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A UNIFORM OPERATOR ERGODIC THEOREM
By E. M. KumMko

Purdue University

1. Introduction. The purpose of this note is to prove a uniform operator ergo-
dic theorem for mean convergence of differences of right continuous stochastic
processes. Our result contains a difference version of the Glivenko-Cantelli
theorem for infinite invariant measures. We also state a pointwise convergence
theorem valid in the presence of a positive fixed point, which generalizes a result
of Burke [1].

Let (2, @, P) be a probability space; let L; be the class of integrable functions
on (2, @, P); let L™ be the class of non-negative integrable functions and let
T be a Markovian operator mapping L, into itself. A set A is closed if for each
feLy,f=0on A° implies that Tf = 0 on A°. The class of closed sets forms
the snvariant sigma field 9. T is ergodic if 4 is trivial. Let T', denote the (formal)
operator I + T + T° + --- . Hopf’s decomposition states that @ = C + D
where for every f € Iyt, Tof = 0 or © on C and Tof < 0 on D. If @ =C, T
is conservative. We now state an ergodie theorem required in the sequel. We
use the notation:

(1.1) E(f) = [afdP.

TuroreM 1.1. Let T be a conservative ergodic Markovian operator. If f e Ly
and E(f) = 0, then

(1.2) AT+ -+ TV

converges to zero in the Ly topology.

Theorem 1.1 was obtained by Sucheston [6] and independently by Krengel
[5].

2. Main results. Let X (w, ), Y (w, t) be left continuous non-decreasing stochas-
tic processes on @ x R such that for each t ¢ R EX(w,t) < » and EY (o, 1) <
w. We will omit w in X(w, t) for simplicity. Set X.(¢) = T"X(t), Ya(t) =
T"Y(t) forn = 0, 1, --- . We may and do assume that X.(t) and Y,(¢t) are
chosen in such a way that outside a null set N independent of ¢ and n, they are
nondecreasing and left continuous functions of ¢. Such a choice is possible by a
regularization procedure as used in constructing regular conditional probabilities.

In [1], it was shown that if T is generated by a point transformation which
preserves a finite measure, then the cesaro averages of T"X () converge almost
everywhere uniformly with respect to ¢ on compact intervals. Here we show
that when suitably normalized, X(¢) and Y(¢) behave similarly in the mean,
uniformly on a rectangle.
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THEOREM 2.1. Let 0 < ¢1 £ 6 < 0,0 < dy £ dp < 0 let
(2.1) C={t:c, 2 EX(t) =2 &}, D ={t:ds= EY(t) = di}.
Let B=C x D and
(22)  An = SUPG.yes |0 Doim0 Xu(s)/EX(s) — Yu(t)/EY ().

Then A, converges to zero in the Ly topology.

Proor. We may and do assume that ¢; = infi.c EX (1), ¢2 = supuc EX(2),
dy = infiep EY (1), d2 = sup.n EY(t). For each fixed integer m and each j =
1,2, ---m — 1, we let smj, tm; be the smallest real numbers such that:

(2.3) EX(smj) £ & + j(ee — c1)/m = EX(smj + 0),
EY (tn;) £ di + j(dy — di)/m £ EY (tn; + 0).

Further set smo = inf C, Smm = SUp C, tmo = inf D, tmwm = sup D. For each pair
(s, t) € B, we define

(24) on(s, t) = Xo(s)/EX(s) — Yu(8)/EY (¢).

It follows from Theorem 1.1 applied to 6o(s, t) that for fixed s, i, 6. (s, t) converges
cesaro in the L, topology to zero. Since positive linear operators are order pre-
serving, for smi1 < 8 £ Smi, tmja < t = tn; We have

(2.5) Xi(smia + 0)/EX(smi) £ Xi(s)/EX(s) £ Xu(8m,i)/EX(8m i1 + 0),
Yi(tm i1 + 0)/EY (tm,;) < Yi()/EY(t) £ Yi(tm,;)/EY (im,jr + 0)
and
(2.6) Xi(8mics + 0)/EX(8mi) — Yi(tm,i)/EY (tmjms + 0) = &(s, )
< Xi(smi)/BX (8myics + 0) — Yi(bm,j-1 + 0)/EY (im,5)-
From (2.3) it follows that
EX (8mi)/EX($mia + 0) £ 1 + ¢/m,
EY (tm,j1 + 0)/EY (tm;) 2 1 — d/m,
where ¢ = (¢; — ¢1)/e1,d = (d2 — dy)/dy . Therefore
(2.7) (s, t) = (1 4 ¢/m)ok(Smi s tm,5—1 + 0)
+ (¢/m + d/m)Yi(tm i1 + 0)/EY (tm,;—1 + 0).
By similar arguments, we obtain a lower bound
(2.8) —bu(s, t) £ —(1 — ¢/m)op(Sm,i1 + 0, tmj)
+ (¢/m + d/m)Yi(tm,j—1 + 0)/EY (tm i1 + 0).
Sinece T is Markovian, the integral of Yi(sm,jm1 + 0)/EY (8m,j—1 + 0) is one
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and it follows that

(2.9) E|A] £ B max (A%, A,%) + (¢ + d)/m

where

(2.10) AL = (1 + ¢/m) maXo<i<mo<ism® Dbt 86(Smi, tm,ima + 0),
A = —(1 — ¢/m) maXo<i<mo<izm n7 2% u(Smit + 0, tmj).

Each of the terms over which max is taken in A, and A, converge to zero in
the L; topology by Theorem 1.1. Therefore,

(2.11) lim, sup [ [Ad] £ (¢ + d)/m

and since m is arbitrary, convergence in the L, topology follows.

If the operator T admits of a fixed point fe L,*, we may obtain pointwise
convergence. In this case, the role of Theorem 1.1. may be played by Hopf’s
operator ergodic theorem [2].

TaeoreM 2.2. Let T1 = 1; 02 1< e < o; C = {t: ¢ < EX(t) < ¢}
and

(2.12) An = supeen | Doico Xa(t) — EX ().
Then for almost every w & Q, '
(2.13) limye An = O.

The proof of this theorem is similar to Theorem 2.1 and is omitted. For the
next theorem, we permit P to be sigma finite on @. Let = be a measure preserv-
ing, conservative, ergodic point transformation. = generates a Markovian
operator T' by means of the relation Tf = f o 7. This correspondence preserves
the notions of ergodicity and conservativity of an operator. Let X, , Y¢ be fixed

real-valued measurable functions on € and for n = 1,2, ---, let X, = Xoo 7",
Y, = Yoo ™. If s, 2, ¢, y are extended real numbers, let

(2.14) Fl(z) = lpmoXn, G'(y)=1lepoYs, n=01---,
and

(2.15) F'(z) = BE(F'(x)), @'(y) = B(G(y)).

Theorem 2.1 contains the following difference version of the Glivenko-Cantelli
theorem for infinite invariant measures. A ratio version of this theorem was

proved in [3]. ~ )
TuEorEM 2.3. Let s, t € B (extended real line). Let C and D be sets in R such
that for some positive constants ¢y , ¢z , dy , da

(216) C={z:a2 F(x)Zc}, D={y:d2 G'(y) = di}.
Let B =C % Dand

(2.17)  An = SUPaesn | im0 Fi(2)/F'(x) — G(y)/G(y)].
Then A, converges to 0 in the Ly topology.
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3. The non-ergodic case. With suitable modifications, Theorems 2.1 and 2.2
remain valid even though the invariant o-field ¢ is non-trivial. Theorem 1.1
was actually proved under the weaker condition E(f| d9) = 0. Therefore, we
may now state Theorem 2.1 valid in the case when d is not trivial. This theorem
is based on an idea of Tucker [7].

TaEOREM 3.1. Let ¢1(w), c2(w), di(w), do(w) be 9-measurable; let

(31) C={ttco = E(Xo(?)|9) = 1) D ={t:dy = E(Yo(t)| 9) = dv),

the inequalities holding except on a null set N independent of t. Let B = C x D
and

(32) An = supe,nes | im0 Xu(s)/E(Xo(s) | 9) — Ya(t)/E(Yo(t) | 9)]
Then limy, e f |A| = 0.

Proor. We merely sketch the proof since it is similar to Theorem 2.1. We

may and do assume that

Co = SUPiec E(X(t) I 9), G = infuc E(X(t) I g),

ds SUpP¢:p E(Y(t) ’ 9), di inf;.p E(Y(t) | 9).
For each fixed integer m and each 7 = 0,1, ---,m — 1, we let sn;j(w), tnj(w)
be the smallest real numbers such that
(34)  E(X(swj)|9) = a+jlea— a)/m = E(X(sw;j + 0)]9),

E(Y(tw;) | 9) £ di + j(de — d1)/m < E(Y(tm; + 0) | 9).

The functions sm;, tm; are measurable on the sigma field generated by ¢ and
are ordered: Sm,j—1 = Smj, tmjm1 = bmj, J = 0, <+ -, m. The arguments in the
proof of Theorem 2.1 apply with the preceding changes.

Theorem 2.3 also extends to the non-ergodic case except that the conditional
expectation is not defined if 9 contains an atom of infinite measure. We may
however, compute conditional expectation with respect to an equivalent prob-
ability measure (see [4]).
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