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A RANDOM TIME CHANGE RELATING SEMI-MARKOV
AND MARKOV PROCESSES!

By JaMES YACKEL

Purdue University

Abstract. We investigate the question of when a semi-Markov process is trans-
formed by a random time change into a Markov process.

1. Introduction. In [2] Lévy asserts that every semi-Markov process is related
to a Markov process in such a way that the sample functions of the Markov
process are a suitable modification of the sample functions of the semi-Markov
process. We study this relationship by defining a random time change, 7( - , w),
for each w a function from the parameter space, the reals, into the reals. 7(- , -)
is defined in such a way that the sample functions of the semi-Markov process
are transformed into sample functions of a Markov process. Our results are
quite general if the process has no instantaneous states. Otherwise we require a
restrictive measurability condition which will be explicitly stated in the next
section.

Lévy refers to this relationship by saying the two processes have the same suc-
cession of states. We now define that concept.

Derintrion 1.1. Two processes {U,,t = 0} and {V,, ¢ = 0} which are defined
on the same probability space (22, B, P) will be said to have the same succession
of states if there is a monotone non-decreasing continuous function of ¢, 7(¢, ),
defined for all ¢ and almost all w, such that for all ¢, U,,«)(w) = V(w) for those
w for which (¢, w) is defined and such that 7 is unbounded as ¢ becomes infinite.

As it is assumed that (2, B, P) remains fixed, an immediate consequence, is
that U, (w) and V,(w) will have the same finite dimensional distributions.
For example, even if {U,, ¢ = 0} and {V,, ¢ = 0} can both be realized on the
space of right continuous functions from [0, « ) to the appropriate phase space
the transformation 7(- , -) will be the identity transformation only if U and V
have the same finite dimensional distributions.

2. Specifaction of the process and preliminaries. Let {X;,{ > 0} be a separa-
ble, Borel measurable process with a denumerable phase space denoted by I, a
set of positive integers. Define.

Vi(w) = tif Xy (0) = Xi(w) forall 0 =s =t
=1 —sup {s:0 = s = ¢, Xo(w) # Xw)} otherwise.

Drrinrrion 2.1, If the two dimensional process {(X,, Y,), ¢ = 0} is a Markov
process having the strong Markov property and strong stationary transition
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probabilities then { X, , ¢ = 0} will be called a semi-Markov process. (See [3, Chap-
ter 12] for a discussion of these concepts.)

We will assume the sample functions satisfy lim inf as s — X, = X,.

In terms of the transition probability p.(7, y; S), which denotes a version of
the conditional probability P[(X 1y, Vi) e S| (Xu, Yu) = (2, y)], we define
for each 7 &I a measure on the events in the ¢-field generated by {(X., Y.),
¢ = 0}. This measure determined by p . (3, 0; -) will be written P,[-].

Consider next the random variable

W,=inf{sts=2 ¢, X, #X} if X,=X,, 0=5u=i

=inf {sis =2 ¢, X, # X} — sup {s:s = ¢, X, # X} otherwise.
Then let F,(t) = Pl[Wo é t] for)each rel.

This allows us to classify the set I according to the limit from the right at
zero of F; for ¢ ¢ I. Call this limit a, . Then

(i) if a; = 0 we say that 7 is a stable state,

(ii) if @; = 1 we say that ¢ is instantaneous.

In general, we may have 0 < a; < 1 or Fy(+ «) < 1 for some states ¢ but
since these generalizations cause technical difficulties without adding clarity to
the results we will not consider them here.

Let J denote the set of stable states. Then I—J is the set of instantaneous
states. We assume J # (J since a semi-Markov process with only instantaneous

states is already a Markov process according to our definition.
We now define the entrance times for each j ¢ J. The first entrance to state j

6(j,1) = = if {t:t=20,X,=7=g.
= inf {t:t 2 0, (X,, Y,) = (J, 0)} otherwise.
The kth entrance to state j is successively defined by
6(j, k) = iffteeo >t> 005,k —1),(X.,Y) =(,0)} = .
inf {t:t > 6(5,k — 1), (X, Y:) = (4, 0)} otherwise.

For each finite valued entrance time 6(j, k) there corresponds a finite exit time
since F;(+ ) = 1. Call this exit time

A(j, k) = inf {t:t > 6(j, k), X. # 7}.
ThenforjeJ andk =1,2, .-
[0(4,k) £ t1eB{(X,,Y,),0 =s =1,

(B denotes the field of measurable sets generated by the random variables listed
between the braces)

[A(G, k) =] e B{(X,, Y,),0 =5 = 4,

so that 0 and A are Markov times for the strong Markov process (X., V), c.f.
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[3], page 582. Then, if j ¢ J, we denote
N(j,t) = sup |0, {k:6(j, k) = 1]

and observe that P[N(j,t) < ] = 1forallt = 0 by the strong Markov prop-
erty, right lower semi-continuity, and the fact that {0k, k):k =1,2, ---} is
a renewal process.

Finally, if the process X, has instantaneous states we require an additional
measurability condition.

ConbpiTioN A. The two dimensional Markov -process {(X., Y,).t = 0} is a
strong Markov process with respect to the family of Borel fields

F, = B{Xu;uét;zj.k7k = N@G, 1), 5¢ed}.

The definition of the random variables Z; , appears in the next section. This
condition is discussed in Section 5 where it is used.

3. Definition of the random time change. In general the triple (2, B, P) on
which {X,, ¢ = 0} is defined need not support the following constructions. How-
ever, one can easily enlarge the space and define an equivalent process on this
enlarged space so that the new space will support this construction. We thus as-
sume that our process is already defined on such a sufficient space.

Define for each jeJ a sequence of independent random variables {Z;},
k=12, ---,so that they are all mutually independent and mutually inde-
pendent of the semi-Markov process {X,,¢ = 0}. For eachj e J let Z; ., k=1,
2, ---, be identically distributed negative exponential

PlZjx > t] = exp (—Ajt)

where ();)”" is a median of the distribution F; .
Next we define

V(s, ) = Zegwy vxean/Ws(w) if 0 < W) < =, X(s,w)ed,
—1 | it X(s, w)el — J,
=0 otherwise.

ProposiTION 3.1. (s, w) is a measurable function of (s, w) on the product space
T x Q with respect to the product field generated by the Lebesgue sets on T and by
B on Q. ‘

The proof of this proposition is routine and will be omitted.

DerinirioN 3.1. For almost all w write 7(¢, w) = inf {s:f}’; Y(v, w)dv = t}.

DEFINITION, 3.2. We let Xo(.m(w) = X/ (o).

PROPOSITION 3.2. 7 is a measurable function of the pair (1, »).

The proof of this proposition is omitted. However several comments about

7 will aid to its understanding:

(i) r is a monotone non-decreasing function of ¢ for a.a. w. Note that ¥ = 0

almost surely.
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(ii) ¥ remains constant on intervals of constancy of X, thus 7 varies linearly
on such an interval and the interval of constancy of X, has length determined
by the appropriate random variable Z.

4. X and X’ have the same succession of states. Here and in what follows
primed symbols such as 6", N, ete. will be defined in terms of the X’ process
exactly as the unprimed symbols were defined in terms of X.

TrrorEM 4.1. {X/, t = O} is a measurable process. {X,, t = 0} and {X/,
t = 0} have the same succession of states.

Proor. The first assertion follows from Proposition 3.2 and our assumption
that {X,,t = 0} is Borel measurable.

In view of the remarks at the end of Section 3, concerning the properties of
7, we need only show that the total time spent by X in a succession of states
determined by {X., ¢ £ M} is a.s. finite. Since ¥(s, w) = 1 for X,(w) in an in-
stantaneous state we need only compare times spent by X’ and X in the stable
states.

This latter question can be answered by consideration of an increasing sequence
{a(n)} of entrance times of X, .

Let U, = min (Wam, 1) and form Z, = 2 py{Us — E{Us| Waw, -+ -,
Wag—n}}. {Za} is a convergent martingale, see [1], page 323. Thus > o Uy con-
verges or diverges with D 1 E{Ux| Waw , -+, Waw_n} but this is almost
surely equal to D e E {Ui | Xaw) (a(k) is a Markov time for the process)
which converges or diverges according to Z}:__l )\}:( & Which in turn implies the
convergence or divergence of the associated sequence of exponential random
variables. This assures a finite duration of the X’ process in any succession of
finite duration for the X process.

The X’ process may have a finite life, i.e., the sample functions may not be
defined beyond some point, say {(w).

6. The main theorem. In view of existing literature on random time changes
for Markov processes some comments are in order regarding our method of proof.
We do not use existing theorems or techniques because they all require that for
fixed ¢, 7(t, -) be an optional random variable and our time change fails this
condition in its dependence on W, . Our attack will be to use the random times
at which 7 is an optional random variable to get a generous supply of times for
which the Markov property holds for the X' process. Then we use the exponen-
tial distributions to complete the argument.

We say a random variable T is an optional random variable if for all { = 0,
{T <t} ¢eB{X,,s < t}. The field of events A such that A e Band A n [T < t] ¢
B{X,, s < t} is denoted by B{X,, s < T}. With a strict inequality above we
call this the pre-T field and with a reversed strict inequality it is called the post-
T field.

» ProposiTION 5.1. The optional random variables 6'(A") have the property that
the pre-6' (pre-A") and post-6" (post-A") fields are conditionally independent given
B{X4} (B{X4}).
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Proor. Let i ¢ J and k be fixed in the following discussion: Denote by

B, = B{X.,u < 0'(4,k)} the pre-0'(s, k) field,
B = B{X., u > 6'(4, k)} the post-6'(4, k) field,
Zy =B{Zj.,n < N(j, 003, k) — 8:,;5¢€J},

Z, =B{Zjn,n>N(j00,k) —8i;,jed},
B, = B{B{X.,u < 0(3, k)}, Z4},

B, = B{B{X.,u > 0(i, k)}, Zy},

F B{Xﬂ(i,k)} .

By our assumption, Xg¢y = [lim/s | (i ,k)]X, = ¢ for a stable state. Hence
F is degenerate. Note that 7(6'(7, k), -) a.s.

The strong Markov property at time 6(, k) implies B{X,, , w > 6(4, k)} and
B{X., u < 6(4, k)} are independent, (conditionally independent given F).
B{X.,u > 6(3, k)} is conditionally independent of Z; given F by virtue of the
strong Markov property at (4, k) and the independence of the Z;; and the X,
process.

Z, and Z; are conditionally independent owing to the independence of the
Zjn and the strong Markov property for 6(%, k). Similarly Z, and B{X,, u <
0(%, k)} are conditionally independent.

Now B{X., u > 0(%, k)} and B, are conditionally independent given F since
ifAeB{Xu,u>00,k)},BeB{X,,u <0 k)andC = [Z;,eM]lnn £
N(j, 0(1, k))] then

PAnBnC|F|l =PAnBnln = N, 604, k)| FIP[Z;. e M) as.
and
Bnln = N(j, 003, k)] e B{Xu, u < 003, k)}
so that this becomes
PlA | FIP[Bn{m = N(j, 6(3, k))} | FIP|Z; . M] a.s.

Finally, using the independence of the Z’s we can write this P[4 | FIP[B n
C| F] as.

Now by repeating the above argument with an additional factor for a generat-
ing set from Z, the conditional independence follows since it is sufficient to show
the independence for sets which generate the fields.

This is shghtly stronger than the statement of the Proposition for 0 smce
B1 C B, and By’ C B, . The assertion concerning A’ is proved similarly, B{X 4.}

is not trivial in this case but that does not complicate the proof. Note that
#(A'(4, k), -) = A(4, k) a.s. Our proof uses now the strong Markov property at.
A(%, k). The details are omitted.
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ProrosITION 5.2. If ¢ € J then for t > s,
PIX/ = j| X, u <5 = PIX/ = j| X)) = d]

for almost all w & [ X, = 7).

Proor. Assume WLOG we have a regular version of P[- | X.), u £ s, ie.,
we assume the conditional probability has the properties of a measure for almost
all w, c.f. [1], page 31.

We write

Pl- | X, u<s; X =1]
to denote the value of P[- | X, u £ slforaa. we [X, = 4]. Consider then
PIX/ = j| X/, ussX =1
= S PX/) =, NGy s) = k| X, u < 8 X = 4]
which equals, by Proposition 5.1,
oo [EPIX s = j| XarawIPIA'(5, k) £ dv, N'(4, 5)
1) =k|X,ussX =40, LiaPIAGE) >t N3G s)
=kl X uss X =1
where
8;,; =0 if 77,
=1 if ¢=4.

Now by the exponential form of the distribution of Z;,, which determines the
value of A'(4, k) — 6'(, k)

PIA' (i, k) edo, N'(4,8) = k| X, u < ;X = 1]
= PIA'(i, k) edv, N'(G, s) = k| X, 6, k) = u = s X, = 4]
=\ N dy = PIA'(G, k) edv, N'(G, 8) = k| X, = 1]

with all equalities holding almost surely.
Thus (1) becomes

e [ PIXi = j | XaawlPIA' (6, k) edo, N'(4, 8) = k[ X. = 1]
b0 oo PIAGL k) > t, N'(4,5) = k| X,

7]
which is equal to
e PIX, =j,N(i,s) =k| X/ =1 =PX/ = il X/ =ilas.

This proves Proposition 5.2.
TuroreM 5.1. {X/, t = 0} is a Markov process.
In the case that J = I the proof follows from Proposition 5.2. If the semi-
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Markov process has instantaneous states then our methods thus far do not suffice.
Note that for fixed ¢, on the set [X; = 7], for an instantaneous state 7, ¥, = 0 a.s.
and the Markov property holds for the X process. This need not carry over to
the X’ process however since in general [X,” = ] cannot be described in terms of
an optional random variable so that the strong Markov property cannot be ap-
plied here. Our Condition A (see Section 2) allows us to handle this case.

Clearly F,  F,fors < tand P[X, = j|F] = P[X, = 7| X,, Y| a.s.
Since X, is independent of the Z’s and the Markov property of {(X., Y.),
t = 0} applies, hence with no assumptions required (X., Y.) has the Markov
property with respect to the larger family of fields, {F,, ¢ = 0}.

We now have however that [X.;,h» = 4, 7(s, -) < u] ¢ F, for instantaneous
states 7 and the Condition A asks for the strong Markov property to hold here
so that this condition gives us a larger class of Markov times.

We now state the final result needed to complete Theorem 5.1.

ProrosiTioN 5.3. Assume the process satisfies Condition A and let ¢ be an in-
stantaneous state

FeB{X.), u < s},
then /
PlXiy =4, T|X,/ =i =PX/ =j|X/ =dP[r| X, =1l
Proor. Define
w) = 7(s, w) U Xiwlew) =1,
= inf {6(j5, k) > (s, w) for jeJ fixed} otherwise.
n(w) is an optional random variable with respect to the fields F, defined in Con-
dition A since
[h £t] = Xoowy =0, 7(s, ) SHUXogm =7, 7(s, -) <0(j, k) <tleFe.
By Condition A the strong Markov property applies and hence
P(Xi4o =4, T| X, = 1] = PXiy, = j| X,JPT'| X))
and on the set where X, = 17 this reduces to the statement of the proposition by
stationarity.
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