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A STABLE LIMIT THEOREM FOR MARKOV CHAINS

By SteprEN R. KIMBLETON!

The University of Pittsburgh

1. Introduction and summary. In [2] Doeblin obtained a central limit for dis-
crete parameter Markov chains with discrete state space. In obtaining
this theorem the principal tool is the Doeblin dissection of the sequence of partial
sums of a functional of a Markov chain into a random sum of independent,
identically distributed random variables. Indeed, given this dissection, the re-
mainder of Doeblin’s proof is, in essence, a proof of a random central
limit theorem. Although Doeblin does not state a stable limit theorem for Markov
chains, at the end of the paper he observes that the dissection should also be of
use in obtaining such theorems, and comments on a possible method of obtaining
theorems of this nature. In this paper three stable limit theorems for Markov
chains together with the appropriate solidarity theorems are obtained depending
on whether the index « of the limiting distributionis <1, = 1, or > 1. The princi-
pal tools used in obtaining these theorems are the Doeblin dissection, a well
known result concerning the rate of growth of the sequence of norming coefficients
of a random variable in the domain of attraction of a stable law, and a random
stable limit theorem [8], [10].

2. Preliminary definitions and results. Let {z., n = 0} be a positive recur-
rent, irreducible Markov chain with stationary transition probabilities defined *
on a probability space (, ¥, P) and having state space S. Let f be a function
from S to (— o, -+ «). Then the sequence of random variables {y,, n = 0}
where y, = f o z, is termed a functional of the Markov chain {z,}. For such a
Markov chain we now define several associated random variables. Our defini-
tions and notation will, in general, be those of [1, pages 81-99].

For 7 ¢ 8, t.(7) is the random variable giving the time of rth entrance into the
state 7, r = 1,2, 3, --- . We denote by L(¢, n) the random variable giving the
number of entries into state 7 not later than time n. For functionals of a positive
recurrent irreducible Markov chain we recall that the Doeblin dissection of S, =
%o + - -+ + y. on an arbitrary but fixed state < of the state space is given by:

(1) Se = Y'(i,n) + LETYL,(0) + Y (G, ),
where l

(2) Y'(i,n) = 25y Y(4n) = Zhawo Ve,
(3) Vo) =220t i

Our interest in this dissection stems from the following lemma which is contained
in the theorems and discussion of [1, pages 83-89].
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LemMa 1. Let {y, , n = 0} be a functional of a positive recurrent irreductble Mar-
kov chain {2, ,n = 0}. Let {Y'(4,n), n = 1}, {Y (3,n),n = 1}, {¥,(3),r =1} be
the sequences of random variables yielded by the dissection of S, on 1. Then the se-
quences of random variables {Y' (4, n), n = 1}, {Y”(i, n), n= 1} are bounded in
probability and the random variables of the sequence {Y.(7), r = 1} are independent
and identically distributed.

The following random stable limit theorem [8] and the Doeblin dissection are
perhaps the most important tools in obtaining stable limit theorems for Markov
chains. We observe that the random stable limit theorem of [8] is contained in
Theorem 5.2 of [10] for & # 1. For if @ > 1 and the sequence of random variables
{Y;} is assumed centered, we may let A, = 0, while if & < 1, we need not center
to obtain a limit distribution by Theorem 2 of [3, p. 546]. In either of these cases
the cited theorem of Wittenberg applies. Thus it is only in the case & = 1 that
we shall need a random stable limit theorem which can handle centering
constants.

TaEOREM 1. Let {Y;, 7 = 1} be independent, identically distributed random
variables for which there exist sequences of constants { An}, { Ba}, Bn > 0 such that the
limit distribution F of D¢ (Y; — A,)/Bn exists and is non-degenerate (hence
stable of index @, 0 < a < 2). Let {R(n), n = 1} be a sequence of positive integer
valued random variables for which there exists a positive constant = such that plim
R(n)/n = w. Lel n* = [nr]. ([z] denotes the greater integer in x). Then the limit in
distribution of D 1™ (Y j — An+) /B exists and is F.

The next theorem is a randomized form of a theorem of Marcinkiewitz [9, page
243] from which it is easily obtained. As usual plim denotes limit in probability
while Plim denotes limit with probability one.

TureoreM 2. Let {Y;,j = 1} be independent and identically distributed random
variables having finite rth moment, 1 < r < 2. Let {R(n), n = 1} be a sequence of
positive integer valued random variables such that plim R(n)/n = = > 0. Then
plim 2§ (¥; — E[Y}])/(R(n))"" = 0.

In order to obtain a stable limit theorem for Markov chains covering the case
a = 1, we shall need the following lemma comparing the relative rates of growth
of the centering and norming constants for stable distributions of index a = 1.
The author is indebted to the referee for pointing out that it follows easily from
equations (5.14) and (5.17) of [3, Chapter 17].

LemMmA 2. Let {X;,7 = 1} be independent, identically distributed random vari-
ables for which there exist sequences of constants {An}, {Bn}, Bn > 0 such that the
limit in distribution of 27 (X; — Ay)/Bn s stable of index 1. Then for any 8 > 0,
lim |A,|/B.* = 0.

3. Principal theorems. In our stable limit theorems for Markov chains we
obtain sequences of norming and centering constants which are independent of
the state used in the dissection for & # 1, while for « = 1 the norming constants
do not depend on the state used in the dissection. In order to obtain norming
constants independent of the state used in the dissection, the characterization
given in [7] of norming constants in terms of dispersion is used. (Recall that for
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0 < v = 1, arbitrary but fixed, the dispersion of a random variable X for the
probability v, denoted D(v, X), is the infimum of lengths of the closed intervals
[a, b] such that P{a < X =< b} = v). The precise stable limit theorem for Markov
chains that is obtained will vary according as the index « of the limiting distribu-
tionis < 1, = 1, or > 1. We begin by considering the case o < 1 which is sim-
plest.

TuroREM 3. Let {y, , n = 0} be a functional of a positive recurrent, irreducible
Markov chain {x, , n = 0}. Assume that for some state © in the state space, the com-
mon distribution F; of Y.(7) (in the dissection of S, = yo + - -+ + y» on 1) belongs
to the domain of attraction of a stable law G of index a, 0 < a < 1. Then the limat
distribution of S./D(y, S,) for 0 < v < 1, arbitrary but fixed, exists and is of the
same type as G.

Proor. Since F; is in the domain of attraction of a stable distribution of index
0 < a < 1, there exists [3, page 546] a sequence of constants {B, ,n > 0}, B, > 0
such that the limit distribution G of D re Y,(7)/B, exists and is stable of index
a. (Observe that {B,} may depend on the state ¢ used in the dissection.) By
Corollary 1 of [1, p. 93] we know Plim {L(?,n) — 1}/n = =, where 7, > 0 is
the stationary probability for the state <. Hence it follows from Theorem 1 that
if n* = [nr], the limit in distribution of Y :<{™ ™" ¥,(¢)/B,s is also G. Since
(Y'(i,n)}, {Y" (4, n)} are, as mentioned earlier, bounded in probability, it follows
that the limit distribution of S,/B,» is G. However, by Corollary 1 of Theorem 4
of [7], it follows that the limit distribution of S,/D(v, S,) for 0 < v < 1, arbi-
trary but fixed, is G(«D(v, G)). Thus the theorem.

We now consider the case « = 1, which is, as might be expected, somewhat
more difficult. In this case the choice of the centering constants may depend on
the state used in the dissection. Before stating the theorem we recall that the
rth return time for the state < is given by P.(¢) = #41(¢) — (7). As we are
assuming that the Markov chain is positive recurrent, it follows that E[p,(7)]
exists for all states ¢ of the state space.

TueOREM 4. Let {yn, n = 0} be a functional of a positive recurrent, irreducible
Markov chain {x, , n = 0}. Assume that for some slate 1 in the state space the (com-
mon) distribution F; of Y.(i) (in the dissection of Sn = Yo + -+ + Yn 0N 17)
belongs to the domain of attraction of a stable law G of index 1. Further, assume that
for some B > 0, E[|p.(4)|"™*] exists. Then there exists a sequence of constants { A}
such that for 0 < v < 1, arbitrary but fixed, the limit distribution of (S, — Aa)/
D(y, 8.) exists and is of the same type as G.

Proor. Without loss of generality we assume 1 4+ 8 < 2. Since F; belongs to
the domain of attraction of a stable law of index 1, we know there exist se-
quences of constants {}M,}, {B.}, B, > 0 such that the limit distribution G of
S (Y.(5) — M,)/B, exists and is stable of index 1. Letting n* = [nr;] where
m; is the stationary probability for the state 7, it follows from Theorem 1 that
the limit distribution of

(4) f;i’n)_l (Yr(z) - Mn*)/Bn*



1470 STEPHEN R. KIMBLETON

is also G. Using our assumption that for some 8 > 0 the (1 + 8)th moment of
p-(7) exists, we prove that

(5) plim { f—‘ii,n)_l (p(?) — V/mi) M us/Bas} = 0.

To do this, let us first recall that by equation (5.14) of [3, Chapter 17], B, =
nZ(n) where Z is a slowly varying function. Hence, if v = 1/(1 + @) the ex-
pression in parentheses in the preceding equation can be written as the product
of

(2) ZEE"T () — 1/m) /(LG m) — 17 (B) (LG, n) — 1)7/n*;
(C) Mnt/(n*Z(n*))(l_y)m; (d) ﬂ_i/{(n*)(l—‘y)/2(Z(n*))(1+'y)/2}.

However, the limit in probability of expression (a) is zero by Theorem 2. The
limit of (b) is one by the definition of n* and Corollary 1 of [1, page 93]. By
Lemma 2 we see that the limit of (¢) is zero. Finally, since Z a slowly varying
function implies (Z)**” is slowly varying, it follows from [5, page 45] that
the limit of (d) is zero. Hence we have obtained (5). Since the limit in distribu-
tion of (4) is @, it follows from (5) and a well known lemma (see, e.g., [3, page
247]) that the limit in distribution of Y +<i'™™ (Y,(5) — pr(3)miMpr)/Bps is
also G. Now let us observe that by Theorem 2 of [1, page 82], the sequence of
random variables {n — tru.m(2) + #(i); n = 0} is bounded in probability.
Thus it follows from Lemma 2 that plim { (7 — ¢,z (2) + (%)) 7:M px/Bas} = 0.
But this and the preceding observation imply that the limit in distribution of
(D K™Y, (4) — nariMas}/Bas is G since Y i<i™ 7 p,(4) = tram(3) — 0(4).
Combining this with the fact that { Y’ (3, n)}, {¥" (4, n)} are bounded in proba-
bility, it follows that the limit in distribution of (S, — Au+)/Bgs , where A,« =
naM q is G. But just as in the preceding theorems, we then see that for0 < v < 1,
arbitrary but fixed, the limit in distribution of (8, — A.«)/D(y, S.) 1is
G(z D(v, @)). Thus the theorem.

Finally we consider the case 1 < a < 2. Both the statement of the theorem and
its proof are similar to the improvement by Kendall [6] of Doeblin’s central limit
theorem for Markov chains. In this theorem we eliminate the necessity of a re-
quirement on the moment of p,(¢) by requiring instead that E[Y,(¢)] exist and
by shifting our attention to the sequence of random wvariables Z,.(7) =
Y.(1) — mp.(7), where m = E[Y,(2)]/E[p.(%)]. (Recall that as we are restricting
our attention to positive recurrent, irreducible Markov chains we know E[p.(7)]
exists. Further, by the corollary of [1, page 115], we know that the value of m is
independent of the state ¢.) In addition, since the random variables {Y.(7),
r = 1} are independent and identically distributed and the random variables
{p-(2), r = 1} are independent and identically distributed, it follows that the
random variables {Z,(¢), r = 1} are independent and identically distributed.

TaEOREM 5. Let {y., n = 0} be a functional of a positive recurrent, irreducible
Markov chain {x, ,n = 0}. Let { Y,.(2), r = 1} be the sequence of independent, identi-
cally distributed random variables yielded in the dissection of S, on i, and assume
Ely,(7)] exists. Let Z,(v) = Y,.(3) — mp,(3), where m = E[Y.(2)]/E[p.(?)]. If the
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common distribution F; of Z,(1) belongs to the domain of attraction of a stable law G
of index o, 1 < a < 2, then for 0 < v < 1, arbitrary but fixed, the limit in distribu-
tion of (S, — nm)/D(v, S.) extists and s of the same type as G.

ProoF. Since »_ilim~t p-(%) = tram(2) — L(2), we may write:

(6) 8n—mm =Y'(i,n) + 277 (Y.(6) — mp.(3))
+ Y6, n) + (0 — tiam (@) + 4(0)m.

It follows from the definition of Z.(7) that E[Z.(z)] = 0. Hence the assumption
that F; belongs to the domain of attraction of a stable law G of index 1 < a < 2
implies the existence of a sequence of constants {B,}, B, > 0 such that the limit
in distribution of Y r— Z.()/B, exists and is of the same type as G. As in the
preceding theorems, it follows that if n* = [nm,], the limit in distribution of:

DEG™ Z.(4)/Bux = D255 (V,(4) — mpe(5)) /B

exists and is also G. But as the first, third and fourth terms on the right hand
side of (6) are bounded in probability, this implies that the limit in distribution
of (S, — nm)/B. exists and is G. Hence, as in the earlier theorems, for
0 < v < 1, arbitrary but fixed, the limit distribution of (S, — nm)/D(y, Ss)
exists and is G(zD(y, G)).

From the preceding theorem we can obtain the following corollary, the state-
ment of which corresponds to that of Theorem 4.

CoROLLARY. Let {y,, n = 0} be a functional of a posttive recurrent, trreducible
Markov chain {x, , n = 0}. Assume that for some state © in the state space the distri-
bution F; of Y.(2) belongs to the domain of atiraction of a stable law G of index «,
1 < a < 2. Further assume that for some 8 > 0, El|p.(3)|***] exists. Then there
exists a constant m such that for 0 < v < 1, arbitrary but fized, the limit in distribu-
tion of (S, — nm)/D(y, S,) exists and is of the same type as G.

Proor. We show that the hypotheses of the corollary imply those of the
theorem. As it is obvious that E[Y ()] exists, it suffices to show that the common
distribution F; of Z,(¢) = Y,(¢) — mp.(s) belongs to the domain of attraction
of a stable distribution of the same type as G. If M; = E[Y.(z)], we know there
exists a sequence of constants { B,}, B, > 0 such that the limit distribution G of
> (Y.(3) — M;)/B, exists and is stable of index a. Next we show

(7) plim {2 7= (p:(4) — /)i s/Bn} = 0.

Let m = w:M, and recall that as before m is independent of the state <. If we
verify (7) it will then follow that the limit distribution of Sor (Y, (5) —
mp.(1)) /B, is G, which implies that the common distribution F; of Z,(7) belongs
to the domain of attraction of a stable distribution of the same type as G. The
corollary will then follow from the theorem. To obtain (7) let us first observe
that by equation (5.14) of [3, page 545] B, = n"°Z(n), where Z is a slowly
varying function and « is the index of the stable law G. Let k& = 1/(a + B8). Then
the expression in parentheses in (7) can be rewritten: { ) 1= (p.(¢) — 1 Jmi)n¥}
{wiM /(0" *7*Z(n))}. The limit of the first term above is zero almost surely by
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a theorem of Marcinkiewitz [9, page 243]. Since |7;M;| = |m| < + =, and Z
is slowly varying, the limit of the second term is zero by a result in [5, page 45].
Thus we have verified (7) and the corollary follows.

4. Solidarity theorems. The results of the preceding section have been stated
for a given state 7 of the state space. We now prove that under the conditions
used respectively in obtaining Theorems 3-5, if Y,.(¢) belongs to the domain of
attraction of a stable law @ of index «, then Y,(j) also lies in the domain of
attraction of G. In proving this, the following lemma will be of use.

Lemma 3. Let {y., r = 0} be a functional of a positive recurrent, trreducible
Markov chain {z,,r = 0}. Let t(3, n, j) be the random variable giving the time of

first entrance into state © following the nth entrance into state j. Let
N(i, n, .7) = Z:‘(‘jdn'j) 5;(%']) - 1)

where 8; is the Kronecker delta function. Let { B,} be a sequence of positive constants
tending to plus infinity. Then

(8) plim {| 208y, — 24 yil/Ba} = 0;
(9) plim {22057y — 207 Yo(4)|/Ba} = 05
(10) plim N (¢, n, j)/n = mj/m;.
Proor. To obtain (8), let ¢ > 0 be given. Then
P> i@y, — Stndyl > B} < P{Y8 [y] > eB./3)
+ P{2°67 yy| > eB./3} '

+ P{maxig,<i | 220231 v, > €Ba/3}
However, the first two terms on the right hand side tend to zero with », and for
fixed %, the third term on the right hand side also tends to zero with n. Finally,
since ¢,(7) is an optional random variable, it follows that P{{(%, n,7) — £.(j) = k}
= f® which is independent of # and thus the fourth term on the right hand
side also tends to 0 with k.
Observe that (9) follows directly from the definition of Y,.(Z). To obtain (10),
observe that it follows from the strong law of large numbers that

1 M(5) = w2t pe(f) + 1} — Elp.(j)] = m;.

Next, if we let f = 68,(-), it follows from Theorem 2 of [1, page 92] that
Plim Y 7 f(z,)/n = m;. But this implies that Plim >, f(x,)/[nm;] = =, .
Finally, since (¢, n, j) — t.(j) is bounded in probability, uniformly in 7, this
last expression implies plim #n N (4, n, j) = plim 2 {>_{“™? f(z,) — 1} =
wm; = mj/m, , yielding the lemma.

We state a solidarity theorem only for the case @ = 1, as the necessary modifi-
cations to cover the case o * 1 under the assumptions of Theorem 3 or
Theorem 5 or its corollary will be evident.
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TurorEM 6. Under the conditions of Theorem 4, if Y (1) is in the domain of
attraction of a stable law G of index 1, then for any other state 7, Y (5) also lies in the
domain of attraction of G.

Proor. Since Y () is in the domain of attraction of @, it follows that there
exist sequences of constants {M,(2)}, {B.(7)} such that the limit in distribution
of 2ory (Y.(3) — Mn(3))/Ba(3) exists and is G. Let n* = [nm;/m;]. It then
follows from the random stable limit theorem and the preceding lemma that the
limit in distribution of D 753" (¥,(4) — Mu(4))/Ba (i) is also G. By using
an argument patterned after that used in obtaining (5), the preceding is seen to
imply that the limit in distribution of Y ~¢'™? (¥,(5) — p,(2) mitins (5) ) /Bur()
is G. However, from the preceding lemma, this is seen to imply that the limit in
distribution of > (y, — wamas(3))/Baus(7) is G. But by using once more a
modification of the argument which yielded (5), the preceding statement is seen
to imply that the limit in distribution of

17 (Ye() — miMos(3) /75) /Bun(5)
is G, yielding the theorem.
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