NOTE ON DYNKIN’S (e, £)-SUBPROCESS OF STANDARD
MARKOV PROCESS

By .Hirosar KunNrta

University of Illinots and Nagoya University

Let a; be a multiplicative functional of a standard Markov process. E. B.
Dynkin [2] has defined (e, £)-subprocess” under certain conditions imposed to
a; . ('The conditions are stated as the existence of a suitable stochastic process £; .)
In this note, it is shown that (e, £)-subprocess exists if and only if e is a positive
supermartingale of the class (D). For the rigorous proof of this fact, “a-
additive functional” is introduced and the Meyer decompos1t10n of as-additive
functional is established.

1. Notations and definitions. Let us first recall the definition of standard
Markov process. Let S be a locally compact Hausdorff space with a countable
open base and S* = S v {A} be the space adjoined A to S as an isolated point.
B+ is the smallest o-algebra containing all open sets of S*. A mapping w;
T =10, +»] — S*is a path if it satisfies (i) z(w) = w, is right continuous,
(ii) ze(w) = Afort = ¢(w) = inf {t > 0;z(w) = A}(= + o if { } = &)
and (iii) z,(w) has left hand limits in 0 < ¢ < {(w). The space of all paths is
denoted by W. B, is the smallest o-algebra on W for which z,(w) is measurable
fors £ ¢, and B = Vo B:.

Let P, ,z & S*, be a family of probability measures on (W, 8) such that P, (B),
B ¢ B is Bg+-measurable and P,(x(w) = z) = 1. For a bounded measure u
on (S* Be) we define P, by f u(dz)P,. A subset N of W which is of P,-outer
measure 0 for every u is called a null set. The set of all null sets is denoted by
N. T is the smallest o-algebra containing B; and N. Set F = Vo Fi. A non-
negative § -measurable function T is a stopping time if {T < t} ¢ §, holds for
every t = 0. (If § and §; are replaced by B and B; in the above definition, T is
called (B)-stopping time.) A stopping time T is called a QHT (quasi-hitting
time) if (i) T(6,) +t = T for ¢t < T and (ii) lim; ,0 T(6:) + ¢ = T hold except
for a null set, where 6, is the shift operator defined by x,(8av) = z.r(w)(V,,
s = 0). For a stopping time 7T, we define a c-algebra §Fr by {B ¢ §;
Bn{T £ &} ¢, for every t = 0}.

(2, ¢, B, Ps) is called a standard process if the following two conditions are
satisfied.

(1) (Strong Markov property). For each stopping time T,

(1.1) E.(f(6rw); B) = Ex(E:r(f); B), Vz e S*,
holds for every bounded §-measurable function f and B e §r.
(2) (Quasi-left continuous before ¢). For each increasing sequence of stopping
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times {7} with limit T,
(1.2) Po(limysw r, = 27, T < ¢) = P(T < ¢), YzeS*

We shall assume, through this note, Meyer’s hypothesis (L); there exists a
measure v on S* (called a reference measure) such that every excessive function
u with ny(dx)u(x) = 0 is identically O.

REMARK . Let & be ao-subalgebra of § and f, a §-measurable function. In
this note, conditional expectation E.(f|®) is defined even for nonintegrable
function in the following way;Setf* = f v 0 andf~ = (—f) v 0. Then E.(f| ®)
is defined as E- (f*|®) — E.(f” | ®) if one of them is finite and by 0 if both of
them are infinite. Then the strong Markov property implies the following:
Let f be a §-measurable function and B ¢ §rbe a set such that E.(|f(07)|;B) <
for each x. Then E,,,,(f) is well defined and is finite for w & B a.e. P, for each z.

A real valued process X;(w), 0 <t < «, defined on (W, §) is a functional
if it is §,-measurable for each ¢ = 0 and X,(w) is right continuousin0 £ ¢ < o,
X (w) = X(w) for t = ¢(w) except for w of a null set. A functional X, is a
(super)martingale if (X, §:, Ps) is a (super)martingale for each z ¢ S*. Simi-
larly, a functional X, is a local (super) martingale if there exists an increasing
sequence of stopping times {T',} with limit + « such that each X;.r,is a (super)-
martingale. A functional X, is of the class (D) if for any family of stopping times
{Ts}, {Xr,, Ps} is uniformly integrable for each x. If the above is true for
{T.} dominated by a constant, X, is of the class (DL).

A nonnegative functional «; is a MF (multiplicative functional) if it is a super-
martingale and except for w of a null set a;(w)as(0w) = asrs(w) holds for every
pair ¢, s = 0 and ay(w) = 0 for ¢t = ¢(w). To avoid a minor complication, we
shall assume that ay > 0 a.e. P, for z £ S: Then multiplicativity implies oy = 1
a.e. P, for z ¢ S. A functional X, is called a;-addstive if, except for w of a null set
Xi(w) + a(w)X(0w) = X (w) holds for every pair ¢, s = 0. An os-additive
supermartingale X; is called regular if E-(Xiar| VaSiar,) = Mo Xiar,
holds for every increasing sequence of QHT {T,} with limit 7" and every con-
stant ¢.

An integrable functional A, is an increasing process if Ao(w) = 0 and A.(w)
increases with ¢ except for w of a null set. An increasing process 4, is natural
if for any bounded martingale X, E.( [t X,dA,) = E.([6X,” dA,) holds for
each ¢t and z, where X, = limu»o Xs—1/n -

2. Theorems. Our first theorem is the Meyer decomposition of a;-additive
functional. '

Tueorem 1. Let X, be an a.-additive supermartingale. There exists an o-addi-
twe supermartingale M, which is a local martingale and a.additive and natural
increasing process A, such that X, = M, — A, holds for every t =Z 0 except for a
null set. Moreover, the decomposition is unigue. In particular,

(1) X, is regular of and only if A, is continuous,

(2) X, s of the class (DL) if and only if M, is a martingale,
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(3) X, 1s of the class (D) if and only if M, is amartingale of the class (D) and
E.(As) < o for every x, where A, = limp 400 A .

The above theorem is immediate from [4], Appendix if the underlying process
is a Hunt process and if X; is of the class (D). But in our case we need consider-
able modification of their proof. It will be given at the next section.

Let a; be a MF. It is known [2, 5] that there exists a standard process (z;, ¢,
F:", P.") defined on 8* and (W, 8) with the transition function P*(¢, z, E) =
E (o ;2,6 E)(E ¢ Bgr). Suppose that there exists a nonnegative §-measurable
stochastic process £, satisfying the following (£.1)—(£.3). Except for a null set,

(‘El) at(os)ét-i-s é Es if t+ S < f A Ta.
(£2) ¥: = auf, is right continuous in 0 £ ¢ < ¢,
and *

(£3) E(¢r|Fr) = 1 holds on {T < ¢} a.e. P,(zeS),

for every stopping time 7'. Here, T, = inf {t > 0; a; = 0}.

Dynkin [2], Chap. X, Section 4, has shown a direct method of constructing
measure P,* from P, using this £ . (Such (z¢, ¢, §.%, P.") is called (a, £)-sub-
process.) We are interested under which condition there is £; satisfying these
(£1)-(£3).

TurorEM 2. The following three conditions are equivalent:

(1) There exists &, satisfying (£.1)—(£.3).

(2) a: is of the class (D).

(3) For every increasing sequence of (B)-stopping times {T,} with limit T,
(P.%, N ) s absolutely continuous with respect to (P,, Nr ) for every x of S,
where Nr = VaBr,[Ne{Tn < ¢}] and the notation & | means the restriction
of the o-algebra ® to the set [ ].

Proor. (1) = (2). Let T be an arbitrary stopping time. Since arér < &
by (£1), ar = E.(arkr | Fr) < E.(&| §r) by (£3). Hence a is of the class (D).
(2) = (1). Set X; = a; — 1. Then X, is an a;-additive supermartingale as is
easily shown. Let X; = M, — A, be the Meyer decomposition. If «; is of the
class (D), M, is a martingale by Theorem 1, (3). a;-additivity of M; implies
My = 0Oa.e. P forz ¢ S. Then we obtain E,(a,) + E.(A.) = 1forevery z of S,
where a., = lim,,. a; (exists because a; is a supermartingale of the class (D)).
Set £(w) = ao(w) + Ao(8w). Then & is a nonnegative F-measurable sto-
chastic process and satisfies ¥; = a, + A, — A;. Hence (£.2) follows. Since

at(08)2t+s = (aw + Aoo - At+s)/0‘s é (aoo + Aoo - As)/as = Es if o > 0,
(£.1) follows. (£.3) follows from
E.(¢2]|Br) = E.(au(0r) + Au(8r) |Fr) = Eop(aw + As) = 1.

(2) = (3). Let {T,} be an increasing sequence of stopping times with limit 7'.
Then
PA(B n {Th < ¢}) = Eu(ar,; Bn {T, < {}), Be®Bn, k =n
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(See [5].) Letting n — o, we obtain
ES(Bn[Na{Tn < {}]) = Ex(limpswar,; B n [N {Tn < ¢}]).

The above holds for every B ¢ V. Br, . Hence limy.« az, is the Radon-Nikodym
derivative of (P,*, Nr ) relative to (P, Nr ) for every z of S.

(3) = (2). Let ot be the Radon-Nikodym derivative of (P, Nr ) relative
to (P, Nr ). We extend 52 to W by setting 0 on the complement of N, { T, < ¢}.
Then we have

Efar,;Bn{T, <{}) = P.X(Bn{T, <¢})

Z Eo(af2 ;B0 {T. < {})

if B & Br,. Therefore (ar,, -+, ar,, -+, as2) is a supermartingale and we
obtain limg.e ar, = E(as2| V, §r,). While we have .

lim”"“’E“(aTn) = limn-’sza(T” < g') = Pza(nn{Tn < g'}) = E,(a;’—)),

Therefore limp.o Fo(ar,) = Eu(limpse ar,). Then {ar,} is uniformly integrable
relative to P, by [7], Chapter II, T21.

3. Proof of Theorem 1. If we assume the existence of the Meyer decomposi-
tion, uniqueness is immediate from [7], Chapter VII, T21. “If” part of (1) is
clear. It is not difficult to see (2) and (3). We shall prove here the existence of
the Meyer decomposition and the “only if”’ part of (1).

LemMa 1. Let X, be an a;-additive and regular supermartingale. Then the Meyer
decomposition exists and the corresponding increasing process 18 continuous.

Proor. Set

(3.1) Atn = ’nf(t) asEz,(XI/n) d8(=nf3 {Xs - E'(X8+1/n|%s)} dS)
and
(32) X/ =2X,—n [l (X,)ds(=n [(""E.(X,|F:)ds).

Then A,"is an a;-additive and continuous increasing process and X;” is an « -
additive supermartingale increasing to X, . Further X" and A," are related as

(3-3) E-(ATnI%tA T) —A?AT=X?AT—E‘(XTnI%tAT),

where T is a bounded stopping time. Suppose for a moment that there exists an
increasing sequence of stopping times {S,} with limit 4+« such that for each
p, {Ag,} is a Ly(P.)-Cauchy sequence for every x. Then by a well known mar-
tingale inequality, supw<s, |E.(As,|Fwns,) — E.(A45, | Tiwms,)| tends to 0 as
n — 4+ in P.-probability. Also, supws,|E.(Xs,| Gus,) — E.(X5,| Fws,)|
tends to 0 in P.-probability asn, m — . Then supi<s, |4:" — A" does by (3.3).
We can choose an a;-additive and continuous increasing process A; such that
Supws, |A: — A{"| — 0 in P.-probability as well as E,((4s, — 45,)°) — 0
for every z, by the same method as [4], Appendix. This A satisfies

’ E.(Asplgmsp) - Atns,, = Xt;«s,, - E~(Xsp I %tns,,)
from (3.3). Hence X; 4+ A, is a local martingale.
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To prove the existence of such sequence {S,}, set
Tn = mf{t > 0, X{, - Xgn > eat}.

Then {T,} is an increasing sequence of QHT. The regularity of X, and X"
concludes that {T,} tends to T, where T, = inf {{ > 0; a; = 0}. (The proof is
obtained from a trivial modification of [7], Chapter VII, T36). We define Y,
by X; — E.(Xx| %) ift < N and by 0if £ = N, where N is a positive constant.
Set S = 8,y = inf {t > 0; Y, > ¢} A (N — 1). Since S..» increases to + = as
¢, N = 4=, it suffices to show E.[(4s" — A" — 0asn, m — +w. Set
S].-, = Tk A S. Then

E.[(A5, — A8
(34) = 2E.[[¢+{(A3, — A%) — (A" — AMVd(AS — A7)
2B.[[¢ (Y — Y» — Ys, + Yg)d(4" — A™)]
< 4E.[supis, [V — Y — Y& + YE[TPE-[(45)° + (45)7T.

Here Y." = X" — E.(Xx| &:) and we have used the relation (3.3). Notice that
0SY =Y., <cont< S and Y = 0, we have

(3.5) supws, Y — Y — Y&, + Yl £ {esupws, ar + |Ys, — Ygl} A 2c

By a similar estimation as (3.4),

It

(3.6) E.[(A2)Y < 2¢E.(AB) < —2¢E.(X§,) £ —2¢E.(Xy)
and
(3.7) BE.[(As" — AL)Y] < 2E.(As" — AL) < 2¢E. (X5, — Xs").

Therefore from (3.4)—(3.7) we have the following inequality
limn,mow B.[(As" — A5")’]
(38) = 2limamw (E.[(45, — 45)1 + E.[(As" — 45)"]
+ E.[(45" — A5}
< —32cE.(Xx)E.[(e supis, @) A 2¢] + 8cE.(Xs, — Xs).

Note that limg.. Xs, — Xsare coincides with limg., Xyar, — Xware on the
set N« {Sx < S} which belongs to Vi Fwar, . Then the regularity of X together
with uniform integrability of {Xs,} implies

limk-»eoE-(Xsk - XSATa) = E(hmk—»w XNAT], - XNATa; nk{sk < S}) = O'

But since Xs = Xsara except for a null set, E.(Xs, — Xs) —0ask — . Now
since e is arbitrary, we obtain lim,,m.« E.[(4s" — 4 s™)’] = 0 by the inequality
(3.8).

To prove that M, = X, + A, is a supermartingale, it suffices to show that a
positive local martingale is a supermartingale because we can reduce the proof
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to this case. Let Z, be a positive local martingale and {S,} be an increasing se-
quence of stopping times with limit 4« such that each Zs, is a martingale.
Then E.(Z:s,) is finite and does not depend on n. Hence by Fatou’s lemma
E.(Z:) is finite and Z; is integrable. If we notice that Zus, is a positive
martingale, we obtain the inequality E.(Z;; t < S,, A) £ £ E.(Z,;
§ < 8., A) where t = s and A € Fins,, (m = n). Hence we obtain E.(Z,; A)
< E-(Z;; A) by tending n — o, which implies that Z; is a supermartingale.

Lemma 2. Let X, be an a-additive supermartingale. If X, is not regular, there
exists an a-additive and natural increasing process B, which is purely discontinuous
(and not identically 0) such that X, 4+ B is an a,-additive supermartingale.

Proor. Let us define T', = inf {{ > 0; X, — X" > ea,}, where X" is a regular
supermartingale defined by (3.2) and ¢ is a positive constant. Then since X"
increases to Xy asn — o, X5, — X7, = Xy, — X7, Z ear, holds for m < n.
(We put X« = 0 conventionally.) Letting first n — « and next m — «, we
have, by putting T = lim,, T»

(3.9) litysw Xz, — E.(Xz| VaGn,) 2 €limy.ear, .

Proof of Lemma 1 shows actually that if X, is not regular, there exists ¢ > 0
sufficiently small such that the left hand of (3.9) is not identically 0. We shall
show that the left hand of (3.9) coincides with —lim,.e ar, Ezr (X 7) for w with
T(w) < . a-additive property Xr, — X7 = —ag,Xrwry(0r,) for T < o
together with the strong Markov property implies

E-(X7, = Xp)I(T < ©)|Fr,) = —arber,(Xr),

where I is the indicator function. On the other hand, since E.(X7| V. Fr,)
= limp.e B.(X7| Fr,), iMye ar, - Bor,(Xr) exists and equals to the left hand
of (3.9).

We now define sequences of stopping times {77} and {7,”} by induction;
T? = T 4 T(0p1)(T° = 0, T" = T) and T, = T + Tp(8,0-1)(T° = 0,
T,' = T,). Then by the same reasoning as that of the preceding paragraph,
—limge, ar,0B=, ,(Xr) exists and coincides with limn.e X7, — E.(Xz| Va
Fr,p) for w with T7(w) < «.Put B = —limysew arpBap»(X7)I(0 < T? £ ¢)
and B, = Y_%_y Bf. Then B, is clearly a purely discontinuous increasing process
not identically 0. Furthermore, each B/” is natural by the proof of [7], Chapter
VII, T49. Hence B, is natural if it is integrable.

We shall next prove that B, is integrable and X, + B, is a supermartingale.
But we shall only prove X; + B/ is a supermartingale; then this fact can be
obtained repeating the same argument inductively. For an arbitrary pair of
constants 0 < s < t, we define 7" by T if s < T? < t, by sif T* £ s and by ¢ if
T? > t. T, is defined similarly from 7T,”. Then we obtain

E (Y, —Y/)|g) = E.(Xs — Xp |F) + E.(limpu Xrr — X | Fs)s

where Y, = X, + B{. Since Y is integrable and since each term of the right
hand is negative, Y’ is a supermartingale.
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It remains to prove the a;-additivety of 8, . Let us notice the relation
(310) T =t 4+ T%) if TP =t < T°" and ¢ 2 1

(Similarly, 7,7 = ¢ + T,%6,) holdsif T? < ¢t < T, and ¢ = 1). In fact, since
T(8z2) > t — T® holds in-the case T° < ¢t < T?", T(61-rpo0m) + ¢
— T® = T(8z») holds because T is a QHT. But since 0;_rp 0 0» = 8; holds, we
have T(6;) + ¢t = T? 4+ T(0) = T”*. The general case can be proved by in-
duction. In fact, suppose the relation (3.10) holds for ¢ — 1; then

Tp+q = Tp+q—1 + T(07p+q—1) = t+ Tq_l(gt) + T(Bmz+41—l),

while we have 0rpte-1 = Ore-1(9,) © 0, S0 that the last expression above coincides

with ¢t + T%6,).
Coming back to the proof of a;-additivity of B;, lgt us rewrite

ft< T 2t+s = U [T =t < T u{T?7%6:) £ s}], p
Then multiplicativity of «; and the property (3.10) deduce
Bf, — BP = a, 223 BP0 (T < ¢ < T*).

Summing up the above forp = 1,2, 3, - - - and changing the order of summations
relative to p and ¢, we have '

Bis — By = a0 2054 [2520n B UO)IT(T < t < T*)
By (0)I(T* > 1),

where T = lim,., T%. Thus B; is a;-additive if the inequality 7% = T. =
inf {t > 0; a; = 0} is satisfied, which we shall prove henceforth.

By inequality (3.9), we have B; = € D pe lilyse arI(T? < t) and we get
lim Supp-e limy»e ar,» = 0 because B, is finite. Therefore we have

v
—

E. (aT"’ | \" 2 Va %Tnl') é limp-no E. (aTP I Va %Tﬂp) é lim SUPp->w limn—no or,p = O,

which implies 7% = T, .

Proor oF THE EXISTENCE oF THE MEYER DEcomrosITiON. Let X; be an
as-additive supermartingale. For every countable ordinal 5, we define an as-ad-
ditive supermartingale X" by the transfinite induction. Suppose X/, £ < 7, are
well defined. If 5 is a limit ordinal, set X, = sup:<, X;*. Suppose 7 is an isolated
ordinal. If X," " isregular, define X" by X" ". If X, is not regular, define X’
by X/ + B/, where B,”" is a natural increasing process constructed from
X, by the method of Lemma, 2.

Let v be a reference measure of the standard process. There is then a countable
ordinal 7 such that Xf = X,™ holds a.e. P, for every £ = no. Then X/ = X" is
satisfied a.e. P, for every £ = 1o . Indeed, suppose on the contrary that there exists
£ > o such that X, > X,™ holds on a set with P,-positive probability for some
z. Set fu(z) = B (XS} — X™). Then fi.(x) = fu(z) + Eo(aufs(x:)) holds and
fe increases to fo, as ¢ T « and decreases to 0 as ¢ | 0. Hence fo(z) =
E.(a:if»(x:)) and the right hand increases to f»(z) ast | 0. Then fo(z) is ex-
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cessive relative to the transformed process (2, ¢, §.", P."). Since v is also a
reference measure of the transformed process and since [ v(dz)fw(z) = 0, u
must be identically 0, which is a contradiction. Hence Xf = X,™ holds for every
£ = no except for a null set. Then.X;™ is regular.

By Lemama 1, X;” has the Meyer decomposition M; — A’, where M, is a local
martingale and A,° is a continuous increasing process both of which are a;-ad-
ditive. Since X; = X° + Y i<, B, we obtain X, = M, — A, by setting
A, = AS 4+ D i<q B and this is the desired result.
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