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SMOOTHED ESTIMATES FOR MULTINOMIAL CELL PROBABILITIES!

By James M. Dickey?

Yale University

1. Summary. Whittle’s (1957), (1958) smoothed probability-mass-function
estimate, determined by a Bayesian criterion, depends on a choice of the mean
and covariance structure of a prior distribution on the unknown probabilities.
A data-analytic choice is proposed (Equations (7) and (8)), based on natural
stationarity assumptions (Equations (4)). Adaptations and modifications for
multidimensional cells are given (Section 4) and some alternatives are men-
tioned (Section 5). :

2. Preliminaries. Denote by X a generic cell of a sampled multinomial dis-
tribution with unknown cell probabilities px . Although finite, the range of X is
here considered to be large, a subset of a finite dimensional real normed space, the
cells X and Y being “close” if | X — Y| is small.

Consider the problem of estimating px from the cell counts n,( 2 n, = n.,
n. fixed, say). The naive cell-frequency estimate px = nx/n., may be too “rough,”
in the sense of a prior prejudice that px approximately equals px.z for small
increments Z in X. For example, the cells X may be located at the midpoints of
grouping intervals, with the probabilities px integrals of an underlying smooth
density function. A strict Bayesian estimate, px = (nx + ax)/(n. + «.), the
posterior mean resulting from a Dirichlet prior distribution on the px’s with
parameters ax (Wilks (1962)), is little better, merely expressing a prior prej-
udice against extreme values of px and giving no recognition to proximity. Un-
fortunately, the Dirichlet and closely related distributions (Carlson (1963)) are
the only known distributions on the simplex of probabilities px for which the
posterior mean, a ratio of high-order mixed moments, can be computed in

practice.
Whittle (1957), (1958) has proposed the smoothed estimate,
(1) Pxr = 2y wx(Y)ny/n.,

based on weights wx(Y) chosen to minimize the prior expectation of the squared
error E(px — px)’, where E indicates overall expectation under a prior distribu-
tion on the vector of unknown probabilities px , and where the weights wx(Y)
are allowed to depend on n. . Whittle’s criterion leads immediately to his system
of linear equations for wx(Y),

(2) >z (E(ny/n)nz/n)wx(Z) = Epzpy,
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where, according to an easy calculation,
(3) E(ny/n)nz/n. = (1 — 0.7 )Epypz + n. 8y, 2Epy ,

byz=1ifY =2Z and0,if ¥ = Z.

Thus, the optimal weights wx(Y) are determined by the sample size and the
first and second order moments of the prior distribution of the cell probabilities.
For increasingly large samples, the optimal smoothed estimate Py is easily seen
by (2) and (3) to approach the appropriate cell frequency: as n. — o, wx(Y)
— 8x,v . By straightforward matrix manipulations, wx(Y)Epx = wy(X)Epy.
Equations (2) and (3) combined in various ways lead to Whittle’s expressions
for the optimal mean squared error,

Epfr — ZY 'wx(Y)EPpr
= n. [wx(X)Eps — 2 vy wx(Y)Epxpy]
= (n. — 1) [wx(X)Epx — Ep}l.

Expressions for the sampling and overall bias and variance are also easily ob-
tained.

Whittle appears not to have asked whether his estimates px are mathematically
probabilities, that is, are nonnegative and sum to unity. Leonard J. Savage has
pointed out privately that D pz = 1 (equivalently, Y .x we(Y) = 1). Since,
if not, for the other such estimates, fx = px — p. + 1/C (equivalently,
wx(Y)= wx(Y) — w.(Y) + 1/C), where C denotes the total number of cells,

2 (Bx — px)* = 2 (B — px)* — C(P. — 1/C)’,

for every realization. Minimization of E Y, (fx — px)” is equivalent to mini-
mization of each E(px — px)>

The weights wx(Y'), and hence the estimates px , are not necessarily nonnega-
tive. For example, with C = 4, if (uo, %1, U2, us) is Dirichlet distributed with
parameters identically %, and px = 2y @x_riuy with (a0, a1, a2, a3) = (4, 1,
0, 1) (the index [X — Y] of a(z_y; interpreted modulo 4), and if n. = 17, then
the matrix of weights is circulant with first row (29, 12, — 5, 12)/48. In this
example, negative weights arise for n. large (such as 17), for which cases, nega-
tive estimates px are rare. In the event of negative estimates px , replacement of
the offending values by zero and renormalization by division is recommended.

Whittle’s criterion has met with less than universal acceptance in practice,
partly because of the necessity of choosing whole functions Epypz and Epy of
Y and Z. The following weak-stationarity conditions, submitted as a realistic
approximate description of many prior opinions, serve to meet this objection.

Assume forall X, Y, Z,

(4a) Epx = Epy = (7,
"(4b) Epxpy = Epxizpriz = f(X — Y) = f(¥ — X).

This translation invariance of the first two moments is impossible without in-

Il
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variance under cyclic translations, that is, periodicity. For example, if one-
dimensional X = 0, 1,2, ---,C — 1, then Epxpy = Epx+z1 Piv+z1 , where [X]
is X modulo C, and hence Epxpy = f(|X — Y|) = f(|X — Y = C|), the entries
of a symmetric circulant matrix. As a proof, note that for X of any dimension,

(5) > v Epxpy = Epx = C,
constant in X, implying, for X and X + Z in the body B of cells considered,
2 voves Epxpy = Qv vizes Bpxiapriz,
the left- and right-hand members of which equal, respectively,
(X v.ven.vezen + 2ov,ven,vezen) EDxpy
and
(X vovszen,ves + 2ov.vizen,ven) Bpxeabraz ;
then by (4b),
Epxp(Bz) = pr+zp(B-§);
where
B; ={Y:YeB, Y+ ZgBj},
By ={Y+ Z:Ye¢B,Y + ZeB}.

For C large, these end effects are negligible, except to estimates px for cells X
near the boundary of B (which could be much of B in high dimensions).

By Equations (3) and (2), the functions Engny/n? and wx(Y) have similar
invariance and periodicity properties,

(6) E(ng/n)ny/n. = g(X = Y) = g(Y — X),
and
we(Y) = (X —-Y) = (Y — X).

The known closed-form inverse of a circulant matrix is of interest for
the one-dimensional case. If A has first row (@, @1, - , @c-1), then the
X, Yth entry of A7 is €254 A texp[Z(Y — X)2xi/Cl, where A =
38 i ac_w exp [WZ2xi/C] (see Marcus and Minc (1964), page 66).

3. A procedure. Notice, from Equation (3), in the notation of (4b) and (6),
(7) f(X=Y) =n(n —1)7gX —Y) — (n. — 1)7x,¢/C.

Suggestion. Estimate g from the data, a previous sample or even the object of
the smoothing,

(8) §(Z) = C(2)" Xx(nx/n.)nxiz/n.,
where C(Z) indicates the number of ells X for which there exists the cell X + Z.
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(Use the periodicity properties of g to determine §(Z) for C(Z) small.) Choose
the function Epxpy = f(X — Y) related to g = § by (7).
The use of (8) is, of course, recommended for the points X regularly spaced.
One might wish to choose g as a function fitted to §, the smoothness of § helping
to indicate its precision as an estimate. The overall mean and variance of §(Z)
can be written,

E§(Z) = 9(Z)

and
Var §(Z) = Var[E(§(Z)|pr's)] + E[Var (§(Z)|py's)],
where .
E(§(Z) ,pY's) = (C(Z))_IZX (1 —"n.—l)pxpx_,_z + n--lax,x+sz]
and

Var (§(Z) | pr's) = (C(Z))2(1 — n. 7. [— (4n. — 6)( XL xpxprsz)’
+ (2. — 4) D xPxPxiabxi2z + (n. — 2) 2 x(PxPx+z + DxPxiz)
+ D x(1 + 8x.x42)PxPx+2]-

The concept of choosing moments of the prior distribution of the cell prob-
abilities on the basis of a single set of observed cell counts could be viewed as an
extension of the concept of an empirical Bayes procedure (Robbins (1964)). An
empirical Bayes procedure is based on measurements of ¢ndependent random
variables having the sought prior distribution. The proposed choice of the mean
f(Z) for the prior distribution of pxpxzis based on the measurements (nyny,z)/
n.2 of the mean-stationary sequence of random variables pypy.z -

4. Multidimensional cells. In many applications, for example, classification
problems, the multidimensionality of the cells X precludes any simple structure
in the system (2) for the weights wx(Y). Even a purely numerical solution could
easily be ruled out by an astonomical number of cells. We are led by the follow-
ing additional symmetry condition on the prior distribution of the px’s to a
smaller, more usefully structured system. Reference is made to a given con-
venient norm ||X||; for example, | X||* may be the usual sum of squared co-
ordinates. The question of choosing a norm is a difficult one, essentially equiv-
alent to choosing a joint transformation of variables.

Assume invariance of the prior second-order moment function f (and hence g)
under “rotations” R. Namely, |[RX| = | X]||, for all X, implies

(9) f(RX) = f(X), forall X.
The conditions (9) and (4a) yield
Epwr = H(IX = YI),  E(nz/n)ny/n."= gi(|X — Y],

and by (2)
wx(¥) = (X — Y1),
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all constant, in ¥, on “shells” Ox,,,
Ox, = {Y: | X — Y|| = o},
Ox,o = X.

Consequently, each shell Ox,, centered at X can be treated as a single cell, and
the optimal weights wx(0x,,) = hi(p) satisfy a system of the form (2) — (3)
with Epy and Epyp; replaced by

w(p) = Ep(0x,),
and

#(p, P') = Ep(0x,,) 'I)(Ox,,,')-

It may be helpful in practice to group values of the radius p, say according to
convenient intervals of its square o* = | X — Y|

The second-order prior moments ¢(p, p’) for the new cells could, in theory, be
chosen by a version of (7) from the statistics,

’V(P, P,) = C—lzx noX.pnox.p’/n’z‘

But, for any particular arguments, 9(p, p’) could easily require the summation
of an astronomical number C of terms. Any particular value of the previous
version §(Z) (8) required a summation of at most n. nonzero terms. To obtain
a computationally feasible procedure, we consider a modification of the criterion
of minimum mean squared error E(px — px)?, leading again to summations of
at most n. nonzero terms.

Mobiriep CrITERION. Let X be a random vector distributed according to the
unknown distribution px . Now, determine the weights w, under the constraint,
wx(0x,,) = hi(p) independent of X, to minimize the overall expectation of the
squared error of Pz,

E(pz — p2)’ = E2_ px(Px — px)™.

Then the optimal weights h;1(p) satisfy a system of the form (2) — (3) with
Epy and Epypz replaced by

a(p) = Ep(0z,) = Zx Epxp(0x,,),
and
#(p, p') = Ep(0z,)p(0z,,)
= ZX prp(OX.p)p(OX.p')-

Unbiased estimates of these prior moments are easily computed by correcting
for bias in the analogous sums of products of cell frequencies,

i(p) = n.(n. — 1) D x nxnog,/n’ — (n. — 1) 7%,
8(p, p) = n.(n. — 1) 7'n(n. — 2)7' D xmxnog Moy, />
— (n. — 2)780,i(p") + d0,0hi(p) + 8,.ii(p)]
+ 3(n. — 1) (n. —2) 80,0, .
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For applications to practical classification problems, see the forthcoming paper,
Dickey (1967).

b. Alternatives. A related criterion for choosing the weights w would be to
minimize a chi-squared-like weighted sum of squares D, a.(px — nx/n.)’ under
some constraint such as wx(Y) = h(X — Y) = (Y — X). This criterion leads
to a system analogous to (2) with Engny/n.’ and Epxpy replaced by §-like
quantities.

Whittle’s smoothed estimate of a density function p(x),

a Stieltjes integral with respect to the empirical distribution F,., has weight
function w satisfying an integral equation analogous to the system (2). A proce-
dure to choose the required prior second moments Ep(z)p(y) can be developed
from the suggested procedure for cells X, located, say, at the midpoints of inter-
vals (z — ¢, z]. Since,

Elp(z) — p(z — )llp(y) — p(y — )] = (8°/3z dy) Epxpv,

in case z is one-dimensional.
Other estimates of multinomial cell probabilities are based on special struc-
tural assumptions: Birch (1963); Bahadur (1961); Cornfield (1967).

Acknowledgment. I am grateful to Leonard J. Savage, Frederick Mosteller,
Richard A. Olshen, and a referee for their help.

Note Appep 1N Proor. D. V. Lindley (J. Roy. Statist. Soc. Ser. B 24 286)
in his discussion of a paper by C. M. Stein, G. E. P. Box and D. R. Cox (same
journal 26 218), and others have also proposed prior distributions based on
peeking at the data. The methods of this paper will be generalized and ex-
tended to other smoothing problems in a later note.
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