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SMOOTHING BY CHEATING

By James M. DickEy

State Unwersity of New York at Buffalo

1. Summary. This self-contained note extends and generalizes smoothing
procedures proposed by Whittle (1957), (1958) and Dickey (1968). The use of
linear filters, chosen through analysis of the data to be smoothed, is advocated.
Hence, smoothing is nonlinear. The setting can be viewed as a multivariate ex-
tension of empirical Bayes settings in which, usually, there are strong independ-
ence assumptions.

2. General theory. Imagine that we have a collection of numbers, v, , indexed
by z, each an error-plagued measure of its unknown ideal dual number u, .
Suppose that the unknowns u, are a realization of a probability structure on the
vector u of u,’s. Our “measuring instrument’ is described by a conditional prob-
ability structure on the vector v of v,’s given the vector u. In short, u and v
have a joint probability structure.

As the reader will discover, for the beginning of this discussion the indices
z of u, and v, need have no correspondence. Summations below may have inter-
pretations as integrals.

We desire to estimate u from v, & = 4(v); and a penalty will be imposed by a
squared Euclidean norm, 1(f,u) = (1 —u, 8 — 1) = D 5 D o Mo (e — U ) (thy —
uy) the matrix of A;,’s positive definite. Hence, given the square integrability
(expectability ) of u, v, and i, we seek to maximize the expected utility, or equiv-
alently, minimize E( — u, @ — u), by choosing the function @i(v) as the con-
ditional expectation of u given v, & = E(u|v), since for 4% = 4, E(4* — u,
4 —u) = E@* — 4, 4 — 4) + E(4t — u, & — u), the cross-product term
vanishing. The optimal estimate @i is thus seen to be independent of the choice
of (positive-definite) penalty inner product 1(f, u).

The conditional expectation 74, = E(u, | v) can be viewed as a Hilbert-space
projection of u, on the subspace of square-integrable random variables measur-
able with respect to v (linearly generated by polynomials in the v,’s). This
Hilbert-space inner product is the usual second-order moment,

(1) (uz,uy)H = Eua;'uy.

Assume for now that u and v are :iointly normally distributed. Then, as is
well known, the conditional expectation 4, = E(u, | v) takes the linear form,

(2) = 2oy we(y) (v — Evy) + Bua,
where
(3) >z Cov (v, v:) wa(2) = Cov (U, v,), all y.
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The optimal estimate 7%, can now be viewed as the Hilbert-space projection of u,
on the subspace spanned (linearly) by the v,’s and a nonzero constant.

Whether or not u and v are normal, the optimal linear function of the v.’s
and a constant, the so called ‘“wide-sense conditional expectation,” is given by
(2) and (3), still independently of the choice of penalty inner product. To
prove this, note first that if (2) and (3) hold for one coordinatization of u and
i, then they hold for all, and that any two penalty inner products are related by a
change of coordinates. The sum-of-squared-errors penalty is easily seen to lead
to (3), by minimizing the expectation of an individual summand (4, — ),
assuming at first, zero means for u, and v.

Note that the best linear estimate of the form,

(2%) @ = 2w (y) vy,
satisfies
(3*) Zz (Evyvz )wx*(Z) = Euxv” ,

and that 4,* and 4, (as given by (2) and (3)) coincide if a linear combination
of the v,’s is a nonzero constant.

Much applied mathematics has centered on equations (2) and (3), including
the theory of linear filtering and prediction for stationary time series. Practical
problems concerning the solution of equation (3) (or the analogous integral equa-
tion) given the low-order moment structure, or, equivalently, the spectral struc-
ture, have been treated at length.

Attention is here directed to problems of inference about the needed low-
order moments. Subcases are considered of the case of ‘“signal plus noise,”

4) E(v, |u) = us,
where we have now established a correspondence between the indices x of u,
and vy .
Equation (4) implies
(5) Eu, = Ev,,

so that the expectations of the v,’s are the only first-order moments required.
To infer Ev, from the data v, we assume first-order stationarity of the v,’s (and
hence of the u,’s). The two needed first-order moments can then be estimated by
the empirical mean of v, , formed by averaging over z,

(6) Bu, = By, = D v/ D 1.

(The notation K, as used here, should not be confused with Doob’s (1953)
wide-sense conditional expectation operator.)

Note that when E(v |u) = u, the right-hand sides of equations (3) and (3*)
become Cov (u,, uy) and Eusu,, respectively, which can be related to the
overall second-order moments of v by the familiar conditional variance formula,

(7) Cov (v, %) = Cov (Us, uy) + E Cov (v,, v, | 1),
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or
(7%) Ev,-v, = Bus-uy, + E Cov (vs, v, | u).

Hence, if the expected second-order structure of the “measuring instrument,”
E Cov (vz, v, | 1), is known, the needed second-order moments follow from an
estimate of the overall moments of v,

(8) Cov (va, 0y) = Zz (Va4 — Bvy)(vy4. — BEv.)/D,
or ‘
(8*) E”w'”u = Zz Vo4aVy+2/ D,

where the denominator D = D, 1, or (D, 1) = 1, or a favorite other divisor.
(In smoothing problems of P. Whittle, taken up below, the conditional second-
order moment structures, Cov (v, v, | u), are known quadratic functions of the
unknowns u.)

The use of the serial estimate (8) requires second-order stationarity of the
v,’s, which, in turn, requires a shift structure x — “z 4 2.” No ergodicity, or
approximate ergodicity, of v, is here assumed. For one, ergodic subjective prob-
ability structures hardly ever arise in practice (Leonard J. Savage, personal
communication ). In addition, the moments actually estimated by the empirical
averages are expectations conditional on the shift-invariant event realized. The
estimate 4, (2) based on these conditional moments minimizes the conditional,
and hence the unconditional expected loss among all functions of the shift-
invariant events and, linearly, of v and a nonzero constant. (Pointed out by
Richard A. Olshen, personal communication. )

3. Subcases of “signal plus noise.” (a) Joint normality of u and v. Bayes’
theorem has been appealed to in contexts where the probability structure of u
and the conditional probability structure of v given u are at hand. If these are
multivariate normal distributions, as is well known and easily derived, u given
v is conditionally normal with mean,

(9) G = E(u|v) = [Var (v|u)][Var v]|"Eu + [Var u][Var v] v,

and variance matrix,

(10) Var (u|v) = [Var u][Var v] ' [Var (v |u)],
where
(11) Varv = Varu + Var (v]|u).

Equation (11) is the matrix form of the homoscedastic case of equation (7);
it can be used to determine a third matrix from any pair, of which at least one
must be known in advance.

One might be interested in whether equations (9)-(11) apply in any way to
the general nonnormal case when 4 = E(u|v) and ¥ = E(v|u) = u are inter-
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preted as wide-sense conditional expectations. Indeed, these equations with
Var (u | v) and Var (v | u) denoting E(u — @)(u — 4) and E(v — ¥)(v — ¥),
respectively, hold as geometric theorems in Hilbert space, since they then refer
only to the marginal first and second-order moments of the probability struc-
ture.

The estimate @i given by (9) minimizes the sum of two quadratic forms in u,

(12) (u — Eu)[Varu](u — Eu) + (v — u)'[Var (v|u)] (v — u)
= [u — E(u|v)][Var (u|v)]"[u — E(u|v)] + C,

where C is constant in u. Bellman and Kalaba and Lockett (1965) treat the nu-
merical problem of minimizing (12) when the prior (marginal) variance matrix
of u exhibits high correlations for pairs of unknowns, u, and u,, when z and y
are “close.”

In some applications, such as optical filtering, the measurements v, and the
unknowns u, are positive, and one might try to minimize (12) under this con-
straint. It may be easier to transform v, and u,, say to their logarithms, then
minimize (12), and then transform back. If one is serious about the quadratic
loss function, instead of transforming back, one should recall the formula for
the mean of a lognormal variate, exp (u,) given v,

(13) E(exp (u2) | v) = exp [E(uz | v) + 3 Var (us | v)].

The formula for a general mixed moment follows trivially from (13)

Whittle (1957), (1958) proposed use of the smoothed estimates 4,* given by
(2*) and (3%) in the following contexts.

(b) The vs’s independent and exponentially distributed with means u, . The
classical periodogram ordinates are asymptotically so distributed.

(e) The v;’s independent and Potsson distributed with means u, . This applies,
for one, to probability estimation from the cell counts v of a random-size sample;
the probability estimate is then ./ 4, .

(d) The (Nvs)’s multinomially distributed with cell probabilities u, and total
cell count N. This applies, of course, to probability estimation from the cell
frequencies v of a sample of fixed size N. Note that in this context %, (equation
(2)) coincides with 4,° (equation (2*)) since X, v, =1

In these three contexts (b)-(d), the variance structure of the “measuring
instrument” is a quadratic function @ of the “true values” u,

Cov (vz,v,|u) = Q(u)

( 14:b) = 6:5 ,yu:c2
( 14:0) 7 = 6:&: ,yu:c
(144d) =N [0z 0Us — Usly],

where 8.,y = 1 or 0 according to whether or not * = y. Hence, the expected
“instrumental’’ variance structure, needed for use of (7) and (8), is a linear func-
tion F(F*) of the first two moments of the unobservable u.
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E Cov (v, ,v,|u) = F (Var u, Eu)

(15b) = 8:,4[Cov (%, u) + (Bus)’]

(150) = 6x,yEu:c

(15d) = N7'[(.y — Buy)Eu, — Cov (us, u)),
or

E Cov (v, ,v,|u) = F*(Euu’, Eu)

(15b*) = 8o Bu,
(15¢*) = 05, B,
(15d*) = N7'[6s,,Bus — Buguy).

Equations (6), (7), (8) and (15) yield the estimates G(G™),
Cov (s, uy) = G(Varv, Bv)

(16b) = [COV (v, vy) — 5w,u(Evz)2]/(1 + 02y)

(16¢) = Cov (Vs , 0y) — 82y B0,

(16d) = [Cov (v, v,) + N (B, — 6.,) B0,/ (1 — N )
or

Buu, = G*(Ev, BEv)

(16b*) = Evzvu/(l + 02.y)
(16¢*) = Bvw, — 8, ,Bv,
(16d*) = [Bvw, — N6, B0,)/(1 — N7,

which together with (6) and (8) supply the necessary moments for use of (2)
and (3) in determining .

According to its nonnormal interpretation, equation (10) supplies an estimate
of the moments needed for a linear calculation of the overall expected loss for
optimal linear 4(v) as given by (2), (3).

The probability-estimation context (d) received more detailed treatment in
Dickey (1968), which paper should have made reference to famous work by I.
J. Good (1963, 1965, 1966). Good considered the global smoothing problem and
has proposed the use of prior distributions based on peeking at the data.
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