A UNIFORM OPERATOR ERGODIC THEOREM

By E. M. KLIMKO

Purdue University

1. Introduction. The purpose of this note is to prove a uniform operator ergodic theorem for mean convergence of differences of right continuous stochastic processes. Our result contains a difference version of the Glivenko-Cantelli theorem for infinite invariant measures. We also state a pointwise convergence theorem valid in the presence of a positive fixed point, which generalizes a result of Burke [1].

Let (Ω, Ω, P) be a probability space; let L_1 be the class of integrable functions on (Ω, Ω, P) ; let L_1^+ be the class of non-negative integrable functions and let T be a Markovian operator mapping L_1 into itself. A set A is closed if for each $f \in L_1$, f = 0 on A^c implies that Tf = 0 on A^c . The class of closed sets forms the invariant sigma field g. T is ergodic if g is trivial. Let T_{∞} denote the (formal) operator $I + T + T^2 + \cdots$. Hopf's decomposition states that $\Omega = C + D$ where for every $f \in L_1^+$, $T_{\infty}f = 0$ or ∞ on C and $T_{\infty}f < \infty$ on D. If $\Omega = C$, T is conservative. We now state an ergodic theorem required in the sequel. We use the notation:

$$(1.1) E(f) = \int_{\Omega} f \, dP.$$

Theorem 1.1. Let T be a conservative ergodic Markovian operator. If $f \in L_1$ and E(f) = 0, then

(1.2)
$$n^{-1}(f + Tf + \cdots + T^{n-1}f)$$

converges to zero in the L_1 topology.

Theorem 1.1 was obtained by Sucheston [6] and independently by Krengel [5].

2. Main results. Let $X(\omega, t)$, $Y(\omega, t)$ be left continuous non-decreasing stochastic processes on $\Omega \times R$ such that for each $t \in R$ $EX(\omega, t) < \infty$ and $EY(\omega, t) < \infty$. We will omit ω in $X(\omega, t)$ for simplicity. Set $X_n(t) = T^n X(t)$, $Y_n(t) = T^n Y(t)$ for $n = 0, 1, \cdots$. We may and do assume that $X_n(t)$ and $Y_n(t)$ are chosen in such a way that outside a null set N independent of t and t, they are nondecreasing and left continuous functions of t. Such a choice is possible by a regularization procedure as used in constructing regular conditional probabilities.

In [1], it was shown that if T is generated by a point transformation which preserves a finite measure, then the cesaro averages of $T^nX(t)$ converge almost everywhere uniformly with respect to t on compact intervals. Here we show that when suitably normalized, X(t) and Y(t) behave similarly in the mean, uniformly on a rectangle.

Received 15 May 1968.

Theorem 2.1. Let $0 < c_1 \le c_2 < \infty$, $0 < d_1 \le d_2 < \infty$; let

$$(2.1) C = \{t: c_2 \ge EX(t) \ge c_1\}, D = \{t: d_2 \ge EY(t) \ge d_1\}.$$

Let $B = C \times D$ and

$$(2.2) \Delta_n = \sup_{(s,t)\in B} |n^{-1}\sum_{k=0}^{n-1} X_k(s)/EX(s) - Y_k(t)/EY(t)|.$$

Then Δ_n converges to zero in the L_1 topology.

PROOF. We may and do assume that $c_1 = \inf_{t \in C} EX(t)$, $c_2 = \sup_{t \in C} EX(t)$, $d_1 = \inf_{t \in D} EY(t)$, $d_2 = \sup_{t \in D} EY(t)$. For each fixed integer m and each $j = 1, 2, \dots m - 1$, we let s_{mj} , t_{mj} be the smallest real numbers such that:

(2.3)
$$EX(s_{mj}) \leq c_1 + j(c_2 - c_1)/m \leq EX(s_{mj} + 0),$$

$$EY(t_{mj}) \leq d_1 + j(d_2 - d_1)/m \leq EY(t_{mj} + 0).$$

Further set $s_{m0} = \inf C$, $s_{mm} = \sup C$, $t_{m0} = \inf D$, $t_{mm} = \sup D$. For each pair $(s, t) \in B$, we define

$$\delta_n(s,t) = X_n(s)/EX(s) - Y_n(t)/EY(t).$$

It follows from Theorem 1.1 applied to $\delta_0(s,t)$ that for fixed $s,t,\delta_n(s,t)$ converges cesaro in the L_1 topology to zero. Since positive linear operators are order preserving, for $s_{m,i-1} < s \le s_{mi}$, $t_{m,j-1} < t \le t_{mj}$ we have

$$(2.5) X_k(s_{m,i-1}+0)/EX(s_{mi}) \leq X_k(s)/EX(s) \leq X_k(s_{m,i})/EX(s_{m,i-1}+0),$$
$$Y_k(t_{m,j-1}+0)/EY(t_{m,j}) \leq Y_k(t)/EY(t) \leq Y_k(t_{m,j})/EY(t_{m,j-1}+0)$$

and

$$(2.6) \quad X_k(s_{m,i-1}+0)/EX(s_{mi}) - Y_k(t_{m,j})/EY(t_{m,j-1}+0) \le \delta_k(s,t)$$

$$\le X_k(s_{mi})/EX(s_{m,i-1}+0) - Y_k(t_{m,j-1}+0)/EY(t_{m,j}).$$

From (2.3) it follows that

$$EX(s_{mi})/EX(s_{m,i-1}+0) \le 1 + c/m,$$

 $EY(t_{m,i-1}+0)/EY(t_{mi}) \ge 1 - d/m,$

where $c = (c_2 - c_1)/c_1$, $d = (d_2 - d_1)/d_1$. Therefore

(2.7)
$$\delta_k(s,t) \leq (1+c/m)\delta_k(s_{mi},t_{m,j-1}+0) + (c/m+d/m)Y_k(t_{m,j-1}+0)/EY(t_{m,j-1}+0).$$

By similar arguments, we obtain a lower bound

$$(2.8) -\delta_{\kappa}(s,t) \leq -(1-c/m)\delta_{\kappa}(s_{m,i-1}+0,t_{mj}) + (c/m+d/m)Y_{\kappa}(t_{m,j-1}+0)/EY(t_{m,j-1}+0).$$

Since T is Markovian, the integral of $Y_k(s_{m,j-1}+0)/EY(s_{m,j-1}+0)$ is one

and it follows that

(2.9)
$$E|\Delta_n| \le E \max(\Delta_n^{(1)}, \Delta_n^{(2)}) + (c+d)/m$$

where

$$(2.10) \quad \Delta_n^{(1)} = (1 + c/m) \max_{0 \le i \le m, 0 \le j \le m} n^{-1} \sum_{k=0}^{n-1} \delta_k(s_{mi}, t_{m,j-1} + 0),$$

$$\Delta_n^{(2)} = -(1 - c/m) \max_{0 \le i \le m, 0 \le j \le m} n^{-1} \sum_{k=0}^{n-1} \delta_k(s_{m,i-1} + 0, t_{mj}).$$

Each of the terms over which max is taken in $\Delta_n^{(1)}$ and $\Delta_n^{(2)}$ converge to zero in the L_1 topology by Theorem 1.1. Therefore,

(2.11)
$$\lim_{n} \sup \int |\Delta_{n}| \le (c+d)/m$$

and since m is arbitrary, convergence in the L_1 topology follows.

If the operator T admits of a fixed point $f \in L_1^+$, we may obtain pointwise convergence. In this case, the role of Theorem 1.1. may be played by Hopf's operator ergodic theorem [2].

THEOREM 2.2. Let T1 = 1; $0 \le c_1 < c_2 < \infty$; $C = \{t: c_1 < EX(t) < c_2\}$; and

(2.12)
$$\Delta_n = \sup_{t \in C} n^{-1} |\sum_{k=0}^{n-1} X_k(t) - EX(t)|.$$

Then for almost every $\omega \in \Omega$,

$$(2.13) \qquad \lim_{n\to\infty} \Delta_n = 0.$$

The proof of this theorem is similar to Theorem 2.1 and is omitted. For the next theorem, we permit P to be sigma finite on \mathfrak{A} . Let τ be a measure preserving, conservative, ergodic point transformation. τ generates a Markovian operator T by means of the relation $Tf = f \circ \tau$. This correspondence preserves the notions of ergodicity and conservativity of an operator. Let X_0 , Y_0 be fixed real-valued measurable functions on Ω and for $n = 1, 2, \dots$, let $X_n = X_0 \circ \tau^n$, $Y_n = Y_0 \circ \tau^n$. If s, x, t, y are extended real numbers, let

$$(2.14) F_n^s(x) = 1_{(s,x)} \circ X_n, G_n^t(y) = 1_{(t,y)} \circ Y_n, n = 0, 1 \cdots,$$

and

(2.15)
$$F^{s}(x) = E(F_0^{s}(x)), \qquad G^{t}(y) = E(G_0^{t}(y)).$$

Theorem 2.1 contains the following difference version of the Glivenko-Cantelli theorem for infinite invariant measures. A ratio version of this theorem was proved in [3].

THEOREM 2.3. Let s, $t \in \bar{R}$ (extended real line). Let C and D be sets in \bar{R} such that for some positive constants c_1 , c_2 , d_1 , d_2

$$(2.16) \quad C = \{x: c_2 \ge F^{\bullet}(x) \ge c_1\}, \qquad D = \{y: d_2 \ge G^{\bullet}(y) \ge d_1\}.$$

Let $B = C \times D$ and

$$(2.17) \quad \Delta_n = \sup_{(x,y) \in B} n^{-1} |\sum_{i=0}^{n-1} F_i^s(x) / F^s(x) - G_i^t(y) / G^t(y)|.$$

Then Δ_n converges to 0 in the L_1 topology.

3. The non-ergodic case. With suitable modifications, Theorems 2.1 and 2.2 remain valid even though the invariant σ -field \mathfrak{g} is non-trivial. Theorem 1.1 was actually proved under the weaker condition $E(f \mid \mathfrak{g}) = 0$. Therefore, we may now state Theorem 2.1 valid in the case when \mathfrak{g} is not trivial. This theorem is based on an idea of Tucker [7].

THEOREM 3.1. Let $c_1(\omega)$, $c_2(\omega)$, $d_1(\omega)$, $d_2(\omega)$ be \mathfrak{g} -measurable; let

$$(3.1) \quad C = \{t : c_2 \ge E(X_0(t) \mid \mathfrak{G}) \ge c_1\} \qquad D = \{t : d_2 \ge E(Y_0(t) \mid \mathfrak{G}) \ge d_1\},$$

the inequalities holding except on a null set N independent of t. Let $B=C\times D$ and

(3.2)
$$\Delta_n = \sup_{(s,t) \in B} n^{-1} |\sum_{k=0}^{n-1} X_k(s) / E(X_0(s) \mid g) - Y_k(t) / E(Y_0(t) \mid g)|$$

Then $\lim_{n \to \infty} \int |\Delta_n| = 0$.

Proof. We merely sketch the proof since it is similar to Theorem 2.1. We may and do assume that

$$c_2 = \sup_{t \in C} E(X(t) \mid \mathfrak{G}),$$
 $c_1 = \inf_{t \in C} E(X(t) \mid \mathfrak{G}),$
 $d_2 = \sup_{t \in D} E(Y(t) \mid \mathfrak{G}),$ $d_1 = \inf_{t \in D} E(Y(t) \mid \mathfrak{G}).$

For each fixed integer m and each $j=0, 1, \dots, m-1$, we let $s_{mj}(\omega)$, $t_{mj}(\omega)$ be the smallest real numbers such that

(3.4)
$$E(X(s_{mj}) \mid \mathfrak{G}) \leq c_1 + j(c_2 - c_1)/m \leq E(X(s_{mj} + 0) \mid \mathfrak{G}),$$

$$E(Y(t_{mj}) \mid \mathfrak{G}) \leq d_1 + j(d_2 - d_1)/m \leq E(Y(t_{mj} + 0) \mid \mathfrak{G}).$$

The functions s_{mj} , t_{mj} are measurable on the sigma field generated by \mathcal{S} and are ordered: $s_{m,j-1} \leq s_{mj}$, $t_{m,j-1} \leq t_{mj}$, $j = 0, \dots, m$. The arguments in the proof of Theorem 2.1 apply with the preceding changes.

Theorem 2.3 also extends to the non-ergodic case except that the conditional expectation is not defined if \mathfrak{g} contains an atom of infinite measure. We may however, compute conditional expectation with respect to an equivalent probability measure (see [4]).

4. Acknowledgment. The author would like to thank L. Sucheston for comments and suggestions.

REFERENCES

- [1] BURKE, G. (1965). A uniform ergodic theorem. Ann. Math. Statist. 36 1853-1858.
- [2] HOPF, E. (1954). The general temporally discrete Markov process. J. Rat. Mech. Anal. 3 13-45.
- [3] KLIMKO, E. M. (1967). On the Glivenko-Cantelli theorem for infinite invariant measures. Ann. Math. Statist. 38 1273-1277.
- [4] KLIMKO, E. M. and Sucheston, L. (1969). An operator ergodic theorem for sequences of functions. Proc. Amer. Math. Soc. 20 272-276.
- [5] KRENGEL, U. (1966). On the Global limit behavior of Markov chains and general non singular Markov processes. Z. Wahrscheinlichkeitstheorie. Verw. Gebiete 6 302-316.
- [6] Sucheston, L. (1967). On the ergodic theorem for positive operators I. Z. Wahrscheinlichkeitstheorie. Verw. Gebiete 8 1-11.
- [7] TUCKER, H. G. (1959). A generalization of the Glivenko-Cantelli theorem. Ann. Math. Statist. 30 828–830.