.e. the tests based on the criterion V are strictly
unbiased.

The moments of the criterion ¥ under the null hypothesis are given by

(1.6) M(V") = [T%peua [T{(n + 1 — 0)/2 4+ B}[T{(n + 1 — 4)/2}]"
SIET(n 4+ 1 = 2)/2)T{(n + 1 —7)/2 + B]7]]

and since 0 < V =< 1, these moments uniquely determine the distributions of V.
Also, the distributions of ¥ are free from the nuisance parameters as the moments
do not depend upon Z, .

Wilks (1935) could obtain the distributions of V in some special cases by con-
sidering it as integrals of joint densities of independent variables. Wilks has given
exact distributions of V for (i) ¢ = 2;p1 = 1,2,8,p2 = 3; p1 = 3, p» = 4 and
pr=ps=4andfor(ii)g=3;ps,pp=p2=landpr=1,p. = 2,p; = 2,3,4
and p; = p; = 2, p; = 3. Anderson (1958) has considered only three cases which
are covered by the above.

Wald and Brookner (1941) have given another method of deriving the distribu-
tions if not more than one p; is odd, but exact distributions were not obtained
for any new case. Box (1949) used the method of asymptotic expansions of
gamma functions to obtain the distributions in asymptotic form in some -cases.

In this paper we apply Mellin’s inversion theorem on the expression of moments
(1.6) and use operational calculus to obtain the exact distributions of the criterion
V for a large number of more general cases viz.,

Section 3: ¢ =,2, all valuesof poand p = 1, 2, 3, 4, 5, 6.

Section 4: ¢ = 3, all values of p;and (i) p1 = p2 = 1, (ii) pr = 1, po = 2,
(111) 1= P2 = 2, (IV) P = L, p: =3, (V) P=2,p = 3, (VI) P =2, p=4

2. Some preliminary integrals and results. We list here four integrals and two
other results, obtained by Consul (1965), (1966), for ready reference as they are
used at many places in the following sections:

For 0 £ z = 1, the inverse Mellin transforms

(2.1) (2m) 7 [Eie 2™ -T(ps + a)T(ps + b)
[M(ps + a+ m)T(ps + b+ n)]™" ds
=271 = 2" p-T (m +n)]™
F(n,a +m —bym +n;1 — '),
(2r) 7 [is 2™ T(2s + a)T'(s + B)[I(2s + a + m)I'(s + b + n)] ' ds
(22) =21 —2)"2.T(m)I(n + D7 XIS ("7)(=2h)’
Fn,1 = b+ (a+17)/2;n +1;1 — x);
(2ri)™" [ 2™ -T(gs + a)T(gs + b)T(rs + ¢)
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[C(gs+a+ m)T(gs+ b+ n)T(rs +c+p)| " ds
(23) =21 = 2T () 28 (P (D)
i ()i (a+m = b)IT(m +n +j+ D7 (1 =2’
F{L,1 —a+ (c+dg/r;m+n+j7+ 1; —(1 — 2979,
(270) 7" [Fiaa T(s + a)T(s + b)T(s + ¢)
‘M(s+a+m)T(s+b+n)I'(s+c+ ) ds
(24) =271 — )" 0(m +n + p)I”
v (P)elb 4+ — o)t (m +n 4 p) (1 = w)
Fima+m—b;m+n+p+r;,—(1 —z)zh);
and further the results in hypergeometric functions are
(25) F(a,b;c;z) = (¢ —m)n(c —a—m)n -z " 270 (F)(=1D(1 — 2)*
-F(a,b —m + 4;¢ — m;x)

and
F(2,1+b;3;2) =2(1 —2)~b(b — 1)]"-z7’[(1 — 2)" + bz — 1],
forb # 0, 1,
(2.6) = —2z 7z + log (1 — )], ifb =0,

= 227 z(1 — z)~" + log (1 — x)], ifb = 1.

3. Exact distributions of the criteria V for ¢ = 2. By simplifying the ex-
pression of moments (1.6) for ¢ = 2 and then by applying Mellin’s inversion
theorem on it, the exact distribution function of the criteria V' becomes

c’+i0

fv) = T[4 P + 1 = /20 + 1 = po — 1)/ @)™ [OTS VT
JI2aT{(n 4+ 1 —pe—1)/2 + BI{(n + 1 —1)/2 + K| dh
which, on settlng k4 (n + 1 — pr — p2)/2 = t and on simplification, takes the
form
(3.1) f(V) = JI24[T{(n + 1 — )/2[D{(n + 1 — po — 7)/2})] 7] VP70l
S(2m) " [EE VT TIRAT(E4 (2 = 1)/20E+ (po 4 e — 1)/2]7

The above integral can be easily expressed in the form of Meijer’s G-function,
so that the exact distribution of V becomes

(32) f(V) = [T 0{(n + 1 = 1)/2}[0{(n + 1 — po — 7)/2}]"]

(n—p1—pa—1) /2 P10 p2/2(m+1)/2 s(potp1—1)/2
-V Gmm(vl “(pr— 1)/ )

Since the properties of a large number of G-functions are not well known yet,
we shall change them into better known forms. The expression (3.1) is of the
same form as the one, obtained by Consul (1966), for the exact distribution
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functions of Up,n,» with the following relations between the parameters:

Former paper Above expression
n n — P2
p D1
G =m D2

Thus the exact distributions of the criteria V for ¢ = 2 are the same as
the distributions of the criteria Up,,p,.n—p, , Which have been evaluated for

m = 1, 2, 3, 4 and for all values of » and p, .

The respective exact distribution functions f(V) are being listed below, for
the sake of convenience, for p, = 1, 2, 3, 4 and are being determined for p, = 5
and 6.

Case I. When py = 1,

(3.3) f(V) = T(n/2)[[(ps/2)-Tl(n — ps)/2 - VP20
(1L=M"* 0=V =L
Caskg II. When p, = 2,
(34) f(V) = I(n — DET(n — pr — DT(p)] -V (1 — VH»,
Caskg III. When p, = 3,
f(V) =T(n — 1)I(n/2 — 1)

(3.5) r(n — p» — DT[(n — p2)/2 — 1]-20(p)T(pe/2 + 1]
PRIz (] ez, S pact (manly ()
‘F(p2/2,1/2;p2/2 + 1;1 = V).

Case IV. When p, = 4,
(3.6) f(V) = I'(n — 3)[(n — D20(2p)T(n — p2 — DT(n — p — 3)]™
VORI (L — VAPTLR(py — 2,p0 3 2P0 1 — V).

Consul (1966) has also shown that by using the special functions (2.5) and
(2.6), the hypergeometric functions in Case III and IV can be transformed into
algebraic forms for all particular values of p,. Some of these algebraic forms of
the distribution functions as well as their cumulative distribution functions have
also been given in that paper.

Case V. When p, = 5, the expression (3.1), by the successive use of Legendre’s
duplication formula, takes the form

f(V) = T(n — 1)T(n — 3)T(n/2 — 2)
M(n — pr — DT(n — pp — 3)T[(n — p)/2 — 27 VOO0
(2m) 7t [ VT T(2HT(2t + 2)T(E + 2)

JD(2 4+ p2)T(2t + po + 2)T(t + po/2 + 2)]7" dt.



1164 P. C. CONSUL
Now, by applying a particular case of Consul’s inverse Mellin transform (2.3)
to the above integral, we find that the exact distribution function of V' is given by
f(V) =T(n — 1I'(n — 3)T(n/2 — 2)
[0(n — po — D)T(n — p2 — 3)T(n — p2)/2 — 2AT(py/2)] - V2"
(1 — VhyPe R (1) 3000 (pe)i(pe — 2)5
TP+ + DI (L = VY
(1,2 + 5;2p + 1 453 —(1 — VHV).

Caskt VI. When p, = 6, the expression (3.1) can be reduced, by the successive
use of Legendre’s duplication formula, to

f(V) = T'(n — 1)I(n — 3)T(n — 5)
[f(n — p, — T(n — p2 — 3)T(n — p2 — 5y
(2m8) 7 [ VTET(20)T(2t + 2)T(2t + 4)
AT(2 + p)T(2 + po + 2)T(2t + po + 4)]7-dt

which, by the application of Consul’s inverse Mellin transform (2.4), gives the
exact distribution of V as

f(V) = I'(n — 1)I(n — 3)T(n — 5)
(M(n — p, — T(n — p2 — 3)T(n — p2 — 5)-2T(3p,)] - VT
(1 = VHPL S (p) d(pe — 4) 408! (3pe) T
(1= V) F(ps + 2,9 3p2 + 6 —(1 = V)V,

4. Exact probability distributions of V for ¢ = 3. When ¢ = 3, by simplify-
ing the expression of moments (1.6) and then by applying Mellin’s inversion
theorem to it, the exact distribution functions of the criteria V' are obtained in
the form

F(V) = K(n)-(2r) - foria v T2 (e — ps + 1 — 1)/2 + B

ATJ2a T + 1 —1)/2 + W-TI2aT(n + 1 — r)/2 + B} -dh
where

(40) K(n) = JI2uTi(n + 1 — /2 - [I2Tl(n + 1 — 4)/2]
AT T((n — ps + 1 —9) /207

Now, by setting & + (n — pr — p. — ps + 1)/2 = tand on further simplifica-
tion, the exact distribution of V becomes

f(V) = K(,n),V%(n—m—m—m—l).(zﬂ)—l
(4.01) Jera v TIR Tt 4 3o+ pe — 1)}
ATI224 TT22 Tit + 31 + P2 + s — 1))} 7 dt.
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The above representation of the distribution as an inverse Mellin transform is
of much interest as the distribution splits into a factor depending on n and an
integral which depends upon the values of p; and p. only and is independent of
n and p; . So the expression for the distribution of V shall be valid for all values
of n and p; . The above integral can be easily put in terms of Meijer’s G-function
so that the exact distribution function f( V') becomes

(4.02) V) = K(n)- VYonmmD.gramt (7 [5)
where K(n) is given by (4.0) and, b, stands for 0, 3,1, --- , 3(p1 + p. — 1) and
a, stands for 3(ps + p1), 3(ps + 21 + 1), .-+, 3(ps + ;1 + P2 — 1),
3(ps+p2+1),3(ps+p2+2), -+, 3(ps + p2 + p1 — 1). However, the values
of G-functions are neither tabulated nor known for a large number of cases. So
we evaluate the integral of the expression (4.01) for determining the distributions
of the criteria V for six different cases as mentioned in the introduction.

4.1. Ezxact distributions of V for p1 = p. = 1 and all values of p;. When
p1 = p = 1, the expression (4.01) gives
AVY = UTG)/T0n — 1) T(n — dps — D]V (2™

SJEIVTETOT(E + DT+ 3ps + 3} de

which, on applying Consul’s inverse Mellin transform (2.1)and on simplification,
gives the exact distribution of ¥V in the hypergeometric form

(411) f(V) = C- V01 — V)P F(dps, dpa s pa + §51 = V)
where C is given by
(412) € = {T(3n)}"/[T(Gn — p)T{3(n — ps — DIT(ps + I

To find the probability that ¥V < » ( £1) we integrate the expression (4.1.1)
by parts $(ps + 1) times, when p; is odd, between the limits 0 to » (=<1) and

use the relation
(4.1.3) (d"/dz")[e""-F(a, b;¢c;2)] = (¢ — n)a2" " -F(a, b; c — n;2)

given by Erdelyi and others, each time and thus we obtain the cumulative dis-
tribution of V as

(4.14) Pr(V =2v) = I,(4n — 3ps, 3ps)
4+ D 3B (e 1y (A — py — D)) (1 — 0)P T
F(3ps, 3ps; 03+ 5 — ;1 — v)

where I,(a, b) is the incomplete beta function tabulated by Pearson.

When p; is even, F(3ps, 3ps; ps + 3;1 — V) can be changed to
VEF(ips + &, %ps + %;ps + 4; 1 — V) and then (4.1.1) can be integrated by
parts 3p; times between the limits 0 to v (£1) and by using the same relation
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(4.1.3) the cumulative distribution function becomes
Pr(V =v) =L3Gn —3ps — 3550 + 3)
(4.15) + € AR (o + § — r)(n — dpo) i’ (1 — o)™
FGps+ 3,505+ 350+ 5 — 151 — ).

For particular values of p;, the above hypergeometric functions in f(V) and
Pr (V = v) can be transformed into algebraic forms by the use of the special
functions (2.5) and (2.6) and some other results given by Consul in [4].

4.2. Exact distributions of V for p» = 1, p. = 2 and all values of p; . When
p1 = 1 and p; = 2, the expression (4.01) becomes

f(V) = {TEm)T(n — §)- VIO
< [P(3n — pa)T{3(n — ps — DIT{3(n — ps — 2)}]7(2m) ™
JERVTT@TE + DT+ 1)
Ut + 1+ 3pa)}T(¢ + dps + )17
which can be reduced by the successive use of Legendre’s duplication formula into
(V) = T(3n)T(n — DIN(n — ips — DI(n — ps — D]V
(200) 7" [ VTIT(2t 4+ 1)T(R)T(2 + ps + DT(E + 3ps + 1)]7" dt.

Now, by evaluating the integral by the use of Consul’s integral transform
(2.2), the exact distribution of the criteria V is obtained in the form

(4.2.1) f( V) = %C,V%(n—m—ii)(l _ V)%p3+l
= <p3 , 1) (=VYFGps + Lr + §3m + 21— V)
where

C =T(n — 1I'(Gn)/[T(n — ps — DTG0 — 3ps — DT (ps)T(Eps + 2)).

To determine the probability that V < » (£1), we integrate the distribution
(4.2.1) between the limits 0 to v and then use the relation (4.1.3) and thus, on
simplification, we obtain the cumulative distribution function of V as

Pr(V £0) = Lii(n — ) — L, 3ps + 11 4 G "772(1 — )™
(422) Yo (1’3;’ 1) (—1)(n = pot r — 1)
F(1,3ps — 3+ 3 3ps + 2,1 — v).

By the use of our formula (2.6) and some other special functions, obtained by
Consul (1966), the hypergeometric functions in f(V) and Pr(V =< v) can be
transformed for particular values of p; into algebraic functions also.
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4.3. Ezxact distributions of V for pr = ps = 2 and all values of ps. When
P = p2 = 2, the expression (4.01), on reduction by the successive use of
Legendre’s duplication formula and on simplification, becomes

J(V) = {T(n — DY[T(n — py — 1)T(n — py — 3)] - VI
S(2m3) 7[R VTT(2)T(2t + 2){T(2 + ps + 2)} 7 dt.
Now, by putting the value of the integral in the above expression by our result
(2.1), the exact distribution function f( V') takes the form
(4.3.1) f(V) = 3C- V"1 — VO F(pg, ps; 2ps + 251 — V)

where C is given by (4.3.3).

By integrating the above function by parts (p; + 2) times between the limits
0 to » (£1) and by using the formula (4.1.3) during each integration and on
simplification, we find that the cumulative distribution function Pr (V = v) is

given by
Pr(V £v) = Ia(n — ps — 1, ps) + Co}™ 779
(4.32) 2227 (2p; + 2 — r)i(n — ps — 3)an’"(1 —
‘F(ps, ps;2ps + 2 — 151 — o)

%)2p3+l—r

where
(433) C=({T(n—1)}/{T(n —ps— 1)T(n — ps — 3)I'(2ps + 2)}.

By the use of (2.5), (2.6) and other special functions given by Consul [4],
the forms of f(V) in (4.3.1) and of Pr (V = v) in (4.3.2) can be changed into
algebraic expressions for particular values of p; .

4.4. Exact distributions of V for py = 1, po = 3, and all values of ps. When
p1 = 1 and p, = 3, the expression (4.01) can be reduced by successive use of
Legendre’s duplication formula and simplified into
(V) = C-T(p)(2VH" Py

S(2r0) 7[R VTT(OT(E 4+ 3)T(2A + 1)
T+ 3ps + DIT(2 + pa + D] de
where C = T'(3n)I'(in — 1)I'(n — 1)/{T(n — ps — 3)T(n — p3 — 1)
‘T(ps)-T(3)}.

The evaluation of the integral in the above expression by the help of our result

(2.4) gives the exact distribution function of V in the hypergeometric form

fV) = 10(21/%"*”3‘“(1 — )i

(441) Z:{( ps + )}2[7'11‘ <p3 4 é)]*’ 1— vy
:ll( )( 1)1F( 5% ps+r+ V-l).
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By integrating f( V') by parts between the limits 0 to v ( £1) and by simplify-
ing it with the use of (4.1.3) we obtain the cumulative distribution function as

Pr(V <o) =C-2""*D(ps)I(n — ps — 2) [I‘(n - 2)r (p3 + g)]_l
fo vrersE(g — )“**F( Pt 515 Pt 53 Ps + ;1 — V) av
(442) + % C(2H) 71 — p)Piti. Z{( s + )} [nr (p3 Fr+ g)]_

A (”3 " 1) (=) /(n = po + i — 2}

=0

(pa+r+ zp3+r+ v)

where the value of the integral can be written as in (4.1).

4.5. Dustributions of V for pr = 2, p» = 3 and for even integral values of ps .
When p; = 2, and p. = 3, the expression (4.01) can be reduced by the successive
use of Legendre’s duplication formula, to the form

f(V) = CT(3ps)- (2m9) " 2 VT-T(20)T(2t + 3)T(¢ + 1)

{T(2t + ps + 3)}°T(t + Lps + 1) dt
where

= {T(n — DYT(3n — 1)/{T(n — ps — DT(n — ps — 4)
‘T(3n — 3ps — DT (3ps)}.
Now, by using Consul’s inverse Mellin transform (2.3) to evaluate the above

integral, the exact distribution function of ¥V becomes

(45.1) (V) = €.V m70(1 — vy

o0

z=% (ps + 3):(ps + 3), [rT(2ps + r + 417 (1 — V)
Z*”““(zm . 1) (=1)°F(1,2;2ps + 4 + ;1 — V7).

By integrating the above expression by parts between the limits 0 to v ( =1),
with the help of (4.1.3), and by simplifying, the cumulative distribution
Pr (V = v) becomes

Pr(V =) =%CP(%pa)F<%”—§P3‘ 1>[F(%""2)]—1

[V = VYR 3, p 4 32 4 351 — VY)Y
0
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(4.5.2) 4 200 PR — yh)eete Z_; {(ps + 3).}riT(2ps 4+ v + )]

(=S

=0

(P (0= -2 - 20

F(2ps + 1+ 3,255 2ps + 7 + 4,1 — o)

where the value of the integral can be easily written as in (4.3.2).

4.6. Exact distributions of V for p1 = 2, p, = 4 and all values of p; . When p; = 2
and p. = 4, the expression (4.01) can be first simplified and reduced by Legendre’s
duplication formula and then the integral can be evaluated with the help of
formulae (2.4) and thus the exact distribution of ¥V becomes

f(V) = %C.V%(n—m—”(l _ V%)3(m+l)
(4.6) Yoo {T(ps + NPT (3ps + 4 + )] 7(1 — VY

F(ps,2ps +2+1;3ps + 4+ 151 — V)
where

C =T(n — 3){I'(n — D}*/{T(n — ps — 5)T(n — p; — 3)
‘T(n — ps — 1)T(ps)T(ps)}.

By integrating f( V') by parts (ps + 2) times between the limits 0 to v (<1)
and by using (4.1.3) each time and then by simplifying the resultant expression
the cumulative distribution function Pr (V = ») can also be determined.
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