SOME ONE-SIDED STOPPING RULES!

By Davip O. SiEGMUND?

Columbia University

1. Introduction and summary. Suppose that z; , z, - - - are random variables
with means u , u2, - - - such that
(1) N (o o) —>a (0<u< ),
andlets, =23+ -+ 4+ x, (n = 1). For any positive non-decreasing and eventu-

ally concave function f defined on the positive real numbers and ¢ > 0 let
7 =17(c) = first n =1 suchthat s, > c¢f(n)

= o ifnosuch n exists.

We are interested in finding conditions on f and on the joint distribution of (x,)
which insure that if A = A(¢) is defined by

(2) uh = ¢f(N)

(since we shall assume below that f(n) = o(n), A(¢) is unique for sufficiently
large c), then

(3) lime.X'Er = 1.

The elementary renewal theorem states that (3) holds when 21, 22, - - - are iid
non-negative random variables and f(n) = 1. Chow and Robbins [3] have ob-
tained generalizations of this result to the case in which (z,) are dependent or
non-identically distributed. The case in which f is not constant has been discussed
in [2], [4], and [11]. We shall assume that 1, 22, - - - are independent and prove
the

TuEOREM. Let (2,), (ua), f, 7, ¢, \ be as above, and suppose that for some ae(0, 1)
and L slowly varying

(4) f(n) ~ n°L(n).

If for every e > 0

(5) 17 208 [wimwisia (@ — w) =0, n— ®
then

(6) imsup\" E T £ 1

If in addition to (5) s,/n — u a.s. or if for every e > 0

(7) w7 200 [ Gaimniisne |20 — wil =0, n—> o,
(8) sups B [, — pa| £ K < o,

then (3) holds.
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2. Proof of the theorem. The proof will be given in several lemmas, some of
which may be of independent interest (see, for example, Remark (a) in Section 3).
We assume throughout that (z.), (u.), f, 7, ¢, and X are as in the paragraph
preceding the statement of the theorem. For convenience take u = 1.

Lemma 1. If f(n) = 1 and (5) holds, then (6) holds. If in addition

(9) Supn n_l Z{l E(x1 - #i)_ < ®©,
then (3) holds.

ProoF. Let 0 < 6§ < 1,¢t = min (7, k), k = 1,2, --- . By (1) and Wald’s
lemma

(10) (1 — 8)Et + O(1) < E(Xip:) < Bse < ¢ + E(zy — w)” + E [ud.
Suppose Et — © ask — . From (1)
(11) Elw| = o(Et).
Writing 9, = (£, — ux)", we have for every e > 0

By, £ eBt + [usw ye S Bl + E(21 Tusen i)
eBt + B2 [wsen y:) = 2eBt + 0(1),
where the last inequality follows from (5). Hence
(12) Ey, = o(EY).
From (10), (11), and (12)

(1 — 8)Et 4+ O(1) = o(EY),

a contradiction, and it follows that
(13) Er < .

From (1) and (13) E(X ju:) < . Since s, > ¢, we also see that Es, and
E(s, — D1 wi) exist.

Jism (8a — 220 )T = eP{r > n} —0,
and it follows (Doob [6], p. 302) that
(14) E(2iw) £ Bs..
Observe that 7 T © as ¢ — o and hence Er — «. Thus from (1) and (14)
(1 —8)Er +0(1) < E(Q2 i) < Bs, Sc+ E@ — p)" + E |

and as above (1 — 8)Er + O(1) = ¢ 4+ o(Er), and (6) holds.
From (9) and (13) E(2_7 (z: — ui)~) < «, and again appealing to Doob [6],
p. 302,

¢ £ Es, < E(Q_im) £0(1) + (1 + 8)Er,
which together with (6) completes the proof.
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For the applications below we state the following slight generalization of (the
first part of) Lemma 1.
Lemma 2. Let 0 < a < 1 and assume that a(\) — a, A — . Define

™ =first n=1 suchthat s, > a(Mn + M1 — a(N))
= o ¢f nosuch n exists.

If (5) holds, then lim sup \'Er™ < 1.

Lemma 3. If (4) and (5) hold, then (6) holds.

Proor. We may assume that f is concave and that A(c¢) is uniquely defined.
Let a(A) = M'(A)/f(\), where f' is the right derivative of f. Then ([8], p. 422)
a(\) = a, N = o, It is easily seen that a(A)z + A1 — (7)) is a line support
to ¢f(x)(= M(z)/f(\)) at the point (A, A). Hence letting 7* be as in Lemma 2,
r £ ¥, and by Lemma 2 (6) holds.

LemMa 4. If (4) holds and s,/n — 1 a.s., then lim inf N\'Er = 1.

Proor. Obviously 7 — « as ¢ — «. From the definition of =

Sra/m = of(r) /7 < s./7.

Letting ¢ — o, ¢f(7)/r — 1, or from (4) ¢ ~ 7 %/L(r) a.s. From (2) and (4)
¢ ~ N7%/L(\). Hence by inversion ([10], p. 46) 7 ~ X a.s., and the result follows
by Fatou’s lemma.

In similar contexts (see, e.g., [11]) the technique of proof of Lemma 4 is quite
useful and easy to apply. Known conditions sufficient to imply that s,/n — 1 a.s.
are much stronger than (5), however, and consequently it seems interesting in
the present context to attempt to establish (3) under conditions resembling (5).

Lemma 5. If (7) and

(15) sup, 1/n > T E s — pd < o,

then (sn — 21 ui)/n — 0 in probability.

Proor. The proof is an easy application of the classical method of proof of the
weak law of large numbers (e.g. [8], p. 231).

Lemma 6. If (4), (7), and (8) hold, then lim inf \"'Er = 1.

Proor. To avoid overburdening the proof, we shall assume that u, = 1 and
that f(n) = n® The general case requires trivial modifications and an occasional
reference to known results about slowly varying functions [10]. With f(n) = n°
A = "% It suffices to show that for every & > 0

(16) CPi{r > (1 — 8)) — 1, c— o,

¢ ~n'"%(1 4+ @), it is easily seen that to prove (16) it suffices to show that for
every 6 > 0

(17) P{s; > ©n'"*(1 4 5), some ¢ =< n} —0, n— o,

But P{r = n} = P{s; > ¢, some 1 < n}. Letting n — « such that
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(18) Pls; > ¢*n" (1 + 8), some 17 < n}
< Pls; — 1> 5n'™%, some ¢ =< n}.

Lety, =2 — 1, 7o =y1+ -+ 4+ yo (n = 1). For £ fixed but arbitrary and all
n define n; = [in/k], © = 0, 1, --- , k. Then by (8) and a generalization of the
H4jek—Rényi inequality [1], 4

P{|T{ > 6in'™%, some 4 < ny}
(19) 1LE |yd/8'n'™ < K/8(1 — )k

Let 0 < &' < 62 %and n = 827° — &'. Denote by u the least integer 7, if any,
n < 1 < n such that T; > 8*n" % Then

(20) P{T;> &n"™® some 4,n; < i =< n} < P{T,, > 6nn'"" some i <k}

+ zlic=2 Zni—1<7<ni P{u = T}P{Tm - Tr < nl_a( 5,nia — 57’0‘)}.

IIA

By Lemma 5
(21) P{T,, > &'nn'™%, some 1

A

k}
S EP{T,, > nfn ™ =0, n— .

i\

Let ¢ > 0 and for each j < nlet y; = yil{lys| < en}, T/ = ' + -+ + v/,
B; = ET;. From (7)

(22) 1/n |Bn; — B

1/n|— 2t Jtwsisen Uil
< 1/n 277 fuujisen lysl = o(1)
and
Ply; = y/, some j=r+1, -, ng
(23) < 2 P{lysl > en)
< 1/en 253 [ujisem lysl = o(1)

uniformly in 2 = 2, --- , k, n;_y < r < n;. Taking n sufficiently large, we have
from (8), (22), (23), and Chebyshev’s inequality

P{T,, — T. < 0"~ %(8'n" — &)} < P{Tn, — T» < —unk %}
S P{{Tni — T — (Bu; — B > (mk™*)/2}
(24) + Ply; # vy, some j=1r+1,--,nj}
< (4K%/qn?) 20 By 4 o(1)

< 4KK ¢/q" + o(1)
uniformlyinz = 2, -+- , k, nia < r < n; . Thus from (18), (19), (20), (21),
and (24)

lim SUPow P{s: > 0 *(1 + 8), some i =n} < K/6(1 — o)k + 4Kk™¢/n?
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which can be made as small as desired by first taking % sufficiently large and then
¢ sufficiently small.

To complete the proof of the theorem it suffices in light of the preceding lemmas
to show that (7) and (8) imply (5). Let € > 0. Then from (7) and (8)

1/n Z? f””i—#ibei} |ze — ud
= 1/n Z{‘”] E ICB, o Iti] + 1/n Z?m]‘l'l f““’i-uil>e2n} ]% - #il
= K + o(1).

3. Remarks. (a) Lemma 1 and its proof generalize and simplify Theorem 2 of
[3]. Our condition (9), for example, is implied by the Chow-Robbins conditions
that either

(25) sup B(x, — ua)” <
or
(26) T, = 0(n = 1).

Obviously (25) implies (9); and if (26) holds then 2, — up = —ua, or
1/n > 3 Bz — pi)” S 1/n i pi—u < o.

(b) Although we have assumed that i, 2, - - - are independent, it is easily
seen that our result remains true under the assumptions of, say, Theorem
1 of [3]. This result is stronger than Chow’s Theorem 1 ([2]). It should be noted,
however, that although Chow assumes that f(n) = n* for some a¢[0, 1),
nevertheless, his theorem remains true under the weaker assumptions that f is
non-decreasing and f(n) = o(n).

(¢) In the case of non-negative (z;), we may by reflection about the line
y = ux obtain a similar result for stopping rules of the form 7 = inf {n:1 + s, <
¢ f(n)}, where f(n) ~ n°L(n), @« > 1. When o = 2 this result is of interest in
problems of sequential confidence intervals [4], [11], and it was in this context
that Chernoff and Simons mentioned to me the possibility of approximating the
stopping boundary by an appropriate tangent. For purposes of proving Lemma 3,
this method is tantamount to use of Jensen’s inequality. It does, however, have
advantages (Remark (d)).

(d) In some cases it is possible to combine the method of proof of Lemma 3
with Blackwell’s renewal theorem to obtain stronger results. For example, if
&y, %z, - - - are iid with positive mean u and finite second moment, and if f(n) =
n* (0 < a < 1), then

lim sup [Br — \] £ E(z, — pa)?/24°(1 — a)®.

(See [8], p. 372 for the appropriate result from renewal theory.)

(e) Inthe presence of higher moments, one can combine the present techniques
with those of Chow ([2], Theorem 2) to show that Erf ~ 2\
7 (f) The method of proof of Lemma 3 also yields the following result of in-
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terest in certain hypothesis testing problems [5], [7]: if z1, @2, --- are iid with
positive mean p and variance 1, and if 7 = inf {n:s, > n!L(n)}, where L(n) ~
(2 log log n)}, then

Er < 24 log log u™'(1 + o(1)), u — 0.
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helpful discussions on a related problem [9] led to a substantial improvement
in this note.
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