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SOME RULES FOR A COMBINATORIAL METHOD FOR MULTIPLE
PRODUCTS OF GENERALIZED £k-STATISTICS

By DErrick S. Tracy

University of Windsor

1. Introduction. Dwyer and Tracy [2] gave some rules which are useful in ob-
taining formulae for products of two generalized k-statistics in terms of linear
combinations of such statistics. These rules included generalizations of certain
rules of Fisher [3] and Kendall [4], Wishart [8], and Tukey [7]. All the rules in [2]
can be generalized to give rules applicable when forming products of more than
two generalized k-statistics. The rules concern determination of pattern func-
tions associated with various patterns. This paper indicates a generalization of
the four such rules in [2] and establishes four additional rules.

2. General notation and background material. A w-part partition of a positive
integer p, denoted by P as in [2], may be represented by

(2.1) P=p"p"" oo p"*

with the convention p; > p2 > -+ > p, > 0, where the order of P is the number
of parts # = iy m; and where 2 i pir; = p. It may also be written in the
form

(2.1") P=ppy- - pr

with the convention p; = p2 = --- = p» > 0. Here p itself may be considered
as a 1-part partition of p. We call p; a proper part of p if p; < p.

The augmented symmetric function of the sample values z;, 2, «++ , . is
given by [4], p. 276,

(2.2) Z ximxjm . xqurpz .. xumxvm R [p17r1p21r2 . psws]
= [pp2 -+ - ps] = [P]

and the average augmented symmetric function (sample), which Tukey [7], p.

38, calls the symmetric mean or bracket (pi;p; « - - p~), may be written as
(23) me' = (P) = [P]/n"

and hence [4], p. 276, [1], p. 42,

(2:4) E(me') = ' = tpibip, *+ by

where u’s are the moments about the origin.
The partition coefficient C'(P), as defined in [2], is the number of ways that the
distinct units of p may be combined into sets of indistinguishable parcels de-
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984 DERRICK S. TRACY

scribed by the partition. Thus
(2.5) C(P) = pY/(p:)™ -+ (P (m! - -+ ).

For example, 4 students of a class can be grouped into sets of indistinguishable
sections of two students each in just 3 ways.

In this notation, the formula for the cumulant «, in terms of moments of order
p and less [3], p. 201, [4], p. 279, can be written in the form

(2.6) kp = 2 (—=1)"(r — 1)I1C(P)uP’

where Z denotes summation over all partitions of p of order v, 7 = 1,2, --- , p.

The k-statistic k, is defined [3], p. 203, as the sample symmetric function such
that E(k,) = kp. In virtue of (2.4) and (2.6), we get the formula, see [4],
p. 279,

(2.7) kp = 2, (—=1)" Nz — 1)1 C(P)ms’
=2 (=)= — D!C(P)[P/n'"

where D denotes summation over all partitions of p.
The generalized k-statistic kp = kp,...,r is defined [1] as the sample symmetric
function such that E(kp) = kp, +* kpr . Tukey [7], p. 52, calculated kr by a

symbolic multiplication (o) of brackets in which products of brackets are re-
placed by brackets enclosing the product factors. The notation of (2.7) can be
adapted to generalized k-statistics with the use of subscripts [2]. Thus
P = p;---pi- pr is a specified partition. A partition of p;, of order ;, is
indicated by P; = P! -+« plie ... plit where p; = &1 PiaTia and

(2.8) Ti= Dby Tia.

This use of ; is different from the one in (2.1) where 7; indicates the multiplicity
of p: in the specified P. Since we are concerned hereafter with a specified P in a
given kp , we interpret ; below in the sense of (2.8).

The partition coefficient of P; is

(2.9) C(Ps) = pil/(pa)™ <+ (Pae]) " (mwal -+ - wal).

A partition obtained by partitioning one or more of the p; is indicated by P;
and the generalized k-statistic k» may be expressed as

(2'10) ke = kpmz'--mmpn- = kpl o km 0 s+ 0 km 0++e0 kmr [7]
= Z ("1)2(7”—1) H (7ri -1 )'H C(Pi)[PI]/n(Zwi)

where the summation extends over all P;.
In analogous notation,

(211) ko = Kgygg-aje--ax
> (D> IT (6 — DT C(@)1Q/n™7.
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Then
(2.12) kpyoopnkoyerax = kekq = ZH {(_1)”_1(_1)”_1
(ms — D x; — DIC(P)C(Q1)}PQ,/n®

where P;Q; denotes an array (bipartition [2]) formed by pairing partitions P;
and Q;, [P;Q,] is the corresponding augmented symmetrie function, and p, the
order of P;Q,, is the number of rows in the array. For example, for the product
koky , Dwyer and Tracy [2], p. 1175, consider the bipartitions P;Q; :

(a) (b) () (@) (e)

21 20 . 11 10
(2.13) 01 01 11 10 10
01 01 01

01

(2.14) ko -+ = 2 IT{(=D)"7 (=¥
(i — DI — D)1= C(PHCQ)) - -} [P:Qy - - -]/n®,
where p is the order of P;Q; - - - , later called a multipartition.

3. Generalization of the method for products of two generalized k-statistics.
Following [2], which is essentially a modification of Wishart’s method [8], we
expand the right-hand side of (2.14) in terms of generalized k-statistics. The pro-
cedure is to take expected values of symmetric means [P,Q,---]/n"” as
p;,q, ..., change these to population cumulants using a multipartite notation
[4], [6], p. 1175, and then obtain the formula for kzkq - - - as a linear function of
generalized k-statistics by taking estimates. These steps correspond to those used
by Tukey [7] in his algebraic method.

The transformation from the u"’s to the cumulants by the multipartite nota-
tion essentially implies a modification of Wishart’s method [8] and generalization
of the method in [2]. Only those arrays of PQ - - - are considered which represent
P;Q; - - - . These arrays, consisting of more than two columns, are called multi-
partitions, extending the idea of bipartitions in [2]. The multipartitions P,Q; - - -
represented in (2.14) are called admissible multipartitions of PQ - - - .

We illustrate this by considering the product keknkn . In a modification of
Wishart’s [8] example in which he obtains k.k; by a combinatorial method and
then manipulates it algebraically to obtain the product of generalized k-statistics
kokn , Dwyer and Tracy [2], p. 1175, obtain the product k.ky directly by a
combinatorial method. The bipartitions appropriate to the required product,
i.e. the admissible bipartitions of PQ, are listed in (2.13).

Since we are now interested in koky k1 , we need to consider multipartitions ob-
tained by appending a third column to the bipartitions (2.13) by suffixing the

partition ! in all possible ways. The admissible multipartitions so obtained are

1
listed in Table 1. The numbering scheme denotes correspondence to the bi-
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TABLE 1
Multipartitions related to the product kekiiki

Number  Admissible Multipartition Combinatorial Contribution
Multiparti- Function Coefficient to Required
tion Product

a 211 1/n2(n — 1) 4 4kss/n2(n — 1)
011

a2 211 1/n? 4 4ka1/n?
010
001

ag 210 1/n2 4 4]0321/7!«2
011
001

as 210 1/n 2 2ks111/m
010
001
001

b1 201 1/n? 4 4k3a1/n?
011
010

by 200 1/n(n — 1) 2 2k292/m(n — 1)
011
011

bs 201 1/n 2 2ksi1/n
010
010
001

b4 200 1/n 4 4koo11/m
011
010
001

bs 200 1 1 konn
010
010 .
001
001

o 111 —1/n2(n — 1)? 4 —dkgg/n2(n — 1)2
111

c2 111 —1/n%(n — 1) 8 —8ksa1/n¥(n — 1)
110
001
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TABLE 1—(Continued)

Number  Admissible Multipartition Combinatorial Contribution
Multiparti- Function Coefficient to Required
tion Produect

() 110 —1/n(n — 1) 2 —2kas1/n(n — 1)
110
001
001

d, 111 —1/n%(n — 1) 8 —8ks21/n2(n — 1)
101
010

d, 111 0 8 0
100
011

ds 110 1/n(n — 1)2 8 8k222/n2(n — 1)2
101
011

ds 111 0 8 0
100
010
001

ds 110 0 R 0
101
010
001

dg 110 0 8 G
100
011
001

d; 110 0 4 0
100
010
001
001

e 101 —1/n(n — 1) ! 2 —2ksn/n(n — 1)
101
010
010

23 101 0 8 0
100
011
010
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TABLE 1—(Concluded)

Number  Admissible Multipartition Combinatorial Contribution
Multiparti- Function Coefficient to Required
tion Product

e3 100 0 2 0
100
011
011

e - 101 0 4 0
100
010
010
001

es 100 0 4 0
100
011
010
001

23 100 0 1 0
100
010
010
001
001

partitions (2.13). It may be noted that multipartitions like

222, 220, 220, 200, 100
002 001 010 110
001 012 012

are inadmissible since 2 in the second or third column is not a partition of 11.

We form the combined multipartitions of a given multipartition in Table 1 by
adding rows, calling the admissible results c-multipartitions. Thus multipar-
titions a; and ¢; have no c-multipartitions, whereas others do, since rows may be
added as long as the resulting entry in the second or third column is not 2.

In modification of Wishart’s method [8], the n-coefficient, the non-combi-
natorial factor of the coefficient associated with a multipartition, is obtained
from (2.14) as ’

3.1 JTH=D"7 (=157 e (= DI = D! - jn@ & n ™D
The sum of the n-coefficients for the multipartition and all its c-multipartitions

is called its multipartition (or partition) function. Thus the multipartition func-
tion of a; is (1/n)(1/n®)(1/n®)n® = 1/n*(n — 1), since there is no c-multi-

partition. For a;, there is a c-multipartition 21} hence the multipartition func-

01
tion of a, is

(1/n)(1/n®)(1/n®)® + (1/n)(1/n®)(1/n®)n® = 1/n’.
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One has to be careful with multipartitions like c; , which has 4 c-multipartitions
11 111
110 and 2 c-multipartitions 111 Its partition function is thus—(1/n
001
4(1/2)Yn® —2(1/n®)n® = —1/n(n — 1).

The combinatorial coefficient, the number of ways the multipartition can be
formed, is indicated in the fourth column in Table 1. Such can be better under-
stood by considering elements 2 in the first column as composed of distinct units

@3, @ _

e, €, the i in the second column as identifying distinct units e;, e, and the

iin the third column as identifying distinct units e;, ¢;. Thus the multipar-
210

tition a3, 011 with combinatorial coefficient 4, represents the 4 equivalent multi-
001

partitions in which either one of e;, ¢; in column 2 is matched with either of
€5, € in column 3 (in the second row), while the 2 in column 1 always represents
e + e.

The resulting generalized k-statistics have subscripts indicated by the row
sums, hence the required product is the sum of the individual contributions of
each multipartition, shown in the last column of Table 1, yielding the formula

]{327611]\711 = 4k42/n2(n —_ 1) —_ 4k33/n2(n — 1)2 + 4:](}411/77«2
+ 8(n — ks/n*(n — 1) + 2(n* — n + 4)kuy/n*(n — 1)°
+ 4k3111/n + 4(n — 2)k2211/n(’n - 1) 4+ ko -

This agrees with the result of Wishart [8], p. 7, who did not have a direct pure
combinatorial approach for products of generalized k-statistics but only for
products of type k.kvk, - - - , which were solved simultaneously to obtain the de-
sired product of generalized k-statistics.

4. Definitions associated with partition patterns. A partition pattern is defined
as an algebraic multipartition in which the relative positions of the partitions of

the P;, Q,, - -+ are fixed though rows or columns may be interchanged. Thus
Pu q 0

(4.1) D1z 0 (4%
P21 g2 T12

D22 Qa2 T

is a pattern and equivalent patterns may be obtained by interchanging rows or
110
101
’ 010
001

columns. The multipartition ds in Table 1 and the multipartitions ds =
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110 110
?é(l), ds’ = 3(1)? belong to equivalent patterns since ds is obtained by inter-
001 001

changing columns 1 and 2 of ds, whereas d;” is obtained from d; by interchang-
ing second and third rows. (The form ds" is required later to apply Rule 7(b) to
the multipartition dj .)

Any pattern resulting from admissible addition of rows of a pattern is a
c-pattern. The pattern (4.1) has the c-pattern

D1 q L4V
(4.2) P ga T2
D22 Qa2 To

only, since only parts of the partition of same p; , q; or 7 can be combined. Thus
we can add the first two rows, combining py; and piz, but not the last two, since
we can not combine 71 and 7, .

For the algebraic multipartition called a pattern, the procedure in Section 3
gives a pattern function by adding the n-coefficient of the pattern and all its
c-patterns. However, the process is extensive if it is applied directly to all the
patterns emerging from a required product of generalized k-statistics. Work is
simplified considerably by observing certain rules which these functions obey,
from examples such as the one considered in Section 3. Before discussing these,
we need some more definitions.

An extended pattern, as in [2], p. 1177, consists of an initial pattern plus

additional rows consisting of single non-zero entries p; or g; or - - - , Examples are
multipartitions a, , a;, a4 in Table 1, where the initial patterns are 211, (2)1(1), 210

respectively.

An augmented pattern consists of an initial pattern plus additional columns
whose non-zero entries are such that they are carried all the way through in all
c-patterns and do not impose any further restrictions in the addition of rows.

20
Examples are multipartitions b., ¢; in Table 1 with initial patterns 01, E re-

01
spectively.

A pattern is said to be composed of blocks if all its non-zero entries fall into
two or more blocks, each confined to ‘separate rows and columns, e.g. multi-
partition a, in Table 1. The concept is extended to two blocks connected by a row
or column; these are called row-bordered and column-bordered blocks respec-
tively. The connecting row or column is termed solid if it does not contain any

zero entries.

5. Rules for computing pattern functions
RuLk 1. General Rule. The pattern function is obtained by adding the n-co-
efficient (3.1) for the pattern and for each of its c-patterns.
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This rule, which is essentially an operational restatement of the definition of
a pattern function, can be used in Section 3 to construct the results of Table 1,
though additional rules, discussed below, are easier to apply when appropriate.

CororrARY. For products of k’s single subscripts, all rows may be added
and the partition parts of p, q, --- may be replaced by X’s to get the gen-
eral rule of Fisher [3], p. 221, [4], p. 283, and Wishart [8], p. 4

(5.1) n-coefficient
= (=)= (= DUx — Do 0D/

RuLk 2. Pattern Rule. The multipartition functions of all multipartitions hav-
ing equivalent patterns are identical and equal to the pattern function.

This is a generalization of Fisher’s pattern rule [4], p. 283.

The pattern function as defined is independent of the relative positions of the
rows and/or columns and hence is the same for all equivalent patterns.

For example, in Table 1, partitions a; and b, have equivalent patterns (seen by
interchanging columns 2 and 3) and so they have the same pattern function 1/
Partitions a, and b; also have equivalent patterns (seen by interchanging columns
2 and 3 and then rows 2 and 4) with function 1/n.

It should be noted that two multipartitions may look identical, but may not
have the same pattern, depending upon the product being considered. For ex-
ample, the multipartition

110
(5.2) 101
011
110
for the product ki, does not have the same pattern as multipartition d; = 101
011

for the product koki1 . In the first column of ds, 11is a partition of 2, whereas in

211
o1l whereas (5.2) does not.

Written in general terms, (5.2) and d; have the patterns

(5.2), it is not. Thus d; admits a c-multipartition

4! q 0, Pu q 0
p2 0 n Pz O 51
0 " T 0 Q@ Ty

respectively. The pattern function of (5.2) is (n — 2)/n*(n — 1)* which differs
from —(n — 2)/n*(n — 1)* + 1/n*(n — 1) = 1/n*(n — 1)*fords.

RuLE 3. Rule of proper parts. The pattern function is 0 for any pattern which
has at least one row whose single non-zero entry is a proper part.

By the pattern rule, the multipartition functions for all multipartitions having
equivalent patterns are the same, no matter what the values of p;, g;, - - - . Con-
sider the case where all p;, ¢;, - -- are greater than 1 and let the proper part
appearing alone in a row be 1. Then each k-statistic arising from the pattern hasa
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unit subseript and thus depends on the choice of origin. Since the product expan-
sion for the pattern with all other entries greater than 1 yields only semin-
variant k-statistics (without unit subseripts), it is independent of the choice of
origin. Hence the pattern function must be zero.

A more formal proof is of interest. Consider a pattern with a proper part
Pir+1 Of p; appearing as the only non-zero entry in row R. Let the other entries in
column C containing p;,.1 consist of the remaining r parts pa, -- -, pir of ps, s
zero and ¢ other non-zero entries. If A denotes the product of [[, (—1)™"-
(1, — 1)!/n®¥* 7, being the order of partition of £, in a column, for all columns
except C, the n-coefficient for the pattern is

(5.3) (—=1) 7T D — (1Yl — r — ¢ — 1)9A.

The c-patterns obtained by adding row R to other rows are of two types:

(1) s c-patterns where one of the s zeros in column C is replaced by pi 41,
resulting by adding row R to one of the s rows having a zero entry in column C.
The n-coeficient for each such c-pattern being (—1)r!n " 24 /nHH  the
contribution of s such c-patterns to the pattern function is

(54) (=D)7ls(n —r —t — 1)“4.

(2) 7 c-patterns resulting from the addition of row R to a row having a part of
piin column C, the n-coefficient for each being (—1)""(r — 1)1 n"H104 /n"+?.
The contribution of these r c-patterns to the pattern function is
(5.5) (=1l (n —r — $)PA.

The total contribution to the pattern function, being the sum of (5.3), (5.4),
(5.5), is 0. The total contribution is similarly zero for each c-pattern involving
additions of rows other than R among themselves. Hence the pattern function for
the pattern is 0.

This rule, when applied to multipartitions in Table 1, gives 0 as the partition
function for multipartitions ds, ds, dg, d7 and e, through e;. It thus eliminates 9
out of 25 multipartitions from further consideration. The only other multipar-
tition which can yet be eliminated is ds (as a consequence of Rule 7(b) below).

Cororrary. Turkey [7], p. 45, when writing products of two generalized k-
statistics as linear functions of the same, gave a rule that the unit weight of
the linear function can not exceed the unit weight of the product, where unit
weight of a polynomial in k-statistics is defined as the highest number of unit
parts appearing in any term of the polynomial.

This rule can be generalized for multiple products and follows as a corollary
of Rule 3 since any unit subscript over and above the subscripts of the original
set must result in a row of a partition having a unit proper part as its only non-
zero element. Such a generalization of Tukey’s rule, however, is not as effective
for multiple products as Rule 3. The only multipartition it eliminates in Table 1
is eg.

Ruwk 4. Rule for extended patterns. The pattern function of an extended pattern
equals that of the initial pattern.
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Consider an initial pattern extended by a row R in which the only non-zero
element is a p;. Let the column C containing this entry have s zero and r other
non-zero entries. If 4 indicates the product of signs and factorials for all columns
and 1/n" for all columns except C, 7 being the number of non-zero entries in a
column, the sum of the n-coefficients for the extended pattern and its s c-patterns
resulting from adding row R to the initial ones is

An(r+s+1)/n(r+l) + sAn(T+8)/n(r+l) — An(r-l-s)/n(f)

which equals the n-coefficient for the initial pattern.

This equality holds for each c-pattern of the initial pattern, obtained by adding
together any of the initial rows. Hence the pattern functions of the extended and
the initial patterns are the same. The argument holds when more rows of this
type are added.

211
It may be observed in Table 1 that a, = 010 being an extended pattern of 211
001
in %ok, has the same pattern function 1/n".
COROLLARY. A pattern composed of rows each of which has a single non-zero entry
which 7s not a proper part has pattern function unity. Thus bs in Table 1 have par-
20
tition function 1. In the products kecy [2], p. 1176, the partition function of 01
01
is also 1.

RuLE 5. Rule for augmented patterns. The pattern function of an augmented
pattern is the product of the pattern function of the initial pattern and the co-
efficients [ [ (—1)™ " (r, — 1)!/n®"™ for the additional columns, 7, being the
order of partition of ¢, in a column.

A column of this type leads to multiplication of the n-coefficient for the initial
pattern and each of its c-patterns by J[. (—=1)™ (s, — 1) t/n® and all the
c-patterns of the augmented pattern are just c-patterns of the initial pattern
augmented by this column. Hence the rule. Application of the rule, using the first
two columns to form the initial pattern, gives 1. (1/n®) as the partition function
for by and (—1/n®)(1/n®) for ¢, in Table 1.

CoroLLARY. The pattern function of an augmented pattern having r columns,
each of which has a single non-zero entry, is 1/n" times the pattern function of the
initial pattern.

In Table 1, a;, which may be obtained by augmenting the first column to
11
10, having partition function 1/n in ki, has partition function (1/n)
01
(1/n) = 1/7%.

RuiE 6. Blocks rule. The pattern function of a pattern composed of blocks isthe
product of the pattern functions of these blocks.

This is a generalization of Wishart’s rule [8], p. 4, for products ofsingle-sub-
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seript k-statistics. Fisher [3], p. 221, and Kendall [4], p. 283, ignore such patterns
since these coefficients are 0 in the cumulant formulae which they feature.

Consider first the case of two blocks A and B having a and b rows and « and 8
columns respectively. Suppose @ = b without loss of generality. Let the a columns
of A have a;, - -+ , @, non-zero entries and the 8 columns of B have by, - - -, bs
non-zero entries. At this stage, we do not consider any addition within the blocks.
Let A and B denote the products of signs and factorials for the blocks A and B
respectively. There are b /r! c-patterns obtained by adding r rows of B to r
rows of A,(r = 1, 2, .-+, b), each having n-coefficient AB n“*™/(J]:n®"-
I1;»n®’). The contribution to the pattern function from the pattern and its
c-patterns, not treating addition within blocks, is thus

ABn(a%)/(Hi n(ai) Hj n(bj))
+ e (@767 /r1) (ABn ™ T TT; %)

(5.6) = (AB/TT:n TL;n%) 3220 a®bn@H " /p1,
The summation in (5.6) can be written as
(5.7) 7@ 32 ()a?(n — ) = p@p®
by Vandermonde’s theorem in the form [5], p. 9,
(5.8) n® = 3o — m)Pm®,
Hence, this contribution (5.6) is
(59) (4n/TL:n") (Bn®/TT;n%)

which is the product of the m-coefficients for blocks A and B.
Let now the c-patterns obtained by considering addition within blocks be de-

noted by 3“ ]g , where 0 denotes a block of zeros. We consider

A 0 A 0 . . A, 0
0 B=o0 B, included in the set { 0 Bv}'
. A 0 Ce .
Then, the pattern function of 0 B’ by definition, is
. A, (] .
ZW Contribution of 0 B to pattern function
(5.10) = > uw (n-coefficient of A.) (n-coefficient of B,) by (5.9)

= (D_. n-coefficient of A,) (2, n-coefficient of B,)

= (pattern function of A) (pattern function of B).

If now there are three blocks A, B, C, we can treat 3 ]g as one block and C

as the second. Repeating this, the rule is proved for any number of blocks.
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Examples in Table 1 are multipartitions a4, bz, bs, b4, cs, €1, €. The blocks
in bs , by, &1 become obvious after rearranging rows and columns. For example, in
bs , one can interchange columns 2 and 3 and then rows 2 and 4.

RuLe 7. Rule for column-bordered blocks. The pattern function of a pattern
A C:
0 C2
parts associated with the two blocks are denoted by C; and C,, is given by the
following rule:

(a) When there is no partition with parts in both C; and C, , the pattern func-

tion is the product of the pattern functions for the blocks AC, and C, B.

(b) When there is at least one partition which has parts in both C; and Cs,

the pattern function is zero.

We consider the case of a solid connecting column only. The rule holds when
C is not solid, for patterns required for multiple products at least through
weight 12.

B’ consisting of two blocks A and B connected by a column C, whose

(a) Consider the pattern g g; ](3) by itself first, without its c-patterns.
If no partition has parts in both C; and C., the pattern functions of the two
blocks A C; and C,B are independent of each other. Let the number of rows in
A C,, C; B be a, b respectively. If the factor due to A in the n-coefficient of A C;
is denoted by A and the signs and factorials for C; by C;, and similarly for C; B,
the n-coefficient is

AB C10, n“™ /P = 4 B C1C,,

which is the product of the n-coefficients A C; n'”/n® = A Cy of A C; and B C.
of CzB.

Let us now consider addition within the blocks, denoting a typical c-pattern
by A, Ciu 0

0 G, B, Treating

A C, 0 A Cuwo 0

0 C, B 0 Cao B
as one of these, the pattern function is

A/u, Clu 0
0 Co, B

= D .. (n-coefficient of A, Cy,) (n-coefficient of Ca, B,)
= (2. n-coefficient of A, Ci,) (D, n-coefficient of Cs, B,)
= (pattern function of A C;) (pattern function of C; B).

> .» Contribution of to pattern function

(b) Let now a particular partition in column C have ¢; parts in C; and c,
parts in C, . If the « columns of A have a;, - -- , a, non-zero entries and the 8
columns of B have b, - - - , bsg non-zero entries, the n-coefficient of the pattern is

(5.11) (=) (e + e — 1)1 (ABCCy/ T:in TT;2%)
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where A, B are the products of signs and factorials for blocks A, B and C;, Cs for
entries in C; , C;, which are not parts of the particular partition.

For the particular partition having ¢; parts in C; and ¢; parts in C,, suppose
c1 = ¢ without loss of generality. Although there may be other such partitions,
consider c-patterns obtained by adding rows in one block containing parts of this
partition to similar rows in the other block, without adding rows in the same
block. A typical c-pattern then consists of » rows of B added to r rows of A,

1 = r £ ¢, there being ¢;”¢,” /7! of them, and each one has an n-coefficient
(512) (=)™ e + @ — r — 1)1(ABCCY/TLin® T1;n®).

Then the contribution to the pattern function from the pattern and such c-pat-
terns is (5.11) added to ¢;” ¢, /r! times (5.12) for each 7, which is

Doy (=) e 4 — 1 — D) (6P /)
(ABC,Cy/ITin™ TTin®)

(5.13) = (—=1)"%* (¢ — 1)1 (ABCCo/TTin ™ TT; n®)
e (—1) (P /).

Since 2 = (—1)*(—2z)®, the summation in (5.13) can be written as

(5.14) (=1)? 220 (e (—e) ™

which is 0 by Vandermonde’s theorem (5.8).
If we now consider addition of other rows within blocks or from two blocks, re-

restricted earlier, resulting in a typical c-pattern g“ glu % and consider
2v v

A Cs 0 A Cio 0

0 C. B 0 Cx B,
as one of these, the pattern function is
> u.» Contribution of A. Cuu 0

0 Cs, B
= D un (0) = 0.
A case where Rule 7(a) applies is multipartition az in Table 1. Its pattern func-

to pattern function

tion is seen to be the product of 1/n for 21 and 1/n for (l)i . Rule 7(b) applies to

multipartition ds which is first rearranged by interchanging columns 1 and 2, and
rows 2 and 3. Since the connecting second column has parts of 2 in both blocks,
the pattern function is 0.

RuLE 8. Rule for row-bordered blocks. The pattern function of a pattern which
consists of A blocks with a row connecting each two consecutive blocks is 1/2*"
times the product of the pattern functions of the blocks.

We prove the rule by induction. The rule is trivially true for A = 1. Consider
X = 2. Let there be a, b rows (a = b) and «, 8 columns respectively in the blocks
A, B. The connecting row is made up of the last row of block A and the first
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row of block B. We do not treat additions within blocks at this stage. In par-
ticular, therefore, the connecting row is not involved in c-patterns. Thus, in a
typical c-pattern, r of the (b — 1) rows of B can be added to r of the (a — 1)
rows of A, (r £ b — 1). There are (a — 1) (b — 1) /r! such c-patterns, the
n-coefficient of each being ABn“™ " /T],n“’ [[;n®’, where A, B are the
products of signs and factorials for the two blocks. The sum of the n-coefficients
is thus

(AB/IIn ITn®) 2275 ((a — 1)V (b = 1)@ /rln@H D
— (ABn(")/H 7@ H n("f))
2205 ((a = D70 = D7/ (n — )
— ABn(a)(n _ 1)(b—l)/H n(ai) H n(bj)
by Vandermonde’s theorem (5.8)
(5.15) (1/n) (An®/T] n?) (Bn® /T n®?).

Now, considering additions within blocks, we obtain c-patterns for which
(5.15) holds. Following an argument similar to that for (5.10), the pattern func-
tion is seen to be 1/n times the product of the pattern functions for the two
blocks. Depending upon the nature of the entries in the connecting row, some
other rows may be added to it, but since it remains the connecting row, the proof
holds.

Now, let the pattern consist of X row-bordered blocks A, , » = 1,2, --- , \. Let
A denote the part of the pattern consisting of the blocks A;, - - -, Ax_; and let B
consist of the blocks Ay_; , Ay (together with the corresponding 0 blocks). If the
rule is true for X — 1, the pattern function of A is (1/2*%) J[]’—i (Pattern func-
tion of A,).

If for As_; , we substitute B whose pattern function is 1/n times the product of
the pattern functions of Ax—; and Ay, we see that the pattern function of the
given pattern is (1/2"") [[}— (Pattern function of A).

Thus the rule is proved by induction.

I

6. Conclusion. These rules prove useful in determining the pattern functions of
particular patterns encountered in obtaining multiple products of generalized
k-statistics by the combinatorial method. A list of these pattern functions, in
generalization of all those of Fisher [3] for single-subsecript k-statistics, is pre-
sented in [6]. These are used, in turn, to 6btain specific formulae for multiple
products of generalized k-statistics, which are being prepared for publication.
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