The Annals of Mathematical Statistics
1968, Vol. 39, No. 2, 567-582

JACKKNIFING VARIANCES!

By Ruperr G. MILLER, JR.

Stanford University

1, Introduction. The Tukey jackknife [18], [19], [11], which is an extension of
an idea of Quenouille [12], is a rough-and-ready statistical tool which (a) reduces
bias and (b) produces approximate confidence intervals. It exactly eliminates a
1/n bias term. Its approximate confidence intervals are a godsend in problems
where messy distribution theory prohibits the formation of exact confidence
limits.

It has been demonstrated that the jackknife can be beneficially applied in ratio
problems (Quenouille [13], Durbin [6], Rao [14], Rao and Webster [15], Deming
[5]), in maximum likelihood estimation (Brillinger [3]), and in transformations
of statistics (Miller [9]). A recent proposed application is the construction of
confidence limits for estimates of parameters in a functional relationship (Bril-
linger [4]).

Indiscriminate universal application of the jackknife can be hazardous. This
is illustrated in the case of interval estimation for a truncation point (Miller
[9]), although under restrictions on the probability density the jackknife still
performs satisfactorily (Robson and Whitlock [16]). Lincoln Moses in unpub-
lished work has shown that the jackknife runs into trouble for interval estimation
on the median.

The purpose of this paper is to examine how the jackknife performs in testing
hypotheses on variances. It is well known for this problem that it is disastrous to
base a test on the x* or F distribution because of extreme sensitivity of the
distribution to nonnormality. A variety of alternatives to the classical techniques
have been proposed. Some of these involve arbitrarily dividing the data into
groups. As soon as the idea of division into groups creeps forth, the jackknife
cries out to be tested.

Two objectives are accomplished in this paper: (1) Another technique is
added to the short list of tests which are robust and reasonably powerful for test-
ing variances. (2) Another problem is recorded in which the jackknife performs
admirably so statisticians should be imbued with courage to try the jackknife
elsewhere. '

Section 2 contains a description of the jackknife technique. The asymptotic
distribution theory is worked out in Section 3. In Section 4 the jackknife is com-
pared with other techniques for testing variances, both for large samples and for
small samples. Section 5 closes the paper with a discussion of the performance of
the jackknife with regard to testing variances and in general. The Appendix con-
tains a proof that Levene’s z test is not asymptotically distribution-free.
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2. The jackknife. For the reader unfamiliar with the jackknife a description
is included: Let 6 be an unknown parameter, and let (X;, ---, Xy) be a sample
of N independent, identically distributed observations with edf Fo, which de-
pends on 8. Suppose a method (biased or unbiased) is available for estimating 6.
Further suppose that the data is divided into n groups of size k(N = nk); i.e.,
(X1 y "t ',Xk), (Xk+1, ceey, sz) y (X(n—l)k-(-l y Uty Xnk). This diViSiOIl may be
determined by the structure of the experiment or arbitrarily imposed by the stat-
istician. Let 6 denote the estimate of # based on all N = nk observations, and let
b_;,7 =1, --- n,denote the estimate of 6 obtained by deleting the 7th group and
estimating 6 from the remaining (n — 1)k observations. Form the new esti-
mates (called “pseudo-values” by Tukey)

(1) 0; =nb — (n — 1)0_;,” i=1,-,n.
The jackknife estimate of 8 is the average of the 8; ; i.e.,

(2) 0. = n_l Z?:.l é,‘ = né - (n - 1)9— )

where 6_. = (D1 6_))/n.
The jackknife exactly eliminates a n™" bias term. Namely, if

(3) E(6) = 04 cN' 4+ O(N?),
then
(4) E(8.) =04+ O(n™2).

Quenouille conceived the jackknife to achieve this reduction in bias. Tukey
went one step further and proposed that in many instances the 8; are approxi-
mately independently, identically distributed. If this proposal is correct, then

(5) (m(n — 1)) 20 (8 — 6.)°
should be an (approximate) estimate of Var (4.), and
(6) (8. — O)(n(n — 1)) 20 (8 — 8)7T

should be approximately distributed as a ¢ variate with n — 1 d.f. The ratio (6)
could therefore be used to construct an approximate confidence interval for 6 or
perform an approximate significance test on 6.

For the:problem considered specifically in this paperlet X;, ---, Xy be inde-
pendently, identically distributed according to F((x — pz)oz "), and Yy, - -+, Y
be independently, identically distributed according to F((y — m)oy ). The X;
and Y; are governed by the same cdf except for possibly different location
and scale parameters. The location and scale parameters (u. , py ; 0z , oy , Tespec-
tively) are unknown, and the cdf F' is unknown with the exception that it will
be assumed to have finite fourth moments.

. The one sample problem for variances is to construct a confidence interval for
o2 = BE(X — E(X))? or to test the hypothesis H, : o2 = oy, where of is a

specified constant. The two sample problem is to test the hypothesis H, : or =
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2 . . .
oz, Or to construct a confidence interval on the ratio or difference of the
variances.

If the variance o5 is an unknown parameter (as well as u, = E(X)), then a
classically “good” estimator of o5 is s3 = D 1 (X — X)*/(N — 1). If o3 is
identified with 6 and s; with 4, then the jackknife for group size k = 1 (n = N)

gives
b; = si +n(n — 271 [(X; — X)* — a7t
2 (X5 — X)),
0. = sﬁ,
2ia (b —8) =a'(n—2)7 XL (X = X)" —n”
25 (X — XM

Construction of a test or confidence interval from the quantities in ( 7 ) is almost
equivalent to using Levene’s [8] s procedure which treats (X; — X)% ¢ = 1,
---, N, as independently identically distributed observations. The equivalence
is not exact because the constants involving » appearing in the ¢ ratios are not
exactly the same.

For group size k& > 1 the jackknife does not give simple expressions as appear
in (7). In particular,

=82+ (n — 1)((n — 1k — 1)~
'[Ziels (X5 — Xi)z + nk(n — 1)_1(Xi — X)2 — k(nk — 1)_1
(8) 205 (X = X)),
b. =52+ ((n — 1)/m)((n — 1k — 1)~
[k 228 (X = X)'(n — D7 = 25 (X; — X)¥(nk — 1)7],
where I; denotes the integer_s of the ith group (ie., I, = {(i — 1)k + 1,
(¢ — 1)k + 2, ---,k}) and X; denotes the mean of the observations in the 7th
group (i.e., Xi = D jer; X;i/k). The sum of squares i (8; — 8.)* is whatever
it is—a mess.

Statistical lore tells us that applying the log transformation to s’ very often
produces beneficial results. It stabilizes the variance, creates a more normal-
looking distribution, etc. A reasonable procedure might then be to jackknife log
s instead of just s. This is the procedure that is proposed and analyzed in this
paper. Specifically,

(7)

0 = logo®, 6 =logs’,
(9) 8, =nlogs — (n — 1) logs,,

¥ . =n logs® — (n — )n™" D ralogsss,
(n — 1)—1 ZLI (6; — é~)2 =n-=1) Z?—l (log sty —n Z;}nl log 32—:')2,
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where s2; is the sample variance for the (n — 1)k observations obtained by
deleting the 7th group of k observations.

For the one sample problem the statistician would use (6) with 8; and 8. given
by (9) to test or put a confidence interval on log ¢.* . For the two sample problem
the statistic

LO. — 6:) — (B — 8)l(n(n — 1)) i (o8 — .0.)°
(10) + (m(m — 1))7 X G — 0T
is used for the confidence interval or test where 6, = log ¢.? 6, = log o,?, and
20; , ,0; are based on 8, = log s.?, 8, = log s,?, respectively. For equal sample sizes
N = M (n = m and k are the same in each sample) the appropriate degrees of
freedom for (10) would be n + m — 2. The best choice for k£ would be 1, but for
large samples economy of computing time may dictate choosing a larger k. For

unequal sample sizes N M the appropriate degrees of freedom is somewhat
ambiguous just as for the two sample ¢ statistic of mean differences with unequal
variances.

3. Asymptotic distribution theory. It will be demonstrated in this section that
with the identifications (9), (6) is asymptotically normally distributed (mean 0,
variance 1) as n — 4+ . The method of proof is to show that 8. is asymptotically
normally distributed and the denominator in (6) converges in probability to -the
correct standard deviation. The extension to the asymptotic normality of (10) is
immediate.

The proof will be given for thecase k = 1(n = N). The proof for k& > 1 is
completely analogous, but the algebra is considerably messier. For simplicity the
subscript z will be dropped from s, etc., because only a single sample is involved.

A power series expansion is used to prove the asymptotic normality of 8. . The
technique is identical to that employed in [9]. For some {; between s* and s%;

(11)  logst; = logs® + sH(sE — §) 4 (S — $H)(—=¢&T0).
Thus,

b: = logs® — (n — 1)s(s% — &%) + 3(n — 1)((s& — D™,
(12) 6. =logs* — s (n — 1) D in (& — 8" + (n — 1)(2n)™

L (8 — ST

The reader can verify with a little bit of algebra that
(13) s&i—s = —nf(n — (n — 2)7[(X: — X)* — 27 20X, - D).
Consequently, Sra(si; — §*) = 0, and 8. in (12) reduces to
(14) b. = logs* + (n — 1)(2n) " 2ia((s — )5 )™

Since s is asymptotically normally distributed with mean o and variance
(us — o*)/n where us = E(X — E(X))* the variable log s’ is asymptotically
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normal with mean log ¢® and variance ((us/s*) — 1)/n. If the remainder term
in (14) multiplied by n! converges in probability to zero, then n}(8. — 6) will be
asymptotically normal with mean 0, variance (us/c*) — 1 by Slutsky’s theorem.

From (13) it is easy to show (ecf., [9], p. 1599) that the s>; are umformly close
to s* with probability tending to 1 as n — o 1e for ¢ > 0, P{|s%; — | < ¢,
i=1,...,n —>1lasn— +.Sinces ——>,,a,

(15) n*(n —1)(@n) 7 2o (82 = D)
< (n—1)GnHE 2k (8 — 8,

with probability tending to 1. K is a constant chosen arbitrarily subject to 1/¢*
< K < 4 . Again, a little algebra verifies

(16) (n — 1) 2ri(sti — )P = n¥(n — 2)7%(n — 1)t U2 — nUY,

where U; = (X; — X)®. Asn — + =, (16) converges in probability to u, — o.
Consequently, the right hand side of (15) converges in probability to zero, and
the remainder term in n'*( 6. — 9) is forced to zero.

To complete the proof that (6) has a limiting unit normal distribution, it is
necessary for the convergence

(17) (n— 1) D2 (B — 8.) =yt — 1
to hold. From the power series expansions (12)

(18) bi— b= —(n— DsXsks — &) 4+ ri— 7.,
where

(19) re = 3((n = DT (L — )%

From (18) the sample variance of the pseudo-values 8; equals
(20) (n— 1) 20y (8 —8.) = (n— 1)s* Dty (s% — &)°
— 2 (s = (e — )+ (0 — 1) 2o (e — 7).

The first term on the right hand side of (20) converges to (us — ¢*)/¢* by virtue
of (16). If D 2y (r: — 7.)*/(n — 1) —,0, then the last term in (20) vanishes,
and the cross-product term will as well by the Cauchy-Schwarz inequality.

" With probability converging to 1 as n — -+ «, the following inequality holds:

(21) (n — 1) 2iard = 3n — 1) D (s5 — )%™
< 1K maxiciga {(s5 — &) (n — 1) 2t (85 — &)

The term ma.xls.<n{(s_@ — §% converges to zero in probability, and
(n—1) Z,_l (s%; — 8" =, us — o*. Thus, both sides of (21) converge to zero.
Since’

(22) O ’7" = —1 Zt=1 ri,
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the convergence Y i (r: — 7.)?/(n — 1) —,0 is proved, and the proof is
complete.

The arguments just presented validate the approximate distribution claims
for (6) and (10) when n and m are large. These claims for small » and m are
supported by Monte Carlo results which appear in the next section.

4, Companson with alternative techniques. The classical tests and conﬁdence
intervals on variances in the one and two sample problems are based on the X
and F distributions. However, it has been known for some time that these tests
and intervals are extremely sensitive to non-normality. A good summary of the
work in this direction appears in Box [1].

To remedy this situation in the two sample problem an array of non-para-
metric tests based on ranks has accumulated in the literature. The list includes
tests proposed by (a) Lehmann, (b) Sukhatme, (¢) Mood, (d) Barton—David—
Ansari—Freund—Siegel-Tukey, (e) Klotz, and (f) Capon. The Sukhatme test
(b) requires that the medians of both samples be known and equal to zero. Tests
(¢), (d), (e), and (f) allow the medians to be unknown but require that they be
equal. For a description and discussion of these tests the reader is referred to
Klotz [7].

These tests will not be considered competitors to the jackknife because they
have difficulties inherent in their universal application. The Lehman test (a) is
not distribution-free. Tests (b) through (f) are distribution-free, but the assump-
tion of known, or at least equal, medians is unrealistic in most applications. These
tests can be modified by centering each sample at its sample median or mean.
However, the tests are then not distribution-free; they are not even distribution-
free asymptotically. Specifically, it is known that tests (b), (c), and (e) are
asymptotically distribution-free if the density function is symmetric, but are not
asymptotically distribution-free for general densities. No results have been
published on the asymptotically distribution-free character, or lack thereof, for
tests (d) and (f) when they are centered at sample medians or means.

Moses [10] has also voiced additional objections to the use of these rank tests.

A small collection of techniques that can be applied safely and universally to
variance problems is available. Attention will be focused on these as competitors
to the jackknife. Each technique will be described and discussed briefly. With
one exception they, like the jackknife, are based on approximate significance
levels. However, they are asymptotically distribution-free, and small sample
Monte Carlo experiments indicate that their small sample size significance levels
are not very sensitive to the form of the underlying distribution.

The earliest technique in this group is the Box test [1]. For the two sa.mple
problem divide each sample into subsamples of size k (k > 1). Compute log s*
for each subsample. There will be n such numbers for the X sample, m for the ¥
sample Compare these two seis of values by a two sample ¢ test for location. The
” ¢ statistic will not have exactly a ¢ distribution since log: s’ is not exactly normally
distributed, but the significance or confidénce level should be closely approximate
because of the robustness of the ¢ statistic. The choice of  rests on the shoulders
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of the statistician. The main disadvantage of the Box test is the loss of informa-
tion in subdividing the samples. A confidence interval for 0, /o. is easily con-
structed, and application of this technique in the one sample problem is straight-
forward.

The Moses test in the two sample problem is the Wilcoxon two sample rank
test applied to the values log s* (or s” since only the ranking is important) ob-
tained from the subsamples as in the Box test. This was proposed by Moses [10]
and studied in detail by Shorack [17]. These authors also consider applying rank
tests to other measures of dispersion (e.g., the range). This procedure yields an
exact significance level, but it still suffers from loss of information in the sample
subdivision. A confidence interval can be constructed graphically (see Shorack
[17]), and an analogous signed rank procedure would yield tests and intervals in
the one sample problem. ‘

The Box-Andersen test [2] adjusts the degrees of freedom for the classical F or
beta test so that the first two moments of the beta distribution agree with the
first two moments of the beta statistic under the permutation distribution. You
obtain the same adjustment in degrees of freedom if you equate the asymptotic
variance of the F statistic under normal theory to the asymptotic var-
jance of F under sampling from a distribution with general kurtosis. Spe-
cifically, the test or confidence interval is obtained by comparing the F' ratio
s,’/s,. with the upper and lower critical points from an F distribution with
d(M — 1), d(N — 1) degrees of freedom. The adjustment d is

- (23) d=[1+30b—3)]" =[1+ el
where
by = fuo™ = (N 4+ M) [ 2ia (X — X'+ 2 (Y = 7)Y
(24) SN+ M) (X - X+ (Y -0
cs = by — 3.

The quantities b, and ¢, are the sample estimates of the two commonest measures
of population kurtosis, v = pi/o* and B = (us/c*) — 3, respectively, which
involve the fourth central moment ps = E(X — E(X))*. The significance level
will not be exact because of the approximations involved, but it should be
reasonably accurate. Adaptation of the Box-Andersen technique to confidence
interval construction is virtually impossible because of the amount of tedious
calculation involved. Application of this principle to the x* distribution in the
one sample problem is immediate.

Levene [8] proposed four variations of the same technique. The Levene s test
compares the variances from two populations by treating U; = (X;: — X )2,
i=1---, N, as N independently, identically distributed observations, and
Viz= (Yi— Y)%, 4= 1,---, M, as M independently, identically distributed
observations in a two sample ¢ test for location. The Ui(V;) are not normally or
independently distributed. On the other hand, the robustness of the ¢ statistic
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protects us from nonnormality, and the correlation between U; and Uy , i 5 1,
is sufficiently small, O(N?), as to not likely cause trouble. The significance level
would, of course, be approximate. Construction of a confidence interval from an
s test would be tedious. The form of Levene’s procedure in the one sample prob-
lem is self-evident.

Levene also proposes applying the two sample ¢ test to the variables |X; — X/,
i=1,--+,N,and |Y; — ¥|,7 = 1, --- , M. This is referred to as Levene’s z
test. In the Monte Carlo studies run by Levene the z test was found to be prefer-
able (in terms of power) to the s test. However, a proof that the z test is not
asymptotically distribution-free is attached to this paper in the Appendix so the
z test will not be considered a competitor.

Other variations of Levene are to consider log (X; — X)* and |X; — X 2.
However, these transformations do not seem particularly suitable for normal or
near-normal distributions, and Levene’s Monte Carlo sampling substantiates
this. These tests are also not asymptotically distribution-free.

In addition to the jackknife the preceding list contains four adversaries: (1)
Box-Andersen, (2) Levene s, (3) Box, (4) Moses. How can they be compared?
Asymptotically, the Pitman relative efficiency is a sensible and convenient com-
parative index. For small samples the exact distributions are untractable (except
possibly in isolated cases), but the tests can be compared through Monte Carlo
sampling.

Consider the asymptotic comparisons first. The Pitman efficacies of the five
tests in the two sample problem are readily calculated. The efficacies for the
Box-Andersen, Levene s, and jackknife (any k) tests are identical and equal to

(25) AMN/(M 4+ N)(po™* — 1).

All three procedures are asymptotically equivalent; each in its own way stu-
dentizes the F test by the appropriate estimate of its asymptotic variance. This
would still hold true for the jackknife if it were applied directly to s* instead of

log §".
The efficacy for the Box test with M = mk, N = nkis
(26) 4MN/(M + N)k Var (log %)

where s;” is a sample variance based on k observations. The efficacy of the Moses
test is the same as the Wilcoxon efficacy for location applied to log s:’; namely,

(27) 12MN((M + N)k)1fe plogesr(u) dul?
= 12MN((M + N)E)[[3° vpiee(v) dol’.

The comparison of Moses (27) versus Box (26) is the same as comparing
Wilcoxon and ¢ for shift in location when the variables are log s;*. Numerical
values are presented for the asymptotic relative efficiency (ratio of the efficacies)

, of Moses to Box in Shorack [17]. The ARE’s under the assumption of X, ¥ nor-
mally distributed are close to 1 for various values of k£ with some above and some
below 1.
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Shorack also gives numerical values for the ARE of Moses versus Box-Ander-
sen (Levene s and jackknife) when X, Y are (i) normally distributed, (ii) uni-
formly distributed, and (iii) double exponentially distributed. For all three
distributions and all selected values of & the Box-Andersen (Levene s and jack-
knife) procedure is more efficient. However, Shorack conjectures that for heavier
tailed distributions such as a contaminated normal the reverse should be true.

The variance of s;” is *(2(k — 1)~ + y.k™). If k is sufficiently large for the
approximation Var (log &) = (2(k — 1)™ + 7.k™) to be accurate, then the
efficacy of the Box test is approximately

(28) 4MN/(M + N)(2k(k — 1)7" + 72).

Expression (28) is always smaller than (25) because the factor k/(k — 1) is
greater than 1, which seems to indicate that Box-Andersen (Levene s and jack-
knife) are always more asymptotically efficient than Box. However, k/(k — 1)
for k = 5 is not appreciably larger than 1. It is conceivable that the inaccuracy
of the approximation could mask some cases in which (26) is larger than (25)
although this goes against one’s intuition.

What about small samples? Two Monte Carlo studies were run on the Bur-
roughs B5500 at Stanford University. The first study compared samples of size
25 (M = 25, N = 25), and the results are exhibited in Table I. One thousand
pairs of samples of 25 pseudo-random numbers were generated in the computer.
The pseudo-random numbers represent samples from a uniform distribution.
In addition, the numbers were transformed to obtain samples from a normal
distribution, a double exponential distribution, a skew double exponential dis-
tribution with density

(29) px(x) = %_ez, z <0,
=37 >0,

and a distribution with heavy tails which vanished like a sixth power (just suffi-
cient to have a fourth moment). The density of this sixth power distribution is

(30) px(z) = 5(1 + |2])™".

After transformation the Y sample was scaled by the factor A so that the ratio
of the ¥ to X variances was A’ for each distribution. Different values of A® were
selected and applied to the same samples.

Seven tests were applied to each of the 1000 pairs of samples. The standard
normal theory F test was included as one of the seven to illustrate how terribly
" non-robust it is, and consequentially to drive one more nail into its coffin. The
Box-Andersen and Levene s tests were two of the seven. The jackknife test was
applied with subsample size k = 1 (n = m = 25) and with subsample size
k = 5(n = m = 5). Box and Moses were both used with subsample size k = 5
(n =m = 5).

The entries in Table I are the proportions of samples in 1000 trials that the



TABLE 1
Monte Carlo Power Funciions for Tests on Variances

M=N=25
a = .05 a = .01
A2 = g2/0s? 1 2 4 6 10 1 2 4 6 10

Uniform Distribution
F .007 .501 .997 1.00 1.00 .001 .127 .926 1.00 1.00
Box-Andersen .053 .794 .999 1.00 1.00 .012 .516 .982 .999 1.00
Jackknife k =1 .029 .786 1.00 1.00 1.00 .005 .498 .992 1.00 1.00
Jackknife k =5 .036 .710 .997 1.00 1.00 .009 .367 .935 .993 1.00
Levene s .041 .781 .999 1.00 1.00 .010 .485 .973  .998 1.00
Box k=35 .054 .498 .910 .978 .995 .013 .231 .681 .865 .969
Moses k=25 .040 .402 .801 920 .970 - .004 .137 -.514 .707 .874

Normal Distribution
F .060 .496 .937 .994 1.00 017 .252 .818 .966 .999
Box-Andersen .047 477 920 .982 1.00 .016 .195 .687 .895 .970
Jackknife k =1 .050 .465 .907 .963  .989 .014 .217 .767 .929 .968
Jackknife k = 5 .050 .417 .868 .950 .986 .015 .178 .586 .823 .935
Levene s .041 453 .901 974  .995 .011 .149 .639 .812 .916
Box k=25 .049 .369 .798 .935 .985 .009 .135 .479 .706 .891
Moses k=35 .035 .264 .659 .845 .946 .007 .078 .319 .503 .719

Double Exponential Distribution
F J127 494 864  .954  .995 .063 .337 .743 .899 .981
Box-Andersen .053 .315 .715 .878 .971 .012 .090 .372 .596 .800
Jackknife k =1 .069 .313 .690 .847 .950 019 .133 .470 .656 .849
Jackknife k = 5 .058 .290 .654 .803 .918 .016 .103 .373 .537 .739
Levene s .043 .282 .677 .824 .932 .008 .055 .261 .406 .565
Box k=25 .051 .266 .616 .801 .942 .010 .080 .305 .496 .712
Moses k=35 .031 .180 .474 .657 .854 .007 .040 .186 .299 .491
Skew Double Exponential Distribution
F 1770499 0809 .929  .983 .098 .346 .682 .854 .964
Box-Andersen .065 .249 .579 .733  .899 .013 .083 .271 .441 .626
Jackknife k = 1 .068 .242 579 .740 .873 .024 116 .330 .520 .705
Jackknife k =5 .072 .242 517 .691  .841 .020 .098 .268 .405 .580
Levene S .054 .214 .506 .654 .805 .008 .046 .158 .275 .388
Box k=35 .059 .210 .498 .661 .845 .011 .072 .211 .351 .549
Moses k=25 .030 .135 .368 .540 .720 .004 .032 .123 .209 .332
Sixth Power Distribution

F .218 .489 .776 .881 .952 .126 .380 .685 .813 .924
Box-Andersen .054 .223 .531 .683 .846 .010 .054 .222 .374 .553
Jackknife k = 1 .082 .269 .545 .673 .800 .023 .116 .327 .486 .637
Jackknife £k = 5 .076 .243 .506 .649 .770 .018 .088 .252 .383 .536
Levene s .038 .185 .436 .576 .708 .005 .024 .104 .195 .299
Box k=25 .048 198 .497 .665 .845 .011 .058 .217 .352 .545
Moses k=25 .030 .131 .369 .521 .719 .006 .028 .118 .213 .332

576
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tests rejected the null hypothesis o, = ¢, for the various distributions and com-
binations of A’ and « (the significance level of the test). For the A* = 1 columns
(i.e., when the null hypothesis is true) the proportions should be close to a = .05
or o = .01. For A’ > 1 the proportions are Monte Carlo estimates of the power
of the tests at the particular alternatives A’ for the various distributions.

Inspection of the table leads one to the following conclusions:

(i) The F test is extremely non-robust. Its actual significance level under the
null hypothesis is much smaller than indicated for short-tailed distributions
(uniform), and it gives far too many significant results for long-tailed distribu-
tions (double exponential, sixth power).

(ii) The Box-Andersen test and the jackknife test with £ = 1 have about the
same power, and in general they are the most powerful tests in the group. Box-
Andersen has slightly better power for « = .05 level tests while the jackknife is
slightly better for « = .01 level tests. The true significance levels of these two
tests when A’ = 1 are slightly more sensitive to the form of the distribution than
the Levene s, Box, and Moses tests.

(iii) The jackknife with k = 5 is just not as powerful as the jackknife with
k = 1, but its actual significance level tends to be close to the nominally indi-
cated level.

(iv) The Levene s test is robust, but it is not as powerful as the Box-Andersen,
jackknife, and Box tests for long-tailed distributions, particularly at significance
level « = .01.

(v) The Box test (k = 5) is robust, but its power is not as good as Box-Ander-
sen and the jackknife with k = 1. In fact, its performance is very similar to the
jackknife with & = 5. (If the choice of tests was between Box with & = 5 and the
jackknife with & = 5, one would certainly choose Box because it is easier to
compute.)

(vi), The Moses test (k = 5) lags behind the Box test (k¥ = 5) in power. It
seems to be the least powerful of all the tests.

A curiosity of the Monte Carlo sampling experiment is the observed significance
levels for the Moses test. Of all the tests the Moses test is the only one which
should have true significance levels exactly equal to a = .05 or @ = .01 for all
distributions. Yet the observed levels range from .03 to .04 for « = .05 and .004
t0 .007 for « = .01. The discrepancies are not quite as large as indicated because
the true o’s corresponding to the critical points used in the test were .0476 and
.0079 due to the discreteness of the distribution. The binomial sampling standard
errors at these points are [(.0476)(.9524)/ 1000]* = .0067 and [(.0079)(.9921)/
1000]* = .0028. In view of the size of these standard errors one would have ex-
pected the observed o’s to be somewhat closer to their true values.

The F test should also have had exact levels under the null hypothesis for the
normal distribution. In this case the levels are high, .06 and .017. One can only
conclude either that these discrepancies are purely an accidental phenomenon
of the Monte Carlo sampling or that the pseudo-random numbers are not as
random as they are purported to be.
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A second Monte Carlo study identical to the first except that the sample sizes
were reduced to M = N = 10 was also run on the computer. One thousand pairs
of samples based on pseudo-random numbers were again selected. The sequence
of pseudo-random numbers did not overlap with the sequence used in the first
study. The same distributions were sampled, and the same values for & and A’
were selected.

The Box and Moses tests were not applied to the samples because of the small
sample size. The jackknife with subsample size k > 1 was not tried for the same

TABLE II

Monte Carlo Power Functions for Tests on Variances
M=N=10 .

A2 = g2/a5? 1 2 4 6 10 1 2 4 6 10

Uniform Distribution

F .017 .181 .686 .912 .986 .002 .036 .268 .607 .907
Box-Andersen .077 .364 .784 .904 .973 .016 .135 .431 .626 .819
Jackknife & =1 .036 .281 .785 .914 .983 .008 .106 .458 .725 .903
Levene s .052 .361 .765 .886 .952 .011 .118 .395 .535 .661

Normal Distribution

F .063 .259 .633 .827 .947 .018 .092 .347 .562 .818
Box-Andersen .075 .256 .586 .771 .906 .013 .077 .253 .383 .589
Jackknife & = 1 .062 .219 .550 .745 .885 018 .090 .274 .462 .690
Levene s .050 .232 .519 .693 .828 .008 .048 .157 .242 .336

Double Exponential Distribution

F 125 .324 598 .746 .891 .063 .173 .397 .549 .742
Box-Andersen 077 199 .431 .595 .778 .018 .056 .154 .249 .391
Jackknife k& =1 .074 .205 .415 .562 .716 .026 .084 .205 .302 .470
Levene s .045 .168 .335 .448 .580 .005 .030 .068 .113 .169

Skew Double Exponential Distribution

F : 173 343 .595 .727 .850 .094 211 .409 .551 .721
Box-Andersen .093 .203 .370 .503 .655 .021 .062 .144 .211 .331
Jackknife k& =1 .085 .194 .353 .472 .610 .036 .082 .176 .256 .376
Levene s .067 .144 .268 .350 .465 .007 .025 .043 .062 .091

Sixth Power Distribution

F 195 .373 .580 .696 .825 .104 .238 .421 .536 .696
Box-Andersen .076 .191 .368 .480 .640 .019 .045 .122 .186 .295
" Jackknife k£ = 1 .099 .202 .365 .478 .614 .029 .082 .168 .249 .368

Levene s 044 135 .254 .339 .432 .003 .015 .048 .069 .109
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reason. The tests that were applied are the F test, Box-Andersen, the jackknife
with £ = 1, and the Levene s test.

The results of the second study are exhibited in Table II. The conclusions one
can draw from the table are very similar to those reached in the first study.

(i) The F test is extremely non-robust.

(ii) Box-Andersen and the jackknife (k = 1) are about equally powerful with
Box-Andersen slightly better at @ = .05 and the jackknife slightly better at
a = .01.

(iii) The observed significance levels under the null hypothesis for the jack-
knife and Box-Andersen are more sensitive to the form of the distribution than
in the case of the larger sample sizes.

(iv)' The Levene s test is quite robust, but it lags far behind the jackknife and
Box-Andersen in power.

6. Discussion. The problem of testing equality of variances has now been added
to the list of problems in which the jackknife proves to be a robust and powerful
statistical tool. Previously recorded instances of other such problems were cited
in the introduction.

In general, the jackknife seems to work well if it works at all. The basic in-
gredient which appears necessary for the jackknife’s success is for the unmodified
estimator (X , ..., Xy) to be asymptotically locally linear in each observation
or some convenient function of each observation. By ‘“asymptotically locally
linear” it is meant that # can be expanded in a power series for each observation
X; where (a) the second and higher order terms are negligible and (b) the first
order term is linear in the observation X; or some nice, simple function of X;
(viz., X in this paper). Tukey more or less conjectured this at the outset.

When 6 has this property, the jackknife estimator §. can be conveniently
expanded in a power series in order to apply large sample theory in establishing
asymptotic normality with the correct mean and variance. The linear quality of
6 will impart asymptotic normality to it, and this normality is preserved under
jackknifing. As yet no example has been given in which § is not asymptotically
normally distributed but 8. is. It would seem that normality can only be pre-
served, and not created, by jackknifing.

As a technique for testing variances, the jackknife fares well in comparison
with the other available procedures. For small samples (¥, M = 15, say) the
jackknife (k = 1) and Box-Andersen are the best choices, and they are about
equally powerful. Box and Moses do not seem feasible in this sample range be-
cause either the size of the subsample or the number of subsamples would have
to be very small. Levene s is available and is easy to use. However, it lacks the
power of Box-Andersen and the jackknife.

Even for larger samples there does not seem to be any technique more power-
ful than Box-Andersen or the jackknife (¥ = 1) although Levene s and the jack-
knife’(k > 1) are asymptotically equivalent to-them. However, as the sample
size increases, the amount of computation involved in Box-Andersen or the
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jackknife (¢ = 1) becomes enormous. If an electronic digital computer is avail-
able, there is no problem, but it would be extremely time-consuming to use them
with hand computation. Box and Moses require far less computation and are not
agging far behind in power. When using these tests there is no escape from the
worry that the inference may depend upon the particular grouping into sub-
samples, but for large samples (N, M = 25) this should be a rather small worry.
The jackknife with £ > 1 could be employed, but Box or Moses should be almost
as powerful, easier to use, and more easily explained to the client. Levene s is
also available, and may be the most convenient to use.

The jackknife, Box, and Moses easily provide confidence intervals whereas
Box-Andersen and Levene s do not.

6. Appendix: Levene z test. In the one sample problem the Levene z test treats
the variables Z; = [X; — X|, ¢ = 1, ---, N, as independently, identically dis-
tributed random variables. A proof will be given that the variance of Z =
> ¥ 1 Z/N is not estimated correctly by D_1— (Z; — Z)?/N(N — 1). The argu-
ment extends immediately to the two sample problem.

Assume the observations come from a continuous distribution with E(X) = 0.

The proof is based on the following representation of 3, Z; which the reader
can verify with a little thought. For X > 0

(31) ley=l le - XI = ZO(Z,‘ Xi - Zzi<0 X'i -2 Zo<z,'<i Xi
+ X(Na;i<i - Nz,'>i)’

where N..<s(Ne;>:) is the number of X less (greater) than X. The analogous
representation for X < 0 is

(32) X —X| = Zoai X;: — Za:;<0 X:+ 2 Zi<zi<0 X:
+ X(Nocze — Naise).
These two representations can be combined into one expression for Z:
(33) Z=N"2V,|X|+2N" Zi’<z,~<0, o<zi<t Xi
+ X(Nsi<s/N — No5e/N).
The pair (N7 D3 [X4, N7 D-3. X)) has a limiting bivariate normal dis-
tribution with means E|X| and 0, respectively, and with variances-covariances:
given by
Var (N7 2214 |X3]) = NBE(X?) — (BIX])",
(34) Var (N7 2% X)) = NTE(XP),
Cov (N7 20 X, N7 22 Xo) = N'E(X" sgn X)),
where sgn X denotes the sign of X. Since X —, 0, the normalized middle term

(35) 42N~} Zi<x;<0. 0<ai<i Xi —p 0.



JACKKNIFING VARIANCES 581

The fractions N,,<;/N and N, ;/N converge in probability to P{X < 0} and
P{X > 0}, respectively. Combining these convergences via Slutsky’s theorem
proves that Z has a limiting normal distribution with mean E|X| and variance

(36) NTE(X") — (E|X|)" + B(X")(P{X < 0} — P{X > 0})"
+ 2E(X* sgn X)(P{X < 0} — P{X > 0})].
If 2% (Z: — Z2)*/(N — 1) is written as
(37) (N —17 2 (Xs— X)* = NN — )TN 2L X = XD,
then it is easily seen that this converges in probability (and a.s.) to
(38) E(X") — (E|X|)*

The convergence of the first factor is immediate, and the second follows from the
representation (33).

Comparison of expression (38) with expression (36) without the N™' factor
reveals that the two will not be the same in general. Thus, the z test is not
asymptotically distribution-free.

The z test will be asymptotically distribution-free if the distribution is sym-
metric or at least has its median equal to its mean. The factor P{X < 0} —
P{X > 0} will be zero in this case, and (36) and (38) will agree.

If the reader were to carry through an argument essentially identical to the
above, he would be able to verify that the 2 test is asymptotically distribution-
free if the sample is centered at its median instead of its mean. That is, the ran-
dom variables Z; = |X; — m|,% = 1,---, N, can be treated as independently,
identically distributed from an asymptotic point of view. The variable m is the
sample median.

The difference between this and the original 2z test is that the term
N..<i — N,;>:, which causes all the trouble, is replaced by Nzj<n — Nayom,
which is zero.

This modified z test was not included in the paper partly because this property
of the z test was not discovered till all of the other work in the paper had been
completed, partly because dispersion about a median is not a variance, and partly
because means are easier to work with on computers.

If the observations come from a non-continuous distribution, then expressions
(31), (32) have to be modified to account for the possibility X; = X, and the
asymptotic distribution theory becomes more complicated.
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