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1. Introduction and summary. On the basis of independent samples
{Xy, -+, Xn and {Yy, -+, YV,} with distributions F and G, respectively, the
hypothesis that F = G may be tested. Given the functional forms F(zy, «*+ , Zm)
and G(y1, -+, Y») of the sampling distributions except for values of certain
parameters, the likelihood ratio approach, for example, can be used. In this case
it is not crucial to assume that the samples are random, i.e., that F(z1, - - , Zm)
= F(x) -+ F(zn) and G(y1, -+, ¥n) = G(y1) --- G(y»), although such a
simplification is useful whenever realistic. However, the nonparametric treat-
ment of the problem has relied heavily on the assumption of random samples.
Yet if the samples arise as realizations of two stochastic processes, the assump-
tion of randomness is not realistic except in the case of renewal processes. Thus
it is desirable to extend the scope of established nonparametric procedures to
more general applications.

The present paper deals with the Wilcoxon two-sample statistic. Among the
desirable features of this statistic, when defined on independent random samples,
is its asymptotically normal distribution, which for large samples facilitates a
test of the hypothesis that F = G and a calculation of the power for any al-
ternative (F, ). It shall be seen that these aspects are true also when the
samples arise from stochastic processes belonging to a wide class, including
strictly stationary strongly mixing processes.

Assume that the samples {X;, ---, X} and {Y;, ---, Y,} are independent
of each other, but let the random variables within a sample be possibly de-
pendent. Assume that the functions F(-) and G(-) are continuous. The hy-
pothesis H: F = G may be tested (conservatively) by testing the hypothesis
Hy:v = 0, wherey = 2P{Y > X} — 1.

A representation of the Wilcoxon two-sample statistic is the U-statistic with
sign function as kernel,

(1.1) U= (mn)" 22 ias(Y; — X,
where s(u) = —1, 0, 1 according as u < 0, =0, >0. Since Es(Y — X) = ¥,
the statistic U affords a natural basis for testing H, .

Under appropriate conditions, the statistic Z = m'(U — v) has a limiting
normal distribution with mean 0 and variance

(1.2) A% = 4limp.e b Var [ S G(X )] + e limeuw 57 Var [S¢s F(Y)],
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as m and n — o such that m/n has a limit ¢ 0. The main conclusions of this
nature are given in Theorems 3.1 and 3.2. Some areas of application are indicated
in Section 4. The business of dealing with the quantity A* is discussed in Sec-
tion 5.

The limiting behavior of Z is obtained by consideration of a statistic asymp-
totically equivalent in distribution but more amenable to the direct application
of central limit theory, an approach put forth by Hoeffding [3] in dealing with a
wide class of U-statistics as defined on a single sample of mutually independent
rv’s. The present contribution adapts the method to a single, but important,
(two-sample) U-statistic with dependence allowed within samples.

Define:

(1.3) W o= m 2 (X)) — )+ mén_lg, [fa(Y;) — 9],

where fio(t) = Es(Y —t) = 1 — 2G(¢t) and fu(t) = Es(t — X) = 2F(t) — 1.
Since Efy(X) = Efu(Y) = v, we have EW = E(Z — W) = 0. In Section 2 we
find conditions such that E(Z — W)* — 0, in which case it follows by Cheby-
shev’s inequality that (Z — W) — 0 in probability and hence that the statistics
Z and W have the same limiting distribution (if any).

The application of central limit theory to W is through the sums ST fe( X))
and 2.1 fu(Y;), or equivalently through m*> I G(X;) and n ) 1 F(Y}).
If each of these independent normed sums has a limiting normal distribution,
then W is asymptotically normal, as m and n — <« such that m/n — ¢ # 0.
Relevant central limit theorems for sums of dependent variables are utilized in
Section 3.

2. Conditions under which E(Z — W)* — 0. Let g(z, ) = [s(y — z) — 7]
— [fu(z) — 7] — [fa(y) — 7). Then

(2.1) Z—W=m" n" 29X, Y))
and

(2.2) E(Z — W) = m 'n’A,

with

(2.3) A= D md > e 1A, a, b)
and

(2.4) A4, J, a,b) = Eg(X;, Y;)g(Xa, V3).

First we shall obtain some useful representations for A(z, 7, a, b). Let Fyq
denote the distribution function of (X;, X.) and G the distribution function
of (Yj 5 Yb)-

Lemma 2.1. A(4, j, a, b) has the following representations:

(2.5) A(¢,7,a,b)
= 4E[Fu(Y;, Yy) — F(Y)F(Y,)] — Cov [((X:), G(Xa)N,
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(2.6) A(4,7,a,b)
= HE[Gp(X:, Xa) — G(X:)G(Xa)] — Cov [F(Y5), F(Ys)}}.
Proor. Since Eg(X,y) = 0 = Eg(z, Y),
AL, 5, 0,b) = Es(Yy — Xa)s(Y; — Xi) — E(fu(Xs) — v)(fu(Xa) — )
2.7) — E(fu(Y3) —7)(fu(Ys) —v) — 4
= Es(Y, — Xo)s(Y; — X;) — 4 Cov [((X.,), G(X,.)]
— 4 Cov [F(Y;), F(Y3)] — +".
Now
Es(Yy, — Xo)s(Y; — X;) = Es[(Yy, — Xa)(Y; — X4)]
2P{(Yy, — Xo)(Y,;, — Xi) >0 —1
2P{Y, < X.,Y; < X}
+ 2{PY, > X,,Y; > X} — 1.

(2.8)

Il

Il

It can be found easily that
PlYy < X,,Y; <X} =PYy>X.,Y; > X} —,
so, by (2.7) and (2.8), we obtain
(29) A(4,j,a,b) = 4P{Y, > X,,Y; > X3} — 4 Cov [G(X;), G(X.)]
— 4 Cov [F(Y;), F(Ys)] — 46"
But
P{Yy>X.,Y;> X} — 6 = EFu(Y;, Y3) — 6
= ElFu(Y;, Yy) — F(Y;))F(Yb)]
+ Cov [F(Y;), F(Y3)],

so that (2.9) reduces to (2.5).

Now from (2.7) we see that A(z, j, a, b) does not change under the trans-
formation X, < Y;, X, < Y, F <> G. Hence (2.6) follows by analogy with
(2.5).

ReMark. Formulas (2.5) and (2.6) show that weak dependence in either
(not necessarily both) of the pairs (X,;, X,) and (Y;, Y3) suffices for A(z, j,
a, b) to be small. This fact is essential to the use of the following result.

Lemma 2.2. Suppose, for some non-negative function r(k) with: dor(k) < o,
that

IA(Zy j; a, b)| = T(ma’X [liL - a’l) l] - bl])

for all (4,7, a,b). Then A = o(mn’), as m and n — o such that m/n has a limit
¢ #0.
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Proor. We have
Al = 20 D2oi i Db r(max [|¢ — al, |7 — bl])
= 2t D i Dpar(li — b)) + 2T D e r(li — a]) + mar(0)
+ DT Do Dttee Db r(max [[¢ — al, |7 — B]]).

The first two terms on the right are O(mn) since Y _q r(k) < «. The last term
may be written

4 D0 20S 2 2 r(max [[d — al, [7 — b]D),
or, equivalently,
(2.10) TS 2 2h—r(max [a, b]).
It remains to show that (2.10) is o(mn’). Now
P2 r(max (g, b)) = Dofo D r(max [a, b])
+ >t > r(max [a, b)) — ar(a)
= 2 iajr(a) — ar(a) + 22750 [(a — D)r(a)
+ 2 har(b)]
=fFala+1) —a+ (a—1)(n — a)l(a)
+ 25 2 e ()
= (n — }a)(a — Dr(a) + 2272 (n — H)r(5).
Putting R(a) = D i (%), it follows that
(2.11) 27 2005 > 24— r(max [a, b))
< mn ) mar(a) + mn Y mi R(a).

Since R(a) — 0 as @ — «, the rightmost term of (2.11) is o(m’n) as m and
n — . Moreover, taking an integer-valued function g(m) which satisfies
g(m) — o and g(m) = o(m) as m — «, we may write

Yimar(a) = 2haar(e) + 2Zipar(a) £ g2°5 r(k) + mR(g)
= 0(g) + mo(1) = o(m), as m— .
Hence the right-hand side of (2.11) is o(m’n) as m and n — o, so (2.10) is
o(mn®) as m and n — o« such that m/n — ¢ ¥ 0. This completes the proof.

By Lemmas 2.1 and 2.2, along with (2.2), the following result holds.
TurorEM 2.1. Suppose that for some mnon-negative function h(k) with

2 h(k) < w,

(2.12) |E[Fw@(Y;,Ys) — F(Y;)F(Ys)] — Cov [G(X:), G(X.)]| £ A(]i — al)
and

(2.13) |E[Gs(X:, Xa) — G(X:)G(X,)] — Cov [F(Y;), F(Y)]| £ h(lj — b]).
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Then Z and W have the same limiting distribution (if any) as m and n — « such
that m/n — ¢ # 0.

3. Strongly mixing stochastic processes. Following Ibragimov [4], let us
consider two notions of regularity for the dependence in a sequence {£}Z, .
In defining them, let 917, denote the o-algebra generated by events of the form
{(%;,, -, &) ecE},where —0 S a—1<4< - <% <b+ 1= «and
E is a k-dimensional Borel set.

ConprrioN (I). For any event B & N4 , with probability 1

(3.1) |P(Blont,) — P(B)| = ¢(k) | 0 (k— =).
ConprrioN (II). For any events 4 ¢ M2, and B & Mo ,
(3.2) |P(AB) — P(A)P(B)| < a(k) | O (k— »).

The latter condition is known as strong mizing or uniform mixing. Ibragimov
shows [4] that condition (I) implies condition (II) with «a(k) = ¢(k). A
special case of these conditions is m-dependence, given by (II) with a(k) =
for k > m.

LemMa 3.1. If the sequences {X 2. and {Y }Z, each satisfy regularity Conds-
tion (I1) with D a(k) < «, then the statistics Z and W have the same limiting
distribution (if any) as m and n — o such that m/n — ¢ # 0.

Proor. We shall show that the conditions of Theorem 2.1 hold with h(k) =
5 a(k). Applying condition (II) to the events {X; < s} and {X, < t}, we obtain

(3.3) \Fu(s, t) — F()F(t)] = a(li — al).

Since the right-hand side of (3.3) does not depend upon (s, t), we have, for
any choice of (7, b),

(3.4) E|Fiu(Y;,Ys) — F(Y;)F(Y3)| £ a(]i — af).

Now, following Volkonskii and Rozanov [7], it can be proved easily that for
random variables 5 measurable with respect to 9%, , |g| < 1, and # measurable
with respect to Mg , [£] < 1, we have

(3.5) |Ent — EnEE| < 4a(k).
Hence, G being a distribution function,
(3.6) [Cov [G(X5), G(X.)]| < 4a(]i — a]).

In view of (3.4) and (3.6), (2.12) holds with h(k) = 5a(k). Similarly, (2.13)
holds for this choice of the function k. Since Y a(k) < o, the conditions of
Theorem 2.1 are fulfilled and the result follows.

We now state two central limit theorems apropos to regularity conditions
(I) and (II). The first result is Theorem 1.6 of [4]. The second result follows from
Theorem 7.2 and Lemma 5.1 of [6] in conjunction with (3.5) above. (See [4]
or [6] for definitions of stationarity.)
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LEMMA 3.2 (Ibragimov). Let {£}2. be a bounded strictly stationary sequence
satisfying regularity condition (II) with

Sak) < » and a(k) < M/klog k.

Then ™t D7 (& — E&) is asymptotically normal with mean O and variance
o given by

(3.7) limgoo k7" Var (2 % &) = Var (&) + 2 2.1 Cov [&1, &4

Lemuma 3.3. Let {£}Z« be a bounded weakly stationary sequence satisfying regu-
larity condition (I) with ¢(k) = O(k™), N > 1. Then n* D 7 (& — Et) is
asymptotically normal with mean 0 and variance o given by (3.7).

We see that the stationarity assumption is more stringent in Lemma 3.2 than
in Lemma 3.3, whereas the latter requires a slightly stronger regularity as-
sumption.

Turning attention to the statistic W, we see that if the sequences {G(X;)} and
{F(Y;)} each satisfy the conditions of either of Lemmas 3.2 and 3.3, then W is
asymptotically normal as m and n — « such that m/n — ¢ 5% 0. We remark that
if a sequence {¢;} satisfies regularity condition (I) or (II), then so does the se-
quence {f(£;)}, and that if a sequence {£;} is strictly stationary of order 2, then
so0 is the sequence {f(&;)}. Therefore, by Lemmas 3.1, 3.2 and 3.3, the following
results hold.

THEOREM 3.1. Let {X}Z0 and {Y }Z, be independent sequences of random vari-
ables, each sequence being strictly stationary of order 2 and satisfying regularity
condition (1) with ¢(k) = O(k™), N > 1. Let F and G denote the respective con-
tinuous marginal distributions. Then, as m and n — o such that m/n has a limit
¢ # 0, the statistic Z = m}(U — v) is asymptotically normal with mean zero and
variance

(3.8) A’ = 4limu.e k" Var (2% G(X;) + 4c limp.o k" Var (2t F(Y3)).

THEOREM 3.2. Let { X} 2w and {Y )2« be independent sequences of random vari-
ables, each sequence being strictly stationary and strongly mizing with 3, a(k) <
and a(k) < M/(k log k). Let F and G denote the respective continuous marginal
distributions. Then, as m and n — « such that m/n has a limit ¢ = 0, the statistic
Z = m(U — v) is asymptotically normal with mean zero and variance A given
by (3.8).

4, Applications.

4.1. Comparison of rates of occurrence. Two stationary series of events may be
compared by forming for each series the sequence of time intervals between
successive events and then comparing these sequences. The mean interval is the
reciprocal of the rate of occurrence. Various approaches are deseribed in Cox
and Lewis [1]. ’ ‘

A renewal process cannot always be assumed. In applications such as machine
stoppages, for example, appreciable correlation may be present in the sequence
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of intervals. Theorems 3.1 and 3.2 show, however, that a Wilcoxon procedure is
of use, if the dependence “falls off” sufficiently fast, for a nonparametric test
that the sequences of intervals have a common continuous marginal distribution.

4.2. Nonparametric test against shift. We may test for “shift” in an otherwise
stationary process {£]Z. by taking two portions { X1 and {Y }1" sufficiently far
apart to be considered independent and treating these as samples from continu-
ous distributions F(z) and G(y) = F(y — A), respectively. See Lehmann [5].
The hypothesis A = Ay may be tested by applymg the Wllcoxon two-sample pro-
cedure to the observations {X 1 and {Y;}T , where Y/ = Y,; — A,. The distri-
bution theory of the corresponding statistic is given by Theorem 3.1 or 3.2 under
appropriate restrictions on the dependence in the sequence {£3}.

4.3. Robustness of the Wilcoxon two-sample statistic. The use of Theorems 3.1
and 3.2 can provide a clue to the robustness of the Wilcoxon two-sample pro-
cedure under departures from the standard assumption of random samples. By
(3.7), we may write

(4.1) A = 4{Var Q(X1) + 2 2.7 Cov [G(X1), G(X141)]}
+ 4¢ {Var F(Y1) + 2 2.7 Cov [F(Y1), F(Yi)]}.

Under the null hypothesis, that F = G, this quantity reduces to
(4.2) & = 4(1 4 ¢){1/12 + 2 2.7 Cov [F(X1), F(X114)]}.

For example, let the covariances 7, = Cov [F(X1), F(X14)] decrease geo-
metrically: r, = p7/12 (k = 0, 1, --+), i.e., assume {F(X;)} is a wide-sense
Markov process (Doob [2], 233). Then

(43) A =31 + o) (1 + p)/(1 — p)).

In this case, the null distribution of the test statistic depends upon the grade
correlation p of the variables X;, X1 .

5. Techniques of application. Assume that one of Theorems 3.1 and 3.2
is applicable and let A(k) denote the function a(lc) or ¢(k), as the case may be.
Then, by (4.1) and (3.5), an upper bound for A% is

(5.1) B* = 16(1 + ¢)[h(0) + 2 2T h(k)].

If the bound B? can be determined, then conservative tests and estimates of
power may be based on (5.1).

Another approach may be possible if we are dealing with a class of distribu-
tions & = {F} for which the-covariance structure of a sequence {F(X,)} does not
depend greatly upon the particular distribution F. Then Ay will be virtually a
constant for F ¢ %, so that once the single parameter A¢ is determined, the null
hypothesis distribution theory will be nonparametnc for F, G taken from &.

Thirdly, let us consider estimation of A? from the data. It can be shown (1n
straight-forward but uninteresting fashion) that a consistent estimate of A%
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for ’the case m = n, is given by
(52) A= N2 Ts(Yigny — Xipanw) — 202N + 1)U,
where N = [nl], the greatest integer <n*, and
(53) Ti = s(Vipiv — Xipanw) + 22041 8(Vigiv — Xipconnts)
+ $(Yir-vry — Xupiw) + 22 5= 8(Visanwei — Xipin)-
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